当前位置:文档之家› 肿瘤基因治疗的研究进程及发展趋势-郭晓明

肿瘤基因治疗的研究进程及发展趋势-郭晓明

肿瘤基因治疗的研究进程及发展趋势-郭晓明
肿瘤基因治疗的研究进程及发展趋势-郭晓明

《免疫学概论》课程论文

肿瘤基因治疗的研究进程及发展趋势

姓名:郭冬阳

学号: 200904123100**

学院:材料与化工学院

专业班级: 2009级生物工程(2)班

指导教师:郑育声

分数:

2012年12 月30 日

摘要

肿瘤的基因治疗就是将一个治疗基因“捆绑”在“病毒”上,随后将这种载有治疗基因的“病毒”感染肿瘤患者或肿瘤细胞,使治疗基因进入肿瘤细胞,进而“摧毁”肿瘤细胞。这种肿瘤的治疗技术已成为现代广大肿瘤学者的研究热点,其具有特异性、安全性、有效性的特点而受到越来越多的关注,而且许多实验及临床研究取得了满意的效果。本文将从肿瘤基因治疗的方法、我国肿瘤基因治疗的现状及发展趋势等方面进行论述。

关键词:肿瘤;基因治疗;研究进展;发展趋势

基因治疗是以改变遗传物质为基础的DNA重组技术,需要将目的基因传递到细胞内,这一过程必需载体的协助才能达到目的,因此载体在基因的转移中担任重要角色。随着免疫学的发展和基因技术研究的不断加深,结合病毒载体、免疫基因和转基因等方法在肿瘤的基因治疗中取得了许多成就,为肿瘤的治疗展现了广阔的应用前景。

一、肿瘤基因治疗

1.1 肿瘤基因治疗的策略

(1)免疫基因治疗,又称细胞因子基因治疗,通过转导细胞因子基因,增强机体抗肿瘤免疫能力;

(2)自杀基因治疗,使肝癌细胞产生对某些药物前体的特异敏感性而被杀;

(3)基因置换或补充,置换突变的基因或补充缺失的抑癌基因;

(4)反义苷酸技术,用于抑制癌基因的表达。

1.2 肿瘤基因治疗基因工程的程序

首先取得所需要的基因即目的基因,将其同载体连接,再将经过重组的环状DNA即质粒引入受体细胞,并使目的基因和载体上其他基因的性状得以表达等几个环节。

(1)在内切酶的作用下分离制备待克隆的DNA片段;

(2)将目的基因与载体在体外连接形成重组DNA;

(3)重组DNA进入宿主细胞;

(4)筛选、鉴定阳性重组子;

(5)重组子的扩增。

1.3 肿瘤基因治疗基因工程所需的载体

虽然内切酶解决了异源DNA体外重组的技术问题,但是重组之后的异源DNA 还必须回到细胞内才能显示出其生物活性。这就要求有一种运送载体来充当此角色。微生物中有一种非染色体一种环状DNA或病毒可以做为载体,这样载体的共同特点是:(1)它们都是环状DNA;(2)都能专一性的感染某一细胞;(3)都具有某种选择性标记;(4)都具有一些内切酶的酶切位点;(5)都可以随染色体的复制而独立复制,随着细胞的分裂而扩增。

1.4 肿瘤基因治疗基因工程所需的工具酶

只有在DNA限制性内切酶、载体质粒、连接酶及其它修饰酶的作用下,才能实现随心所欲地移动和改造基因。内切酶的共同特点是:它们都有专一性的DNA 识别顺序,都能在DNA链当中切开DNA,故称“内切”的酶。但切开的方式有两种:(1)切成粘性末端;(2)切成平末端。基因工程研究就是利用了内切酶可以专一性地把DNA切割成特定的粘性末端的特点,根据研究工作的实际需要,把一些不同来源,具有粘性末端的DNA片段重新连接或组合起来,这就是DNA技术的来由。

1.5 肿瘤基因治疗基因工程所需的细胞

293细胞是传染腺病毒ELA基因的人胚肾上皮细胞系,有致瘤性,是转化细胞。细胞感染病毒后,首先是细胞形态的变化,由于病毒能增强细胞膜的渗透性,细胞外的离子钠离子流入胞内,细胞可从原来的形态变为圆形,然后由于细胞支架的降解或破裂导致细胞从基质上脱落,最后破裂。

二、肿瘤基因治疗的常用方法

2.1 基因沉默疗法

RNA干扰是指在生物体细胞内,与靶基因同源的外源性或内源性双链诱导转录后引起特异性基因沉默。现已阐明RNAi发生机制的大致模型。1)启动阶段:长dsRNA 或短发夹RNA进入细胞后,在一种具有RNaseⅢ活性的dsRNA特异性核

酸内切酶作用下,被切割为21~23个核苷酸组成的片段,即siRNA。2)效应阶段:siRNA双链结合一个核酶复合物从而形成RNA诱导沉默复合物,识别mRNA,其中的反义链与靶mRNA互补结合,正义链则被置换出来。继而,RISC中的Dicer 在靶mRNA与siRNA结合区域的中间将其切断。3)级联放大:在RNA依赖性RNA 聚合酶的作用下,以mRNA 为模板,siRNA为引物,扩增产生足够数量的dsRNA作为底物提供给Dicer酶,产生更多的siRNA,从而使效应阶段反复发生,一个完整的mRNA就被降解成2l-23 nt的小片段,导致相应的基因表达沉默。

2.2 自杀基因疗法

自杀基因疗法也称前药转换酶基因疗法,是指将某些病毒的基因转导入肿瘤细胞,此基因编码的特异性酶能将对细胞无毒或毒性极低的药物前体在肿瘤细胞内代谢成细胞的毒性产物,以达到杀死肿瘤细胞的目的。自杀基因治疗系统的种类很多,主要包括单纯疱疹病毒I型胸苷激酶/丙氧鸟苷系统、带状疱疹病毒胸腺嘧啶激梅新华肿瘤基因治疗的研究进展酶/阿糖甲氧基嘌呤系统、胞嘧啶脱氨酶/5一氟胞嘧啶系统和硝基还原酶系统等。目前研究较多的是HSV tk/GCV 系统,研究者正在致力于提高自杀基因疗法的效率。在自杀基因的探索中,不少究者发现,少量的自杀基因转染的癌细胞与未转染的癌细胞按一定的比例混合后培养,不仅转染的癌细胞被杀灭,两者相互接触后相邻的未转染癌细胞也大量死亡,此即“旁观者效应”。治疗中,“旁观者效应”是一重要特征,即有毒代谢物通过缝隙连接或凋亡小体从转染细胞移动到邻近细胞,对其产生杀伤作用,大大提高了自杀基因的杀伤效应。

2.3 免疫基因疗法

免疫基因治疗是通过基因重组技术,增强机体的抗肿瘤免疫功能,达到治疗肿瘤的目的,主要包括增强免疫效应细胞功能的细胞因子基因疗法、调节增强抗原识别能力的主要组织相容性复合物的基因疗法和共刺激分子基因疗法等。在肿瘤免疫治疗中,免疫活性细胞的免疫监督和杀伤活性起着重要作用。细胞毒淋巴细胞对肿瘤细胞低反应性的一个主要原因是肿瘤细胞表面共刺激分子B-7家族的低表达,导致CD28和CD152以及B-7之间相互作用减弱。细胞毒性T淋巴细胞是免疫系统的主要效应细胞,其介导的细胞毒作用需要识别细胞表面的T细胞抗原受体和主要组织相容性复合体分子。相反,Fas-FasL介导的细胞毒作用无

特异性。因为肿瘤表面通常表达Fas,所以FasL和CTI 是抗肿瘤的两大武器。在肿瘤的发生发展中,肿瘤细胞通过抑制APC,特别是DC的抗原递呈作用来逃避宿主对其进行的免疫攻击。DC来源的肿瘤疫苗将是具有巨大潜力的肿瘤免疫治疗手段。

2.4 基因替代疗法

抑癌基因亦称抗癌基因,是指正常细胞内存在的能抑制细胞转化和肿瘤发生的一类基因群。基因替代治疗就是利用载体将缺失的抑癌基因转染肿瘤细胞,以达到杀伤肿瘤细胞的目的。目前已分离克隆出20余种抑癌基因,p53基因是与人类肿瘤相关性最高的抑癌基因,肿瘤生成会伴随p53的缺失。目前研究的抑癌基因还有Fhit及第10号染色体丢失的张力蛋白同源的磷酸酯酶等,但真正应用到临床,还需要大量的研究。sible sites,AAS),并转染入胃癌细胞株MNK-45,实验组Survivin RNA 和蛋白水平明显下降,部分肿瘤细胞呈现凋亡的特征性改变。并且这种作用与AAS的位置有关系,提示反义Survivin能够诱导凋亡,抑制肿瘤细胞生长。

分化抑制因子又称DNA结合抑制因子,属于螺旋环一螺旋转录因子家族成员之一,与肿瘤的发生、侵袭及肿瘤血管生成等方面密切相关。Id蛋白可成为肿瘤靶向治疗的一个新靶点。目前用于反义治疗的基因还有Bcl-2、cerb-B2和增殖细胞核抗原等。

2.5 反义基因疗法

反义基因疗法就是根据碱基互补原则,用人工合成或生物体表达的特定DNA 或RNA片断(反义核酸),抑制或封闭专一靶基因的技术。Tong等在体外通过随机寡核苷酸库联合特定软件分析,选择合适的Survivin反义位点在肿瘤生成与转移中新生血管发挥重要作用,VEGF和转化生长因子是促进新生血管生成的主要生长因子,以VEGF作用最强。与其他基因治疗相比,该疗法无需直接转染肿瘤靶基因,只需转染肿瘤4周,创造抑制血管生成的环境。小鼠血管内给予针对VEGF受体的siRNA时发现,VEGF受体表达减少,肿瘤的生长速度和血管生成明显减少。

2.6 多药耐药相关的基因疗法

多药耐药(MDR)是指在化疗药物治疗肿瘤中发现的肿瘤细胞的非特异普遍耐

药性。导致肿瘤细胞MDR 的一个重要原因是MDR1基因扩增和过度表达。MDR相关的基因治疗一般集中在抑制肿瘤细胞的MDR1基因表达,从而增加常规化疗的效果。郭华等以MDR1基因mRNA为靶点设计合成2个反义肽核酸(PNA)序列,利用PNA-DNA 杂交,阳离子脂质体介导转染脑神经母细胞瘤耐药细胞株SK-N-SH。检测显示,SK-NSH 细胞P-gP表达明显降低,MDR1mRNA表达轻度下降,细胞内多柔比星(ADM)聚集浓度明显增加,PNA在MDR1基因抑制中的特殊作用为逆转肿瘤的MDR提供了新的途径。缺氧诱导因子1(HIF 1)对于肿瘤MDR 形成有多方面的作用,以HIF-1为靶点的肿瘤治疗,为克服肿瘤放、化疗抵抗提供了新思路。2.7 抗肿瘤新生血管形成疗法

反义基因疗法就是根据碱基互补原则,用人工合成或生物体表达的特定DNA 或RNA片断(反义核酸),抑制或封闭专一靶基因的技术。Survivin是一种凋亡抑制基因,它在正常组织中不表达,而在胚胎发育组织和多数人类肿瘤组织中均有程度不同的表达。

2.8 抗端粒酶疗法

端粒是位于染色体末端的复合结构,调控细胞的有丝分裂,随着细胞分裂将逐步缩短,最后导致细胞凋亡。故端粒的持续存在是肿瘤细胞增殖的基础。端粒酶是一种逆转录酶,能够以自身RNA为模板合成端粒的末端重复序列5-TTAG-3 ,以补偿端粒片段的缺失,在正常组织中通常处于抑制状态,但在恶性肿瘤和永生化的细胞中常处于激活状态。人端粒酶逆转录酶(hTERT)是端粒酶的活性限速成分。迄今已发现6种类型的核酶,其中锤头状核酶由于结构简单,设计方便,成为基因治疗的首选。

三、我国肿瘤基因治疗的现状

我国是较早开展基因治疗研究和临床试验的国家。早在1985年,吴曼院士就提出了肿瘤是基因治疗的重要目标。经过几十年的发展,在基因导入和基因治疗研究和临床试验等方面都取得了很大进展,目前我国已有重组腺病毒-p53抗癌注射液,TK基因治疗恶性脑胶质瘤,以树突状细胞为基础的肿瘤细胞治疗与基因治疗、IL-2基因工程胃癌细胞瘤苗、HSV-tk基因治疗肝癌等几个肿瘤基因治疗方案进入了临床试验阶段,并建立了生物领域病毒载体研发基地,主要开展腺

病毒相关病毒载体用于治疗肿瘤的实验和临床试验研究。目前我国已经有30余个具有自主知识产权的基因治疗方案,并在进行临床试验。

四、肿瘤基因治疗的发展趋势

近年来,载体系统的不断完善和发展,相关的基因治疗研究和试验报道层出不穷,然而真正意义上的突破却不容乐观,主要有:(1)没有十分理想的治疗基因,不同个体发生肿瘤免疫逃逸的机理可能不同,目前还没有一个公认的与癌症的发生、发展密切相关的基因。(2)体内基因传染效率较低,限制了治疗基因的表达。(3)对肿瘤发病机理的认识还远远不够。(4)导入的目的基因难以控制,肿瘤细胞的靶向性不强,损害正常细胞的功能。根据以上目前肿瘤基因治疗的研究主要集中在:(1)寻找新的更有效的治疗基因;(2)寻找更好的载体增加传染效率;(3)选择更合适的导入途径。

总之,由于肿瘤是多因素、多环节、多阶段的复杂的基因疾病,依靠单一方法并不能达到理想的抗肿瘤效果,因此多种治疗联合、针对肿瘤的不同特征进行个体治疗也已成为基因治疗发展的一个趋势。

参考文献

[1] 杨家驹,段振玲,肿瘤的基因治疗进展,医学综述,2005,11(10):883-885.

[2] 刘宾娜,肿瘤的基因治疗,牡丹江医学院学报,2007,28(5):72-74.

[3] 李允光,濮德敏,刘雪梅等.RNAi沉默环氧酶-2对宫颈癌Hela细胞细胞周期影响的实验研究[J].中华肿瘤防治杂志,2007.14(20):1535-I538

[4] Sioud M.Therapeutic siRNAEJ.Trends Pharmacol Sci,2006,27(1):22-28.

[5] Okada T,Caplen N J,Ramsey W J,et a1.In situ generation of pseudotyped retroviraI progeny by adenovirus—mediated transduction of tumor cells enhances the killing effect of HSV—tk suicide gene therapy invitro and in vivo[J].J Gene Med,2006,8(3):288-299.

[6] 何霞,周俊宜,朱振宇,等.端粒酶锤头状核酶抑制肺癌细胞端粒酶活性及细胞增殖的实验研究[J].中华肿瘤防治杂志,2007,l4(18):l372-1375.

[7]Ye J,W u Y L,Zang S.Inhibitory effect of human telomerase antisense variant

tumor pathological subtype[J].Woed J Gastroenterol,2005.111(15):223O 2237.[8] 关心,彭吉润,冷希圣.人树突状细胞与肝癌细胞系HIE融合细胞的建立。中华肿瘤杂志,2005,27(8):465 467.

[9] Shin J, Kim J, Ryu B,et a1.Caveolin 1 is associated with VCAM -1 dependent adhension of gastric cancer to endothelial cells[J].Cell Physiol Biochem,2006,17(5 6):211 215.

[10] Pang R W ,Lee T K ,M an K ,et a1.PINI expression contributes to hepatic carcinogenesis[J].J Pathol,2006.210(1):19 21.

肿瘤基因治疗的最新进展

肿瘤基因治疗的最新进展 王佩星 (徐州师范大学科文学院 08生物技术 088316103) 摘要:癌症是一种基因病,其发生、发展与复发均与基因的变异、缺失、畸形相关。人体细胞携带着癌基因和抑癌基因。癌症的基因治疗目前主要是用复制缺陷型载体转运抗血管生成因子、抑癌基因、前药活化基因(如HSV-1胸腺嘧啶激酶)以及免疫刺激基因。主要抗肿瘤机制为:抑制肿瘤细胞生长、诱导肿瘤细胞凋亡、诱导抗肿瘤免疫反应、提高肿瘤细胞对化疗的敏感性、提高肿瘤细胞对放疗的敏感性、切断肿瘤细胞的营养供应。 关键词:肿瘤、基因治疗、免疫、原癌基因、抑癌基因 The latest progress of cancer gene therapy WangPeiXing (xuzhou normal university institute of biotechnology 088316103 foremen who 2008) Abstract: the cancer is a genetic disease, its occurrence, development and recurrence are associated with genetic variation, loss, deformity related. Human body cell carries oncogenes and tumor-suppressor genes. Cancer gene therapy is now primarily with copy DCF with carrier transport antiangiogenic factors, tumor-suppressor genes, before medicine activated genes (such as HSV - 1 thymine bases kinase) and immune irritancy genes. Main antitumor mechanism for: inhibiting tumor cell growth, inducing tumor cell apoptosis, inducing antineoplastic immune response, improving the sensitivity of the tumor cells to chemotherapy, radiotherapy of tumor cells to improve sensitivity, cut tumor cells to nutrition. Keywords: tumor, gene therapy, immunity, protocarcinogenic gene, tumor-suppressor genes 从本质上来讲,癌症是一种基因病,其发生、发展与复发均与基因的变异、缺失、畸形相关。人体细胞携带着癌基因和抑癌基因。正常情况下,这两种基因相互拮抗,维持协调与平衡,对细胞的生长、增殖和衰亡进行精确的调控。在遗传、环境、免疫和精神等多种内、外因素的作用下,人体的这一基因平衡被打破,从而引起细胞增殖失控,导致肿瘤发生。基因治疗的策略有基因替代、基因修复、基因添加、基因失活,目前临床使用的最主要方式是基因添加。针对肿瘤的特异性分子靶点设计肿瘤治疗方案,具有治疗特异性强、效果显著、基本不损伤正常组织的优点。这种肿瘤靶向治疗是肿瘤治疗中最有前景的方案。 1.肿瘤基因治疗的历史进展 肿瘤、艾滋病、遗传病是困扰人们的三大疾病,对肿瘤的根治是人们一直迫不及待想要实现的愿望。

肿瘤免疫治疗新方法

自体细胞免疫疗法 CIK (cytokine-induced killer,中文名:[自体细胞免疫疗法]多种细胞因子诱导的杀伤细胞) 是将人外周血单个核细胞在体外用多种细胞因子(如抗CD3单克隆抗体、IL-2和IFN-γ等)共同培养一段时间后获得的一群异质细胞。由于该种细胞同时表达CD3+和CD56+两种膜蛋白分子,故又被称为NK细胞样T淋巴细胞,兼具有T淋巴细胞强大的抗瘤活性和NK细胞的非MHC限制性杀瘤优点。因此,应用CIK细胞被认为是新一代抗肿瘤过继细胞免疫治疗的首选方案。CIK细胞中的效应细胞CD3+和CD56+细胞在正常人外周血中极其罕见,仅1%—5%。[1] CIK特点 CIK细胞中的效应细胞CD3+CD56+细胞在正常人外周血中极其罕见,仅1%~5%,在体外经多因子培养28~30天,CD3+CD56+细胞迅速增多,较培养前升幅可达1000倍以上。实验证明,扩增出的CD3+CD56+细胞来源于CD3+CD56-T细胞,而非 CD3-CD56+NK细胞。同时发现在CD3+CD56-的T 细胞中,除 CD4-CD8-T细胞外,其余三种T 细胞亚群(CD4-CD8+、CD4-CD8-、CD4+CD8+)均可通过体外多因子培养而获得CD56分子的表达,

而由于CD4+CD8+细胞和CD4-CD8-细胞在正常人外周血中含量极低而间接提示此CD3+CD56+细胞绝大多数来源于外周血中 CD4-CD8+T细胞。而由于CD4-CD8-T细胞在培养1个月后有近56%的T 细胞同时表达CD56和CD3,表明其也是CIK细胞的重要来源。比较CD3+CD56+CIK细胞中表达CD8+和CD8-,的两群细胞其杀瘤活性没有显著性差异,提示CIK细胞的细胞毒性与CD3CD56表达成相关趋势,而与CD8的表达未表现出相关性。 杀伤原理 CIK细胞能够通过三种途径杀灭肿瘤细胞和病毒感染细胞: ①CIK细胞对肿瘤细胞和病毒感染细胞的直接杀伤:CIK细胞可以通过不同的机制识别肿瘤细胞,释放颗粒酶/穿孔素等毒性颗粒,导致肿瘤细胞裂解。 ②CIK细胞释放的大量炎性细胞因子具有抑瘤杀瘤活性:体外培养的CIK细胞可以分泌多种细胞因子,如IFN-γ、TNF-α、IL-2等,不仅对肿瘤细胞有直接抑制作用,还可通过调节机体免疫系统反应性间接杀伤肿瘤细胞。 ③CIK细胞能够诱导肿瘤细胞的凋亡:CIK细胞在培养过程中表达FasL(Ⅱ型跨膜糖蛋白)通过与肿瘤细胞膜表达的Fas(Ⅰ型跨膜糖蛋白)结合,诱导肿瘤细胞凋亡。 CIK细胞发挥作用的三种途径

基因治疗研究进展_虎艳

基因治疗研究进展 虎 艳 (甘肃省张掖医学高等专科学校 734000) 摘 要 基因治疗是21世纪具有很大发展前景的新医疗技术,有望成为人类战胜疾病的利器。本文阐述了基因治疗技术的发展和应用进展。 关键词 基因治疗 载体 癌基因 基因治疗(genetherapy)是医学领域中发展起来的一项新技术,它主要是通过向靶细胞或组织引入外源基因DNA或RNA片段,来纠正或补偿基因的缺陷,关闭或抑制异常基因的表达,从而达到治疗疾病的目的。基因治疗通常包括基因替代、基因修饰、基因修正、基因抑制或失活等。上世纪80年代初,Anders on首先阐述了基因治疗的概念。1990年美国的B lease等成功地进行了世界上首例临床基因治疗,即对腺苷脱氨酶(adenosinedeam inase,ADA)缺陷病人进行了基因治疗。1991年我国首例基因治疗B型血友病也获得成功[2]。目前,基因治疗已从遗传病扩展到心血管疾病、肿瘤、神经系统疾病及传染病等。此外,基因治疗也能用于亚健康状态的治疗,如疲劳、肥胖、脱发、衰老等。然而基因治疗依然存在诸如缺少高效的传递系统、缺少持续稳定的表达和寄主产生免疫反应等一系列问题。但随着科学家对人类基因及其功能、疾病发病的分子机制研究的不断深入,不久的将来基因治疗一定会给人类健康事业带来深远的影响。 1 基因治疗的方法 基因治疗有两种途径:①把一个健康的正常基因拷贝插入病变靶细胞以补偿缺陷基因;②引入经过改造的基因来赋予细胞新的特性。目前基因治疗常用的技术有体内疗法(in vivo)和体外疗法(ex vivo)两种。1.1 体内疗法 体内疗法是将含外源基因的重组病毒、脂质体或裸DNA直接导入受体体内有关的器官组织和细胞内,以达到治疗目的。这是一种操作简便易行的方法,如静脉注射、肌肉注射、器官内灌输、皮下包埋等,但其缺点是基因转染率较低,疗效短。例如在遗传性疾病的基因治疗方面,以腺病毒等为载体的体内疗法常见于囊性纤维变性(cystic fibr osis,CF)的基因治疗研究。CF为一种白种人常见的致死性疾病,是累及少数器官系统的常染色体隐性遗传病,该病是由于跨膜转导因子(cystic fibrosis trans membrane conductance regulat or,CFTR)基因发生突变导致上皮细胞氯离子通道异常,从而使肺、胃肠道、胰腺和肝胆系统等多种器官功能受损。在CF累及的器官中目前只有肺可作为基因治疗的靶器官,载体主要是腺病毒,还有脂质体、质粒和与腺相关病毒载体。1.2 体外疗法 目前研究和应用较多的还是体外疗法,即将有基因缺陷的细胞取出,在体外将外源基因导入到载体细胞,然后将基因转染后的细胞回输给受者,使携有外源基因的载体细胞在体内表达治疗产物,以达到治疗目的。例如,1991年复旦大学遗传学研究所与第二军医大学长海医院血液科合作进行的血友病B 基因治疗就是利用皮肤成纤维细胞为靶细胞的体外疗法。该方案应用XL C I X和N2C MV I XC9逆转录病毒载体转染患者的成纤维细胞,以细胞胶原悬液注射到患者皮下,使患者血浆中F I X抗原和F I X活性升高1~2倍,并持续两年以上,患者鼻出血等症状有所好转,每年所需输血次数也减少。此后又进行了2例血友病的基因治疗,跟踪4~7年未发现与基因治疗相关的毒副作用,但转入的F I X表达水平仍有待进一步提高[2]。 另外,W ils on等应用肝细胞为靶细胞的体外疗法治疗了家庭性高胆固醇血症(fam ilial hyperchlester olae2 m ia,FH)。FH是一种由于低密度脂蛋白受体(l ow density lipop r otein recep t or,LDLR)功能或表达异常所致的遗传病。W ils on等首先切除患者部分肝以获取原代培养的肝细胞,然后在体外用含LDLR cDNA的逆转录病毒载体转染后回输,经门静脉注射植入肝脏。治疗后患者血液中LDL水平较治疗前下降约30%,LDL/ HDL(低密度脂蛋白/高密度脂蛋白)之比从治疗前10~13降至5~8,这一水平维持了18个月以上。由于该方案需要切除患者约1/3的肝脏,目前已停止临床应用[2]。 2基因治疗的载体 基因治疗载体可分病毒性载体和非病毒性载体两大类。 2.1 病毒性载体 包括逆转录病毒(R t)、腺病毒(Ad)、疱疹病毒(HS V)及腺相关病毒(AAV)等。 2.1.1 逆转录病毒载体 逆转录病毒(R t)是一类可在感染细胞内将其RNA反转录为DNA的病毒。R t最大的优点是可以有效地整合到靶细胞的基因组中,并稳定持久地表达所带的外源基因,病毒基因组以转座的方式整合,其基因组不会发生重排。因此所携带的外源基因也不会改变,而且转染率高。 2.1.2 腺病毒载体 腺病毒(Ad)是一种线性双链

肺癌免疫治疗的进展

!!作者单位""##M )#北京$首都医科大学附属北京同仁医院呼吸内科 肺癌免疫治疗的进展 白!澎!综述!张沪生!王毓洲!审校 !!!摘!要"!近年来随着分子生物学和免疫学理论及实验技术的发展$逐步形成了手术,放疗,化疗和免疫治疗的综合治疗模式&肺癌的免疫治疗主要分为" 非特异性主动免疫治疗$特异性主动免疫治疗$抗肿瘤抗体及其导向治疗$过继性免疫治疗$抗肿瘤的细胞因子疗法及基因治疗& !关键词"!肺肿瘤) 免疫治疗!!肺癌是目前在全世界范围内发病率及死亡率均居于首位的恶性肿瘤$全球每年新发现肺癌患者超过"千万$占全世界新发现恶性肿瘤患者的"$J @[&仅$###年就有")##万人死于肺癌&由于以手术,化疗和放疗为主的综合治疗的疗效不能令人满意$寻找治疗肺癌的其它方法就成为人们研究的焦点&随着分子生物学和免疫学理论及科研技术的发展$免疫治疗再次引起了人们浓厚的兴趣$并逐渐成为肿瘤综合治疗的一个重要组成部分&本文仅对近年来在肺癌免疫治疗方面的研究状况作一综述&!!机体抗肿瘤免疫机制及肿瘤免疫治疗概述 很早以前人们就注意到$机体的免疫功能与肿瘤的发生,发展有着密切的关系&当宿主免疫力低下或受到抑制时$肿瘤的发生率明显增加&抗肿瘤免疫反应可分为细胞免疫和体液免疫两种$而细胞免疫占主导地位&免疫监视理论认为$正常机体每天都会有少量细胞发生恶变$而机体的免疫系统则在自然杀伤细胞,巨噬细胞,:细胞,P 细胞及其产生的相应抗体$以及某些细胞因子的作用下$通过细胞免疫和体液免疫两条途径将这些恶变细胞清除&但机体的免疫监视作用是有限的&当机体在致癌因素的作用下$ 大量细胞发生恶变时$免疫监视系统不能及时将其完全清除$而肿瘤细胞又可通过抗原调变,分泌封闭因子及免疫抑制因子或使机体逐渐对其产生免疫耐受等途径来逃避机体的免疫监视$使肿瘤得以在体内进一步发展& 肿瘤免疫治疗学的发展已有"##多年的历史&最初$人们发现患有感染性疾病的肿瘤患者$其预后往往要好于不伴有感染性疾病的肿瘤患者$并由此联想到这种现象有可能与免疫刺激有关&以后$人们又逐步观察到机体的某些抗癌免疫反应,机体对 肿瘤的免疫监视作用$并发现个别肿瘤有自发消退的情况$ 因而认识到肿瘤与免疫有密切的关系&早年人们采用非特异性免疫刺激剂来治疗肿瘤$取得了初步效果&自$#世纪M #年代以来$生物技术$特别是细胞工程和基因工程技术的发展$使肿瘤的免疫治疗得到了飞速进展$ 并逐步形成了手术,放疗,化疗和免疫治疗的综合治疗模式&而免疫治疗作为肿瘤综合治疗的内容之一$具备其特有的优势"首先$即使是类似于复杂蛋白质中单个氨基酸改变这种极其微小的变化也可以被免疫系统识别$并且免疫系统可对自体正常成分,异己成分及病变成分加以区别$因此不会产生化疗,放疗等疗法引起的强烈的甚至是致死性的毒副作用&其次$免疫系统可对常规方法不能发现和根除的肿瘤细胞隐匿性微转移灶加以清除$因此免疫治疗作为肿瘤患者术后辅助 治疗措施$其前景是乐观的*"+ &目前认为$ 免疫疗法能清除少量播散的肿瘤细胞$而对于实体瘤作用有 限*$ +& %!肺癌的免疫治疗 %+!!非特异性主动免疫治疗!许多物质#主要是微生物及其制剂%可以刺激网状内皮系统活性$非特异性的增强免疫功能&非特异性主动免疫治疗就是通过这些物质的刺激$以增强机体的抗肿瘤免疫功能&这种方法不依赖于肿瘤抗原的识别$也不受&类主要组织相容性复合体#BF O <&%限制&自$#世纪!#年代以来$ 卡介苗,短小棒状杆菌等相继应用于临床&随着时间的推移$不断有新的微生物制剂得到研究和应用&日本学者采用溶链菌制剂#X V <>)$%雾化吸入法治疗支气管肺泡癌$取得了很好的效果$进入肺泡内的X V <>)$在局部激活了肺泡内的巨噬细胞$诱导抗肿瘤细胞毒活性并产生多种细 胞因子#如S Y <$,:&A <(等%*)+&1 9Q 9G 3,3等将"!$#个手术切除原发灶后的非小细胞肺癌 #&1O Y O %患者随机分为两组$分别给予X V <>)$辅 ! "$!国外医学呼吸系统分册$##>年E 月第$>卷增刊!1-0,%-57*.1I 5A 3.-*4+B -C10*$26+J $##>$K 38J $>$16778  万方数据

基因治疗的研究现状以及应用前景分析

基因治疗的研究现状以及应用前景分析 摘要: 基因治疗是一种通过基因水平的操作而达到治疗或预防的高新技 术。可治疗包括遗传性疾病、癌症、感染性疾病、心血管疾病和自身 免疫性疾病在内的多种疾病。近几年来基因治疗在全球范围内虽然取 得了快速发展,但也遇到了很多技术、伦理以及法律问题。未来基因 治疗的主要目 标是在法律和伦理要求范围内,开发更加安全高效的基因导入系统, 更好的服务于人类。本文主要论述了基因治疗的研究现状,并在此基 础上分析了其应用前景。 关键词:基因治疗,研究现状,应用前景 Abstract: ?Gene therapy is a new technology by which people can cute and prevent many diseases at the level of genes, such as,genetic disease,infectional disease,cardiovascular disease and autoimmune disease.At the past years , gene therapy has been developed all around the world , however , it has also come across some probloms , including technology ,laws and ethics. At the future , the main aim of gene therapy is to develop more safe and efficient gene delivery system within the limits of laws and ethics .The research status and application prospect of gene therapy are discussed in this paper.

【ASCO 2017】“热议话题:肿瘤突变负荷(TMB)与免疫治疗”

【ASCO 2017】“热议话题:肿瘤突变负荷(TMB)与免疫 治疗” 蔡修宇教授:免疫检查点抑制剂开辟了肿瘤治疗的新时代,但对于生物标记物的寻找在一定程度上限制了其疗效。既往研究证实TMB升高与疗效呈正相关。您怎么看待这个问题?Siraj Ali 教授:TMB的定义非常重要,它指的是一份肿瘤样本中,所评估基因的外显子编码区每兆碱基中发生置换和插入/缺失突变的总数。TMB是如何真正起作用的呢?我们知道,体细胞的突变可转录/表达于在RNA/蛋白水平,产生新的抗原,蛋白片段或多肽段等,这些新的蛋白被自身免疫系统识别为非自身抗原,激活T细胞,引起免疫反应。因此,当每兆碱基中累积的基因变异数目增多时,就可以产生很多新的抗原。目前,在很多研究中都证实TMB和肿瘤新生抗原与免疫检查点抑制剂的疗效是相关的。蔡修宇教授:韩教授对此的观点如何?韩宝惠教授:TMB是本次大会讨论的热门话题。TMB是在预测肿瘤疗效及筛选获益人群方面的新尝试,与传统免疫治疗以及PD-L1的检测是互补的关系,甚至在未来具有更大的优势。要把TMB与驱动基因的概念区分开来。针对突变型患者,驱动基因用来预测靶向药物疗效是有效的,我们之所以讨论TMB,其原因在于其对于野生型驱动基因的患者指导免疫治疗具有重要作用。今年

ASCO会议上有大量关于TMB的报道,弥补了之前PD-L1检测的缺陷,我认为TMB的应用前景非常好。但目前尚无中国人TMB和疗效之间相关性的数据。 Section 2:2017 ASCO TMB研究进展蔡修宇教授:请两位专家对摘要1972中关于非小细胞肺癌患者检测TMB的相关内容发表评论。Siraj Ali 教授:摘要1972是关于NSCLC中BRAF基因融合检测的。如刚刚韩教授所言,目前NSCLC 可以分为驱动基因阳性和野生型两类。对于驱动基因阳性的患者,如EGFR突变和ALK融合的NSCLC,这类患者的TMB 通常较低,因为这类癌症中已经存在一个优势基因,所以整体的TMB较低。而TMB高的患者,驱动基因多为阴性。1972这一摘要中检测了NSCLC中的BRAF融合,我们知道BRAF 是一个重要的驱动基因,所以研究中BRAF融合的患者,TMB较低。目前,驱动基因阳性的患者,更适合接受靶向治疗,如BRAF融合的患者,可能从BRAF或MEK抑制剂的联合治疗中获益。对于驱动基因阴性,且TMB高的患者,更可能从免疫治疗中获益。此外,我们也注意到驱动基因的优势人群多为年轻,非吸烟,患者;而TMB高的患者特征正好与之相反。韩宝惠教授:此项研究中在1800余例患者的分析中发现,BRAF这一罕见基因,除了突变还可能存在融合现象,与BRAF突变可能有不同的治疗策略。BRAF融合的发生率较低,约0.2%,且这类患者的TMB较低,这些

基因治疗载体的最新研究进展

基因治疗载体的最新研究进展 在生命进化的漫长历程中,生物体通过基因的突变来适应环境的改变,所以说生物突变是生物体进化的基础[1]。同时,不利的突变会造成细胞形状和功能的改变,从而导致疾病甚至死亡。人类的某些疾病是由于其本身的基因的核苷酸发生变化有关,从而就引起了人们考虑从基因的角度来治疗某些用常规方法无法治疗的疾病。基因治疗(genethrapy)是向靶细胞引入正常有功能的基因,以纠正或补偿致病基因所产生的缺陷,从而达到治疗疾病的目的,通常包括基因置换、基因修正、基因修饰、基因失活等。20世纪80年代初,Anderson首先阐述了基因治疗的概况;1990年美国国立卫生研究院的Blease等成功地进行了世界上首例临床基因治疗,即腺脱氨酶(ADA)缺陷病的人体基因治疗;1991年我国首例基因治疗B型血友病也获得成功。近年来,一领域的研究取得了重大进展,基因治疗作为安全新的疾病治疗手段,将在一定程度上改变人类疾病治疗的历史进程。纵观基因治疗的整过程,目的基因导入靶细胞并使之表达是其关键环节,因此介导的载体选择便显得格外有意义了。本文介绍了基因治疗的常用载体以及其最新的研究进展。 1 常用的基因治疗的方法 基因治疗常用方法有两种,即体内疗法(in vivo)和体外疗法(ex vivo)。体内疗法是将外源基因导入受体体内有关的器官组织和细胞内,以达到治疗目的,这是一种简便易行的方法,如肌肉注射、静脉注射、器官内灌输、皮下包埋等,但其缺点是基因转染率较低。研究和应用较多的还是体外疗法,即先在体外将外源基因导入载体细胞,然后将基因转染后的细胞回输给受者,使携有外源基因的载体细胞在体内表达治疗产物,以达到治疗目的。最常用的技术则有三种:(1)体外处理疗法:将有基因缺陷的体细胞取出后,引入正常的基因拷贝后再送回体内;(2)原位疗法:使用载体将目的基因直接导入靶细胞;(3)体内疗法:将基因载体注入血液,定向寻找靶细胞并将基因安全有效地导入。 2 基因 治疗常用的载体有效的基因治疗依赖于外源基因在受体中高效、稳定的表达,而这在很大程度上取决基因治疗所采用的载体系统。基因治疗载体可分两大类:病毒性载体[2]和非病毒性载体[3]。 2.1 病毒性载体病毒性载体如逆转录病毒retrovirus、腺病毒adenovirus、腺相关病毒、痘苗病毒、疱疹病毒等。逆转录病毒应用最早,研究也相当深入,目前仍被广泛应用。慢病毒lentivirus

肿瘤免疫治疗进展

肿瘤免疫治疗CAR-T技术商业研发的进展 纽约辉瑞公司和巴黎Cellectis公司日前宣布,在肿瘤领域针对某些选择性肿瘤目标,进行全球战略性合作,开发嵌合性抗原受体的T细胞(CAR-T)免疫疗法。Cellectis公司的CAR-T技术平台提供了一个专利的,异基因途径的(利用单一供者来源的T细胞,经基因工程改造后产生的CAR-T,可用于多个病人)CAR-T疗法,这种方法不同于其他的自体来源的CAR-T方法(改造患者自身的T细胞针对肿瘤靶细胞进行治疗)。 根据协议条款,辉瑞公司在肿瘤治疗领域中,针对由辉瑞选定的15种肿瘤具有开发和商业化CAR-T疗法的独家权利。两家公司共同合作负责进行临床前研究,辉瑞公司将负责对于辉瑞选定肿瘤目标中的任何CAR-T疗法进行开发和商业化。此外,该协议也提出了Cellectis公司选定的总共12种肿瘤CAR-T目标。两家公司将共同对4种Cellectis选定的肿瘤CAR-T疗法进行临床前研究,Cellectis 公司对于其余8种肿瘤CAR-T进行独立的研发工作。Cellectis公司将负责对自己选定的肿瘤CAR-T疗法进行临床开发和商业化。辉瑞对Cellectis选定的4项肿瘤CAR-T有优先取舍权。 在合作协议范围内,Cellectis将接收8千万美元的预付款,

并接收用于辉瑞公司选定的CAR-Ts和Cellectis选定的4种CAR-Ts 的研究和开发成本资金。Cellectis有资格获得每项辉瑞产品开发,监管和里程碑性商业进展中的高达1.8亿美元的支付款。Cellectis 也有资格在任何辉瑞商品化产品的净销售额中提成。此外,辉瑞将通过一项股市协议,经由新发行的每股9.25欧元的股票,购买约10%的Cellectis资本,目前协议正待Cellectis股东批准。 Cellectis公司希望将在美国开放一个据点以便能与辉瑞公司的科研人员更加密切的合作。两家公司的结盟,提供了辉瑞所具有的最先进疗法的开发能力,也提供了一个仅有的机会来促进开发最好的CAR-T疗法这一创新性工作。这种CAR-T疗法将可能改变癌症治疗的现有方式。 Cellectis的CEO认为Cellectis的CAR-T技术平台,比其它T 细胞受体基因工程途径更具有真正的优势,而Cellectis与辉瑞的合作,为利用人自体免疫系统对抗癌症,实现该技术全部潜力迈出了重要的一步。辉瑞公司研发总裁认为,这项着眼于肿瘤免疫治疗领域的重要合作,是建立在Cellectis公司先进的基因编辑与细胞工程能力和辉瑞最前沿的癌症生物治疗平台基础上的合作。结合Cellectis的技术创新和科学潜力,加上辉瑞在肿瘤免疫治疗领域的深厚经验,这种强强联合的操作,创建了一个世界级的伙伴关系,

肿瘤的免疫治疗现状及发展方向

World Journal of Cancer Research 世界肿瘤研究, 2019, 9(3), 98-103 Published Online July 2019 in Hans. https://www.doczj.com/doc/3617408963.html,/journal/wjcr https://https://www.doczj.com/doc/3617408963.html,/10.12677/wjcr.2019.93014 The Current Strategies and Developing Directions of Tumor Immunotherapy Yuwei Hu1, Yuan Tan1, Yanzhu Yao1, Yuting He1, Yu Xiong1, Qiongwen Liang1, Yingxi Shi1, Huozhen Hu2* 1School of Medicine UESTC, Chengdu Sichuan 2College of Life Science, Sichuan University, Chengdu Sichuan Received: Jul. 2nd, 2019; accepted: Jul. 19th, 2019; published: Jul. 26th, 2019 Abstract With the continuous development of oncology, immunology and molecular biology, tumor immuno-therapy and transformation research have made great achievements, bringing revolutionary changes to the anti-tumor treatment models. The development potential of immunotherapy is huge, and it will become a key weapon for precision medicine in the future, but it also faces many challenges. This re-view will discuss the current strategies and development directions of immunotherapy from specific and non-specific tumor adoptive immunotherapy, immunological checkpoint blockade (ICIs) etc. Keywords Tumor, Immunotherapy, Adoptive Cellular Immunotherapy, Tumor Vaccine, Immune Checkpoint 肿瘤的免疫治疗现状及发展方向 胡雨薇1,谭源1,姚妍竹1,何雨婷1,熊雨1,梁琼文1,时樱溪1,胡火珍2* 1电子科技大学医学院,四川成都 2四川大学生命科学学院,四川成都 收稿日期:2019年7月2日;录用日期:2019年7月19日;发布日期:2019年7月26日 摘要 随着肿瘤学、免疫学及分子生物学等学科的不断发展,肿瘤免疫治疗及转化研究也取得了巨大的成就,为抗肿瘤治疗模式带来了革命性的改变。免疫治疗发展潜力巨大,今后也将成为精准医疗的关键武器,但目前也面临着诸多挑战。本文将从特异性的及非特异性的肿瘤过继免疫治疗、免疫检验点阻断(ICIs)等几个方面来论述免疫治疗的现状及发展方向。 *通讯作者。

肿瘤基因治疗的研究进展

肿瘤基因治疗的研究进展 摘要:基因治疗是一种新的肿瘤治疗手段。抗肿瘤有效基因的筛选、基因治疗方法的选择、基因治疗的相关载体的选择及其安全性改造的研究逐步深入,使肿瘤的基因治疗研究进展迅猛,部分基因治疗方案已进入临床试验阶段。然而,肿瘤基因治疗仍然存在风险。本文对肿瘤基因治疗的应用及所面临的挑战进行综述。关键词基因治疗;肿瘤;治疗方法;载体 引言 随着现代分子生物学及其技术的发展,人们对疾病的认识和治疗手段已进入分子水平。越来越多的研究资料表明,多种疾病与基因的结构或功能改变有关,因而萌生了从基因水平治疗疾病的想法。DNA重组、基因转移、基因克隆和表达等技术的建立和完善,为基因治疗(gene therapy)奠定了基础。 1 肿瘤基因治疗概述 1.1基因治疗的诞生和发展 早在上个世纪60年代末,美国科学家迈克尔·布莱泽首次在医学界提出了基因治疗的概念;进入80年代,对基因治疗能否进入临床存在很大争议。直到1990年,美国国家食品药品监督管理局(FDA)才正式批准了第一个基因治疗临床试验,美国国立卫生研究院(NIH)进行了世界上首次人体基因治疗的临床试验。一名年仅4岁患有先天性腺苷脱氨酶缺乏症(ADA)的小女孩,经过基因治疗技术导入正常的腺苷脱氨酶基因,患儿的免疫能力得以提高,获得了明显的治疗效果。这项临床试验的成功是当今生物医学发展最重要的篇章。 此后,世界各国都掀起了基因治疗的研究热潮,许多人认为这预示着基因治疗时代的到来。在华盛顿美国国家历史博物馆有一份DNA研究的历史档案,记载了自1943年Avery及其同事McLeod、McCarty证明DNA是生命的遗传物质以来所有发展的里程碑,档案上清楚地显示基因治疗是当今基因生物技术最新的重要里程碑。 然而,基因治疗的诞生与发展从来就不是一帆风顺的。由于最初基因治疗技术达不到预期持久稳定的治疗效果,在不断遭到质疑的同时,人们便逐渐对其丧失兴趣。1999年,美国一位患有先天性鸟氨酸转甲酰酶缺陷症的18岁少年Jesse Gelsinger,在宾西法尼亚大学人体基因研究所施行基因治疗4天后死去,致使基因疗法遭受重创,人们对基因治疗的热情骤然间降至冰点。在人们怀疑基因治疗安全性的同时,美国FDA终止了该大学的8项正在进行中的基因治疗临床试验。但随后的调查结论证明,问题不在基因治疗本身。死者在治疗前正在发热,其用药

肿瘤免疫治疗新进展_宗金宝

第十一届全国免疫学学术大会 447467 / PS2-010 共载11种免疫分子的PLGA微粒式人工抗原提呈细胞的 制备及其抗肿瘤作用研究 张雷 Khawar Ali Shahzad 许涛万昕汪礼敏裴伟亚沈传来 东南大学医学院 病原生物学与免疫学系 210009 目的:在磁珠或胶乳微球表面共展现pMHC分子和共刺激分子的非细胞性人工抗原提呈细胞(aAPC)是特异性免疫疗法的新策略。但其不可生物降解性阻碍了体内应用。聚乳酸-羟基乙酸共聚物(PLGA)具有生物降解和相容性,是被FDA批准的药物递送常用材料。本研究以PLGA微粒为载体共载11种免疫分子,制备多功能式人工抗原提呈细胞(MaAPC),验证其表面共吸附能力和包裹缓释特征;探讨其体外扩增肿瘤抗原特异性T细胞和体内抑瘤生长的能力。 方法:复乳溶剂挥发法制备内部包裹IL-2、IL-15、CCL21、anti-CTLA-4和anti-PD-1的PLGA微粒,EDC/NHS法使其表面功能化后联合共价吸附H-2Kb/TRP2180-188二聚体、H-2Db/gp10025-33二聚体、anti-CD28、anti-4-1BB、anti-CD2以及抗吞噬分子CD47-Ig,制备MaAPC;在体外,与C57BL/6鼠脾细胞共培养,流式检测TRP2和gp100抗原特异性CTL比例;尾静脉注射MaAPC至黑色素瘤皮下载瘤鼠体内,流式监测外周血,脾脏和肿瘤组织中抗原特异性CTL的频率变化,观察肿瘤生长进度。 结果:PLGA微粒对5种免疫分子的包裹率均在65%以上,均可缓慢释放,28天累积释放率大于80%。其表面对其他6种免疫分子也可有效共吸附,各分子间吸附干扰效应较小;在体外,MaAPC与C57BL/6鼠脾细胞共培养7天后使TRP2和gp100特异性CTL的比例分别提高至71%和68%;在体内,MaAPC输注可有效提升载瘤鼠外周血和脾脏中TRP2和gp100抗原特异性CTL的频率,显著提高肿瘤组织中抗原特异性CTL的浸润,明显抑制皮下瘤生长速度。 结论:PLGA微粒既可表面展现又可包裹缓释常见免疫分子,是理想的aAPC载体。共载11种免疫分子的MaAPC是一种新的、可生物降解的特异性主动免疫生物制剂。 关键词:PLGA,人工抗原提呈细胞,抗原特异性T细胞,抗肿瘤主动免疫 447594 / PS2-011 肿瘤免疫治疗新进展 宗金宝张晓春 青岛大学附属医院 266003 肿瘤免疫学治疗的方法种类繁多,已与现代生物高科技技术结合,发展成为继手术、化疗和放疗之后的第四种肿瘤治疗模式-肿瘤免疫治疗。以检查点抑制剂为代表的免疫疗法和嵌合抗原受体T细胞(Car-T)细胞和Car-NK细胞免疫疗法的成功运用使肿瘤免疫学得以复苏,改变了传统的免疫治疗方法。抗CTLA-4抗体是第一个临床应用有效的免疫检查点阻断药物。抗CTLA-4阻断抗体能够提升抗肿瘤免疫反应和长期生存的免疫力,使已经长成的肿瘤消退,促进了其在临床肿瘤治疗中的发展。PD-1阻断不仅影响T细胞在淋巴组织的活化,而且影响T细胞在表达PD-1配体的组织和肿瘤中的反应,减轻肿瘤微环境中的免疫抑制。嵌合抗原受体T细胞(Chimeric antigen receptor T-Cell,Car-T)免疫治疗,Car-T免疫治疗方法,可以特异性地识别 肿瘤相关抗原,最终达到治愈肿瘤的目的。目前,Car-T细胞治疗技术在国际上还处于临床试验阶段,国内还

肿瘤免疫治疗进展

癌症免疫疗法近几年27大进展事件 癌症免疫疗法是一种针对人体免疫系统而非直接针对肿瘤的疗法,其已有30多年历史,它治疗的是人体免疫系统而非直接针对肿瘤。Science认为,癌症研究界在2013年经历巨变,因为酝酿了数十年的癌症免疫疗法终于确定了它的潜力,在临床试验中表现出令人鼓舞的效果。本文中小编盘点了癌症免疫疗法近几年27大进展事件!* M$ [ N" C% | 1.默沙东免疫疗法Keytruda黑色素瘤一线治疗击败百时美Yervoy% g# {" v: H% u; ~; C; |0 n 默沙东近日在黑色素瘤免疫竞赛中取得伟大胜利。在一项头对头III期研究(KEYNOTE-006)中,该公司PD-1免疫疗法Keytruda (pembrolizumab)用于晚期黑色素瘤一线治疗时,疗效显著优于百时美施贵宝(BMS)免疫疗法Yervoy(ipilimumab,易普利姆)。这对于百时美不断增长的免疫专营权而言是一记重拳。目前,Keytruda已获FDA批准用于既往经Yervoy治疗的晚期黑色素瘤以及既往经一种BRAF抑制剂治疗的晚期黑色素瘤。这种二三线治疗,在很大程度上限制了Keytruda的患者群体。而此次Keytruda在初治晚期黑色素瘤一线治疗中击败Yervoy,将为默沙东带来更大的市场。 d( `' ]; H4 t+ D 截至目前,Keytruda是首个在晚期黑色素瘤一线治疗中与标准护理药物相比表现出生存优势的PD-1免疫疗法。默沙东共研发首席Roger Perlmutter在公布这个消息时暗示,该公司有意重新建立黑色素瘤的临床治疗标准。根据官网信息,Keytruda不仅延缓了癌症的恶化,也延长了患者的生命,达到了无进展生存期(PFS)和总生存期(OS)2个主要终点。独立数据监测委员会(IDMC)审查后认为,这些数据已经足够好,建议终止该项III期研究。详细的数据将在今年4月18-22日举行的美国癌症研究协会(AACR)年会上公布。# o, Q7 L: x) j 2.同病不同命?为何患者对肿瘤免疫疗法反应不一?. c* k) N% h9 u 经过数年的努力,肿瘤免疫疗法已经被公认成为新一代对抗肿瘤的利器。然而,在临床研究中科学家经常遇到一些癌症患者对肿瘤药物没有响应的状况。这一问题甚至已经严重影响了这类药物研发的进程甚至推广。& N; M0 F; h, } 研究发现,肿瘤细胞可以通过激活一种名为PD-1的受体来逃避人体免疫系统的监控。而最近火得无以复加的PD-1药物则正是针对这一问题,使得这些“逍遥法外”的肿瘤细胞重新纳入免疫系统的监控并进而被清除。 FDA最近批准了一系列此类PD-1药物用于治疗黑色素瘤,而其中nivolumab则成为首个被批准用于治疗肺癌的PD-1药物。然而,现有的临床研究显示,只有20%-30%的肺癌患者才能对此类药物出现反应。7 t0 l/ u, }7 S( [/ R / R: o9 h2 J) c 3.肿瘤免疫疗法再探华尔街底线,AduroIPO融资8600万美元) l+ Y! ~ K# n 最近几年,肿瘤免疫疗法在生物医药领域可谓是火得一塌糊涂。而这种趋势甚至影响到了资本市场。众多的生物医药公司都竞相开发肿瘤免疫疗法,并通过IPO获得了华尔街资本家的大力支持。而就在本周,Aduro医药公司再次向市场提交了IPO申请,计划融资8600万美元,此举也可检验经过数年的狂轰乱炸,华尔街的投资家是否仍然对肿瘤免疫疗法热情不减。7 O9 }( T6 R T8 Y3 {& 当然,敢从华尔街的金融大鳄钱包里掏钱,Aduro公司自非泛泛之辈。公司目前正在开发的肿瘤免疫疗法药物CRS-207结合肿瘤疫苗GVAX联合治疗方案刚刚发布了积极的临床研究数据结果。美国FDA此前也授予公司这项疗法突破性药物认证。 目前,该疗法正处于治疗胰腺癌的临床二期研究阶段,并有望在2016年上半年公布研究数据。事实上,早在去年十月份,医药巨头强生公司就已经看到了这种疗法的前景。强生公司和Aduro公司签订了合作开发这种肿瘤免疫疗法的协议,包括了3000万美元的预付款和高达10亿美元之多的里程碑奖金。由此可见强生公司对这一疗法的期待之情。$ R' Y2 h3 `( G" N% [" u1 v+ n 4.cell report:交叉呈递——肿瘤免疫疗法潜在药物靶点3 l, x1 v# T: ]2 \ 早期我们认为树突状细胞(DC,抗原呈递细胞的一种)的主要作用是激活CD4+T细胞。CD4+T细胞作为一类辅助性的免疫细胞,在后天免疫的许多方面具有非常重要的作用。但后来的一系列研究逐渐揭示了DC也具有直接激活CD8+T细胞的能力(即交叉呈递cross-presentation)。* C( }' \2 S7 `" U4 d( l* e 简单介绍一下两类T细胞分别被激活的机制:CD4+的激活需要受到抗原呈递细胞表面MHC-II-抗原复合体的刺激。它的生成依赖于DC等抗原呈递细胞对外界抗原物质的吞噬与消化,并且在内涵体中与空载的MHC-II分子组装,形成成熟的复合体运送到分子表面;CD8+的激活依赖于MHC-I-抗原复合体的刺激,MHC-I在各类细胞中均有表达,而且一般情况下在外界抗原物质通过"主动"的方式进入胞浆中,进而进行一系列消化与处理,最终在内质网中与空载的MHC-I进行组装,最终运送到细胞表面。 : u; W) Y, A; E! b! K

2020版免疫检查点抑制剂治疗恶性肿瘤的PETCT评价专家共识(全文)

2020版免疫检查点抑制剂治疗恶性肿瘤的PET/CT评价专家共识 (全文) 【摘要】 免疫检查点抑制剂(ICIs)是恶性肿瘤治疗领域的重大突破,但由于其作用机制使然,出现了假性进展、超进展等特殊肿瘤应答模式,对临床治疗决策和疗效评价带来了困难与挑战。2017年,欧洲核医学年会根据已公布的临床试验数据,报道了应用F-FDG PET/CT评价肿瘤免疫治疗反应、判读免疫相关不良反应的优势。在中国,自2013年正式开始ICIs的临床研究以来,已有大量的研究数据产生,如何在肿瘤ICIs治疗中合理、规范地应用PET/CT成为亟待解决的临床和科学问题。鉴于此,由中华医学会核医学分会PET学组牵头,针对PET/CT检查规范、ICIs治疗后PET/CT 图像解读、疗效评价标准等内容,在结合文献、专家经验和委员会成员内部讨论的基础上,最终达成此共识,以期带动相应领域的技术普及与推广。【主题词】 恶性肿瘤;免疫检查点;PET/CT;专家共识 肿瘤免疫治疗是恶性肿瘤治疗领域的重大突破。2016年2月4日发布的美国临床肿瘤学会(American Society of Clinical Oncology, ASCO)恶性肿瘤研究进展年报将免疫治疗评为2015年恶性肿瘤研究的最大进展。目前,肿瘤免疫治疗较成功的领域和研究的热点主要集中在免疫检查

点抑制剂(immune checkpoints inhibitor, ICIs)。免疫检查点是人体免疫系统中起保护作用的分子,正常情况下通过抑制T细胞分化增殖来调控免疫平衡。肿瘤组织过度表达免疫检查点分子,抑制T细胞活化增殖或诱导T细胞凋亡,导致免疫抑制性肿瘤微环境形成,使肿瘤细胞逃避机体的免疫监控和杀伤。目前,最受关注的ICIs包括细胞毒性T淋巴细胞相关抗原4(cytotoxic T lymphocyte associated antigen-4, CTLA-4)抑制剂和细胞程序性死亡受体1(programmed cell death-1, PD-1)/细胞程序性死亡受体配体1(programmed cell death-ligand 1, PD-L1)抑制剂等。目前,ICIs已经获批临床应用的恶性肿瘤包括恶性黑色素瘤、非小细胞肺癌、肾细胞癌、膀胱癌、头颈鳞癌、霍奇金淋巴瘤、胃癌、肝癌等。 然而,由于ICIs的作用机制不同,与既往的治疗手段(化疗、放疗、分子靶向治疗等)相比,肿瘤的治疗反应模式多样,除了出现延迟应答、假性进展、超进展等现象,还可能出现免疫相关不良事件 (immune-related adverse events, irAEs),对临床治疗决策和疗效评价带来了困难与挑战。尽管新的实体瘤疗效评价标准(response evaluation criteria in solid tumors,RECIST),如免疫相关疗效评价标准(immune-related response criteria, irRC)、免疫相关实体瘤的疗效评价标准(immune-related RECIST, irRECIST)、实体肿瘤免疫疗效评价标准(immune response evaluation criteria in solid tumors, iRECIST)等应用于肿瘤免疫治疗,以避免误判假性进展等特殊治疗反应

相关主题
文本预览
相关文档 最新文档