当前位置:文档之家› 圆周运动中的临界问题和周期性问题高中物理

圆周运动中的临界问题和周期性问题高中物理

圆周运动中的临界问题和周期性问题高中物理
圆周运动中的临界问题和周期性问题高中物理

圆周运动中的临界问题和周期性问题

一、圆周运动问题的解题步骤:

1、确定研究对象

2、画出运动轨迹、找出圆心、求半径

3、分析研究对象的受力情况,画受力图

4、确定向心力的来源

5、由牛顿第二定律r T

m r m r v m ma F n n 222)2(π

ω====……列方程求解 二、临界问题常见类型:

1、按力的种类分类: (1)、与弹力有关的临界问题:接触面间的弹力:从有到无,或从无到有

绳子的拉力:从无到有,从有到最大,或从有到无 (2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦 2、按轨道所在平面分类: (1)、竖直面内的圆周运动 (2)、水平面内的圆周运动

三、竖直面内的圆周运动的临界问题

1、单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力

① 临界条件:绳子或轨道对小球没有力的作用:

mg=mv 2/R →v 临界=Rg (可理解为恰好转过或恰好转不过的速度) 即此时小球所受重力全部提供向心力

②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 例1、绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量m=0.5kg ,绳子长度为l=60cm ,求:(g 取10m/s 2)

A 、最高点水不留出的最小速度?

B 、设水在最高点速度为V=3m/s ,求水对桶底的压力? 答案:(1)s m /6 (2)2.5N

变式1、如图所示,一质量为m 的小球,用长为L 细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为10mg ,则小球在最高点的速度及受到绳子的拉力是多少?

2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题:

汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度

gr v =时,汽车对弧顶的压力FN=0,此时汽车将脱离桥面做平抛运动,

因为桥面不能对汽车产生拉力.

例2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体,

如图所示。今给小物体一个水平初速度0v = )

A.沿球面下滑至 M 点

B.先沿球面下滑至某点N,然后便离开斜面做斜下抛运动 C.按半径大于 R 的新的圆弧轨道做圆周运动 D.立即离开半圆球做平抛运动

3、双向约束之轻杆、管道约束下的竖直面内圆周运动的临界问题

物体(如小球)在轻杆作用下的运动,或在管道中运动时,随着速度的变化,杆或管道对其弹力发生变化.这里的弹力可以是支持力,也可以是压力,即物体所受的弹力可以是双向的,与轻绳的模型不同.因为绳子只能提供拉力,不能提供支持力;而杆、管道既可以提供拉力,又可以提供支持力;在管道中运动,物体速度较大时可对上壁产生压力,而速度较小时可对下壁产生压力.在弹力为零时即出现临界状态.

(一)轻杆模型

如图所示,轻杆一端连一小球,在竖直面内作圆周运动.

(1)能过最高点的临界条件是:0v =.这可理解为恰好转过或恰好不能转过最高点的临界条件,此时支持力mg N =.

(2)

当0v <<

mg N <<0,N 仍为支持力,且N 随v 的增大而减小,

(3)

当v =N =0,此为轻杆不受弹力的临界条件. (4)

当v >

N 随v 的增大而增大,且N 为拉力指向圆心,

例3、如图所示,有一长为L 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在竖直面内做完整的圆周运动。已知水平地面上的C 点位于O 点正下方,且到O 点的距离为1.9L 。不计空气阻力。(1)求小球通过最高点A 时的速度v A ;(2)若小球通过最低点B 时,细线对小球的拉力T 恰好为小球重力的6倍,且小球经过B 点的瞬间让细线断裂,求小球落地点到C 点的距离。

解:(1)小球恰好能做完整的圆周运动,则小球通过A 点时细线的拉力刚好为零,根据向心力公式有:

mg=

2A v m

L

解得

:

A v =

(2)小球在B 点时根据牛顿第二定律有

T-mg=m 2

B v L

其中T=6mg

解得小球在B 点的速度大小为

细线断裂后,小球从B 点开始做平抛运动,则由平抛运动的规律得:

竖直方向上1.9L-L=21gt

2

(2分) 水平方向上x=vBt

(2分) 解得:x=3L

(2分)

即小球落地点到C 点的距离为3L 。 答案

(2)3L

㈡管道模型

质点(小球)在光滑、竖直面内的圆管中作圆周运动(圆管截面半径r 远小于球的圆周运动的半径R),如图所示.小球达到最高点时对管壁的压力有三种情况:

(1)刚好对管壁无压力,此时重力为向心力,临界速度为Rg v =

(2)当Rg v <时,对下管壁有压力,此时R

v m mg N 2

-=,故mg N <<0。

(3)当Rg v >时,对上管壁有压力,此时mg R

v m N -=2

。 实际上,轻杆和管道两种约束情况可化归为同类的物理模型,即双向约束模型.

例4、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R (比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。A 球的质量为m 1,B 球的质量为m 2。它们沿环形圆管顺时针运动,经过最低点时的速度都为v 0。设A 球运动到最低点时,球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m 1,m 2,R 与v 0应满足关系式是 。 解:首先画出小球运动达到最高点和最低点的受力图,如图4-1所示。A 球在圆管最低点必受向上弹力N 1,此时两球对圆管的合力为零,m 2必受圆管向下的弹力N 2,且N 1=N 2。 据牛顿第二定律A 球在圆管的最低点有:

R v m mg N 2011=- 同理m 2在最高点有: R

v m mg N 2

122=+

m 2球由最高点到最低点机械能守恒: 2

221222

1212v m v m gR m =+

21N N =

由上述方程可得:1

2120)5(m m gR m m v -+=

【小结】 比较复杂的物理过程,如能依照题意画出草图,确定好研究对象,逐一分析就会变为简单问题。找出其中的联系就能很好地解决问题。 四、水平面内圆周运动中的临界问题: 解决圆周运动中临界问题的一般方法 1、对物体进行受力分析

2、找到其中可以变化的力以及它的临界值

3、求出向心力(合力或沿半径方向的合力)的临界值

4、用向心力公式求出运动学量(线速度、角速度、周期、半径等)的临界值

例5、水平转盘上放有质量为m 的物快,当物块到转轴的距离为r 时,若物块始终相对转盘静止,物块和转盘间最大静摩擦力是正压力的μ倍,求转盘转动的最大角速度是多大?

解:由

r m mg 2

ωμ= 得:

r g

μω=

点评:提供的向心力的临界值决定了圆周运动角速度的临界值

变式5、物体与圆筒壁的动摩擦因数为μ ,圆筒的半径为R ,若要物体不滑下,圆筒的角速度至少为多少? 解: 得

例6、如图所示,两绳系一质量为m =0.1kg 的小球,上面绳长L =2m ,两端都拉直时与轴的夹角分别为30°与45°,问球的角速度在什么范围内,两绳始终张紧,当角速度为3 rad /s 时,上、下两绳拉力分别为多大?

解:当ω渐大,AC 绳与杆夹角变大,但BC 绳还没拉直。

当AC 绳与杆夹角为30°时,BC 绳处在虚直状态。之后ω再增大, BC 绳上也会有拉力。所以BC 绳虚直为临界状态。

2

0tan 30sin 30

mg m L ω

=0 2.4rad/s cos30

2ω?=

=

=

0ωω>,BC 绳上有拉力。

分析小球,由牛顿第二定律:

2

cos30cos 45sin 30sin 45sin 30AC BC AC BC T T mg T T m L ω?

+=?+

=?

22

11222AC BC AC BC mg T m L ω

?+=?

??

?+=?

?1

N 10N AC BC T T ?=?????=??

变式6-1:如图,长为L 的绳子,下端连着质量为m 的小球,上端接于天花板上,当把绳子拉直时,绳与竖直方向夹角θ=60°。此时小球静止于光滑水平面上。

C

C

r

m F N 2ω=mg

F N =μr

g

μω=

(1)当小球以

L g

=

ω 做圆锥摆运动时,绳子张力多大?桌面支持力多大? (2)当小球以

L g

4=

ω 做圆周运动时,绳子张力多大?桌面受到的压力多大?

答案:(1)T=mg mg F N 21

=

(2)T=4mg 0

=N F

变式6-2、如图所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线之间的夹角为θ=30°,一条长度为L 的绳(质量不计),一端的位置固定在圆锥体的顶点O 处,另一端拴着一个质量为m 的小物体(物体可看质点),物体以速率v 绕圆锥体的轴线做水平匀速圆周运动。

⑴当v =时,求绳对物体的拉力; ⑵当v =时,求绳对物体的拉力。

解:物体在水平面内做匀速圆周运动,由重力G 、拉力T 、支持力N

很小时,物体在圆锥体上运动。

2

sin cos (1)sin cos sin (2)v T N m

L T N mg θθθθθ?-=??

?+=?

由(2)得:

sin cos mg N T θθ-=

代入(1)得:

2

tan (tan sin cos )sin v mg N m

L θθθθθ-+= 由此可得,当v 增大时,N 减少。∴当ω大到一定值时,物体将离开锥面,绳与竖直方向的夹角将变大。

显然当球与锥面虚接触(即N=0,θ=30°)时的线速度值为物体的临界速度。对球分析,由牛

顿第二定律:2

2(3)2(4)

2

v T m L mg ?=???=?

?

3

T mg ?

=

0v ?=

⑴当

10

v v =

,所以N>0。21sin cos (1)sin cos sin (2)v T N m

L T N mg θθθθθ?-=???+=?

由(2)得:

cos sin mg T N θ

θ-=

代入(1)得:

2

1(sin cot cos )cot sin v T mg m

L θθθθθ+-=

2

1cot 6sin 1.03sin cot cos gL

m

v m mg L

L T mg θθθθθ

++===≈+

⑵当

20v v =

>,此时N=0,但夹角变大,不为30°

2

sin (5)sin cos (6)v T m

L T mg ααα?=??

?=?

由(6)得:cos mg

T α=

(7),代入(5)得:

2sin cos sin v mg m L ααα= 2

2

3sin 2 1.5cos gL

v gL gL αα?===60α?=代入(7)得:

2T mg =

例7、如图所示,细绳一端系着质量M =0.6kg 的物体,静止在水平面上,另一端通过光滑的小孔吊着质量m =0.3kg 的物体,M 的中与圆孔距离为0.2m ,并知M 和水平面的最大静摩擦力为2N 。现使此平面绕中心轴线转动,问角速度ω在什么范围m 会处于静止状态?(g =10m /s2)

(ω的范围是:s

rad s rad /1535

/335??ω

即 2.9 rad /s <ω<6.5 rad /s )

变式7:在以角速度ω匀速转动的转台上放着一质量为M 的物体,通过一条光滑的细绳,由转台中央小孔穿下,连接着一m 的物体,如图所示。设M 与转台平面间的最大静摩擦力为压力的k 倍,且转台不转时M 不能相对转台静止。求:

(1)如果物体M 离转台中心的距离保持R 不变,其他条件相同,则转台转动的角速度ω满足什么条件,物体M 才能随转台转动?

(2)物体M 随转台一起以角速度ω匀速转动时,物体离转台中心的最大距离和最小距离。

答案:(1)

s rad /3032

ω

(2)s rad /52?ω

例8、 如图所示,在水平转台上放有A 、B 两个小物块,它们距离轴心O 分别为m r A 2.0=,

m r B 3.0=,它们与台面间相互作用的静摩擦力的最大值为其重力的0.4倍,取2/10s m g =。

变式8:如图,匀速转动的水平圆盘上,沿半径方向放置用细线相连的质量均为m 的A 、B 两个小物块。A 离轴心的距离r1=20cm ,B 离轴心的距离r2=30cm ,A 和B 与盘面间相互作用的最大静摩擦力均为重力的0.4倍,求:

(1)若细线上没张力,圆盘转动的角速度应该满足什么条件?

(2)欲使A 、B 与盘间不发生相对滑动,圆盘转动的最大角速度为多少? (3)当A 即将滑动时,烧断细线,A 、B 运动状态如何?

答案:(1)s

rad /3032

(2)4rad/s

(3)A 继续做圆周运动,B 做离心运动 五、圆周运动的周期性问题:

利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。圆周运动是一个独立的运动,而另一个运动通常也是独立的,分别明确两个运动过程,注意用时间相等来联系。

在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。同时,要注意圆周运动具有周期性,因此往往有多个答案。 例9:如图所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一个小球,要使球与盘只碰一次,且落点为B ,则小球的初速度v =_________,圆盘转动的角速度ω=_________。

【审题】小球做的是平抛运动,在小球做平抛运动的这段时间内,圆盘做了一定角度的圆周运动。

解:①小球做平抛运动,在竖直方向上:h =21gt2

则运动时间t =

g h 2

又因为水平位移为R , 所以球的速度 v =t R

=R ·h g 2

②在时间t 内,盘转过的角度θ=n ·2π,又因为θ=ωt

则转盘角速度:ω=t n π

2?=2n πh 2g

(n =1,2,3…)

【总结】上题中涉及圆周运动和平抛运动这两种不同的运动,这两种不同运动规律在解决同一问题时,常常用“时间”这一物理量把两种运动联系起来。

变式9-1:如图所示,小球Q 在竖直平面内做匀速圆周运动,当Q

球转到图示位置时,

有另一小球P 在距圆周最高点为h 处开始自由下落.要使两球在圆周最高点相碰,则Q 球的角速度ω应满足什么条件?

【审题】下落的小球P 做的是自由落体运动,小球Q 做的是圆周运动,若要想碰,必须满足时间相等这个条件。

解:设P 球自由落体到圆周最高点的时间为t ,由自由落体可得

21

gt2=h 求得t=g h 2

Q 球由图示位置转至最高点的时间也是t ,但做匀速圆周运动,周期为T ,有

t=(4n+1)4T (n=0,1,2,3……) 两式联立再由T=ωπ2得 (4n+1)ωπ

2=g

h 2

所以ω=2π

(4n+1)

h 2g

(n=0,1,2,3……)

【总结】由于圆周运动每个周期会重复经过同一个位置,故具有重复性。在做这类题目时,应该考虑圆周运动的周期性

六、圆周运动中的临界问题练习:

1、如图所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其下压力的μ倍。求: ⑴当转盘角速度ω1=μg

2r

时,细绳的拉力T1。 ⑵当转盘角速度ω2=

3μg

2r

时,细绳的拉力T2。 答案:(1)0 (2)mg

μ21

(ABD )

( BD )

2、

3、

4、在质量为M 的电动机飞轮上,固定着一个质量为m 的重物,重物到轴的距离为R ,如图所示,为了使电动机不从地面上跳起,电动机飞轮转动的最大角速度不能超过( B )

A .g mR m

M ?+ B .g mR m

M ?+ C .g mR m

M ?-

D .mR Mg

5、在光滑的水平面上钉有两个钉子A 和B.相距20cm.用一根长度为1m 的细绳.一端系一个质量为0.4kg 的小球.另一端栓在钉子A 上.使小球开始位于A 的左边.并以2m/s 的速率在水平面上绕A 做匀速圆周运动.若绳子承受4N 的拉力就会断.那么从开始运动到绳被拉断.小球转的半圆周数( B )

A.2

B.3

C.4

D.5

6.如图所示,水平转盘可绕竖直中心轴转动,盘上叠放着质量均为1kg 的A 、B 两个物块,物块用长为0.25m 的细线与固定在转盘中心处的力传感器相连,两个物块和传感器的大小均可不计.细线能承受的最大拉力为8N. A 、B 间的动摩擦因数为0.4,B 与转盘间的动摩擦因数为0.1,

且可认为最大静摩擦力等于滑动摩擦力.转盘静止时,细线刚好伸直,传感器的读数为零.当转盘以不同的角速度匀速转动时,传感器上就会显示相应的读数 F.试通过计算在坐标系中作出

2ω-F 图象. g 取10m/s2.

解:

12rad/s ω=

=

=0

T =[0,2]

ω∈2

22m r mg

ωμ

=24rad/s

ω===

小结:多物体、拉力、静摩擦力变化。抓住各物体达到最大静摩擦力,拉力达到最大值。 注意各个临界值达到的顺序,和物体飞出对拉力的影响。

221220.52

T m r mg ωμω=-=-[2,4]

ω∈221222240.2526N <8N

T m r mg ωμ=-=??-

=36rad/s ω=

==22

10.251T m r mg ωμω=-=-[4,6]

ω∈

圆周运动中的临界问题和周期性问题

圆周运动中的临界问题和周期性问题 一、圆周运动问题的解题步骤: 1、确定研究对象 2、画出运动轨迹、找出圆心、求半径 3、分析研究对象的受力情况,画受力图 4、确定向心力的来源 5、由牛顿第二定律r T m r m r v m ma F n n 222)2(π ω====……列方程求解 二、临界问题常见类型: 1、按力的种类分类: (1)、与弹力有关的临界问题:接触面间的弹力:从有到无,或从无到有 绳子的拉力:从无到有,从有到最大,或从有到无 (2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦 2、按轨道所在平面分类: (1)、竖直面内的圆周运动 (2)、水平面内的圆周运动 三、竖直面内的圆周运动的临界问题 1、单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用: mg=mv 2/R →v 临界=Rg (可理解为恰好转过或恰好转不过的速度) 即此时小球所受重力全部提供向心力 ②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 例1、绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量m=0.5kg ,绳子长度为l=60cm ,求:(g 取10m/s 2) A 、最高点水不留出的最小速度? B 、设水在最高点速度为V=3m/s ,求水对桶底的压力? 答案:(1)s m /6 (2)2.5N

变式1、如图所示,一质量为m 的小球,用长为L 细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为10mg ,则小球在最高点的速度及受到绳子的拉力是多少? 2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题: 汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度 gr v =时,汽车对弧顶的压力FN=0,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力. 例2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体, 如图所示。今给小物体一个水平初速度0v = ) A.沿球面下滑至 M 点 B.先沿球面下滑至某点N,然后便离开斜面做斜下抛运动 C.按半径大于 R 的新的圆弧轨道做圆周运动 D.立即离开半圆球做平抛运动 3、双向约束之轻杆、管道约束下的竖直面内圆周运动的临界问题 物体(如小球)在轻杆作用下的运动,或在管道中运动时,随着速度的变化,杆或管道对其弹力发生变化.这里的弹力可以是支持力,也可以是压力,即物体所受的弹力可以是双向的,与轻绳的模型不同.因为绳子只能提供拉力,不能提供支持力;而杆、管道既可以提供拉力,又可以提供支持力;在管道中运动,物体速度较大时可对上壁产生压力,而速度较小时可对下壁产生压力.在弹力为零时即出现临界状态. (一)轻杆模型 如图所示,轻杆一端连一小球,在竖直面内作圆周运动. (1)能过最高点的临界条件是:0v =.这可理解为恰好转过或恰好不能转过最高点的临界条件,此时支持力mg N =. (2) 当0v << mg N <<0,N 仍为支持力,且N 随v 的增大而减小,

圆周运动的问题难点突破

高中物理必修2复习--圆周运动的问题难点突破 一、难点形成的原因 1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。 2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用; 3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。 4、圆周运动的周期性把握不准。 5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。 二、难点突破 (1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。 b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。 c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图1所示,两根轻绳同系一个质量m=0.1kg的小球,两绳的另一端分别固定在轴上的A、B两处,上面绳AC长L=2m,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。 【解析】如图1所示,当BC刚好被拉直,但其拉力T2 恰为零, 图1

圆周运动的实例及临界问题

圆周运动的实例及临界问题 一、汽车过拱形桥 1.汽车在拱形桥最高点时,向心力:F 合= mg -N =m v 2 R . 支持力:N =mg -mv 2 R <mg ,汽车处于失重状 态. 2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小. 例1 一辆质量m =2 t 的轿车,驶过半径R =90 m 的一段凸形桥面,g =10 m/s 2 ,求: (1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大? (2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少? 解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示: 合力F =mg -N ,由向心力公式得mg -N =m v 2 R ,故 桥面的支持力大小N =mg -m v 2R =(2 000×10-2 000×102 90) N ≈×104 N 根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为×104 N. (2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=,而F ′=m v ′2R ,所以此时轿 车的速度大小v ′=错误!=错误! m/s ≈21.2 m/s 答案 (1)×104 N (2)21.2 m/s 二、圆锥摆模型 1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面. 图1 2.运动分析:将“旋转秋千”简化为圆锥 摆模型(如图1所示) (1)向心力:F 合=mg tan_α (2)运动分析:F 合=mω2r =mω2 l sin α (3)缆绳与中心轴的夹角α满足cos α= g ω2l . 图6 例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( ) A .速度v A >v B B .角速度ωA >ωB C .向心力F A >F B D .向心加速度a A >a B 解析 设漏斗的顶角为2θ,则小球的合力为F 合 =mg tan θ,由F =F 合=mg tan θ=mω2 r =m v 2 r =ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D 错误;因r A >r B ,又由v = gr tan θ 和ω= g r tan θ 知v A >v B 、ωA <ωB ,故A 对,B 错. 答案 A 三、火车转弯 1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力. 2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支 持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力. 例3 铁路在弯道处的内、外轨道高度是不 同的,已知内、外轨道平面与水平面的夹角为θ, 如图7所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( ) A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C .这时铁轨对火车的支持力等于mg cos θ D .这时铁轨对火车的支持力大于mg cos θ

高中物理圆周运动的临界问题(含答案)

1 圆周运动的临界问题 一 .与摩擦力有关的临界极值问题 物体间恰好不发生相对滑动的临界条件是物体间恰好达到最 大静摩擦力,如果只是摩擦力提供向心力,则有F m =m r v 2 ,静摩 擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。 二 与弹力有关的临界极值问题 压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。 【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。若圆盘从静止 开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( ) A .b 一定比a 先开始滑动 B .a 、b 所受的摩擦力始终相等 C .ω= l kg 2是b 开始滑动的临界角速度 D .当ω=l kg 32 时,a 所受摩擦力的大小为kmg 答案 AC 解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。 它们所需的向心力由F 向=mω2r 知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起

2 绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb = l kg 2 ,选项C 正确;当ω =l kg 32时,a 所受摩擦力大小为F f =mω2 r =3 2 kmg ,选项D 错误 【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( ) A .O B 绳的拉力范围为 0~3 3 mg B .OB 绳的拉力范围为 33mg ~3 32mg C .AB 绳的拉力范围为 33mg ~3 32mg D .AB 绳的拉力范围为0~3 3 2mg 答案 B 解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1= 3 3 mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 = 332mg ,因此OB 绳的拉力范围为33mg ~3 3 2mg ,AB 绳

圆周运动知识点与例题

匀速圆周运动知识点及例题 二、匀速圆周运动的描述 1.线速度、角速度、周期和频率的概念 (1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为T r t s v π2= =; 其方向沿轨迹切线,国际单位制中单位符号是m/s ; (2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为T t πφ ω2= =; 在国际单位制中单位符号是rad /s ; (3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ; (4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ; (5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min . 2、速度、角速度、周期和频率之间的关系 线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,T v π2=,f πω2=。 由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比. 三、向心力和向心加速度 1.向心力 (1)向心力是改变物体运动方向,产生向心加速度的原因. (2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向. 2.向心加速度 (1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量. (2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为

2222 4T r r r v a n πω=== 公式: 1.线速度V =s/t =2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a =V 2/r =ω2r =(2π/T)2r 4.向心力F 心=mV 2/r =mω2r =mr(2π/T)2=mωv=F 合 5.周期与频率:T =1/f 6.角速度与线速度的关系:V =ωr 7.角速度与转速的关系ω=2πn (此处频率与转速意义相同) 8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。 二、向心力和加速度 1、大小F =m ω2 r r v m F 2 = 向心加速度a :(1)大小:a =ππω44222 2===r T r r v 2 f 2r (2)方向:总指向圆心,时刻变化 (3)物理意义:描述线速度方向改变的快慢。 三、应用举例 (临界或动态分析问题) 提供的向心力 需要的向心力 r v m 2

圆周运动的临界问题

圆周运动的临界问题 1.圆周运动中的临界问题的分析方法 首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值. 2.竖直平面内作圆周运动的临界问题 竖直平面内的圆周运动是典型的变速圆周运动。一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。 1.“绳模型”如图6-11-1所示,小球在竖直平面内做圆周运动过最高点情况。 (注意:绳对小球只能产生拉力) (1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用 mg =2 v m R v 临界 (2)小球能过最高点条件:v (当v (3)不能过最高点条件:v (实际上球还没有到最高点时,就脱离了轨道) 2.“杆模型”如图6-11-2所示,小球在竖直平面内做圆周运动过最高点情况 (注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。) (1)小球能最高点的临界条件:v = 0,F = mg (F 为支持力) (2)当0< v F 随v 增大而减小,且mg > F > 0(F 为支持力) (3)当v 时,F =0 (4)当v F 随v 增大而增大,且F >0(F 为拉力) 注意:管壁支撑情况与杆一样。杆与绳不同,杆对球既能产生拉力,也能对球产生支持力. 由于两种模型过最高点的临界条件不同,所以在分析问题时首先明确是哪种模型,然后再利用条件讨论. (3)拱桥模型 如图所示,此模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v =rg 时,F N =0,物体将飞离最高点做平抛运动。若是从半圆顶点飞出,则水平位移为s = 2R 。 a b 图6-11-2 b

匀速圆周运动快慢的描述_教案

匀速圆周运动快慢的描述 【教学目标】 一、知识与技能 1.知道圆周运动,理解匀速圆周运动。 2.理解线速度和角速度。 3.知道T、f、n之间的关系。 4.理解v、ω、T之间的关系。 5.会用圆周运动知识解决实际问题。 二、过程与方法 1.通过类比直线运动中速度的概念,来建立线速度、角速度。 2.学习用比值定义法来定义线速度、角速度。 3.用控制变量法来分析两个变量间的关系。 三、情感、态度与价值观 1.从生活实例认识圆周运动的普遍性和研究圆周运动的必要性,激发学生学习兴趣和求知欲。 2.通过分组讨论过程,懂得合作与交流,尊重同学的见解,勇于发表自己的观点,培养团队合作精神。 【教学重点】 1.通过类比法理解线速度和角速度。 2.学习用比值定义法来定义线速度、角速度。 3.用控制变量法来分析两个变量间的关系。 【教学难点】 1.理解线速度的定义式表达的是各点的瞬时速度。 2.理解线速度的方向是圆弧上各点的切线方向。 【教学过程】 一、新课导入 播放“飞机转椅的转动”和“过山车”两视频。 提问:仔细观察两个视频中物体运动有什么共同点? 引出“圆周运动”。 提问:什么是圆周运动呢?

得出物体的运动轨迹是一个圆周的特征。 提问:日常生活中还见过那些圆周运动呢?(在教室中找) 列举墙上的挂钟、天花板的吊扇、讲台上的自行车车模等。 提问:什么是匀速圆周运动呢? 通过课件动画模拟情景,得出物体沿圆周运动,如果在任意相等的时间内通过的弧长相等,这种运动叫做匀速圆周运动。 接着引导学生通过动画观察物体做匀速圆周运动的运动特点: (1)运动的轨迹是圆周(或圆弧); (2)半径有转过角度; (3)运动有周期性。 二、新课教学 1.引出猜想 提问:物体运动有快有慢,那如何描述匀速圆周运动的快慢呢? 引导针对匀速圆周运动的运动特点,类比直线运动中速度快慢的描述,进行探究猜想。 学生分组讨论 引导学生提出以下四种猜想: (1)比较物体在一段时间内通过的圆弧的长短。 (2)比较物体在一段时间内半径转过的角度。 (3)比较物体转过一圈所用的时间。 (4)比较物体在一段时间内转过的圈数。 2.线速度 针对猜想一,通过课件动画模拟情景,引出线速度是描述匀速圆周运动的质点运动快慢的物理量,再通过比值定义法得出线速度的定义、定义式、单位,通过观看视频,归纳现象,理解线速度的方向是圆弧上各点的切线方向,最后点出匀速圆周运动性质是变速运动,强调匀速指的是速度大小不变。 在讲到定义式时,引导学生运用极限思维理解线速度的定义式表达的是各点的瞬时速度。

高中物理圆周运动中的临界问题分析教案教学设计

《圆周运动中的临界问题》教学设计 一、教材分析 圆周运动的临界问题继是人教版高中《物理》必修2第五章的内容。在此之前,学生已经学习了直线运动的相关内容,和曲线运动的基本知识,自然界和日常生活中运动轨迹为圆周的许多事物也为学生的认知奠定了感性基础,本节课主要是帮助学生在原有的感性基础上进一步认识圆周运动,为今后学习万有引力等知识打下基础。 二、学情分析 高一(14)班是二层次班级,学生基础、领会能力相对较弱。不过学生已经学习了圆周运动、向心加速度、向心力等圆周运动的相关知识,已基本了解和掌握了圆周运动的特点和规律,对圆周运动的临界问题的学习已打下了基础。 三、学习目标 1.通过学生讨论,小组合作,老师引导,让学生进一步熟练圆周运动问 题的解题步骤; 2.通过学生讨论,小组合作,老师讲解,达到知道临界状态的目标; 3.通过学生讨论,小组合作,老师讲解,达到知道圆周运动中的临界问 题,并能正确解题的目标。 四、教学重难点 1.重点 a圆周运动问题的解题步骤 b 竖直水平圆周运动的临界状态 c 运用所学知识解决圆周运动中的临界问题 2.难点 a 竖直水平圆周运动的临界状态 b 运用所学知识解决圆周运动中的临界问题 五、导入 播放视频—电唱机做匀速圆周运动,创设情境,导入新课 六、教学设计 (一)预习案 1.公式默写 角速度: 2v t T r θπ ω===

线速度: 运行周期: 向心加速度: 向心力: 复习巩固 (二) 探究案 1. 圆周运动问题的解题步骤 例、例. 如图所示,半径为R 的圆筒绕竖直中心轴 OO ′转动, 小物块A 靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要 使A 不下落,则圆筒转动的角速度ω至少为( D ) 2s r v r t T πω===22r T v ππω==22222222444n v r a r v n r f r r T πωωππ======22 222222444n n v F ma m m r m v mr n mr f mr r T πωωππ====== =

圆周运动的周期性造成多解

第9点 圆周运动的周期性造成多解 匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其中一个做匀速圆周运动,另一个做其他形式的运动.因匀速圆周运动具有周期性,使得在一个周期中发生的事件在其它周期同样可能发生,这就要求我们在解决此类问题时,必须考虑多解的可能性. 一般处理这类问题时,要把一个物体的运动时间t ,与圆周运动的周期T 建立起联系,才会较快地解决问题. 图1 对点例题 如图1所示,小球Q 在竖直平面内做匀速圆周运动,当Q 球转到图示位置时,有另一小球P 在距圆周最高点h 处开始自由下落,要使两球在圆周最高点相碰,则Q 球的角速度ω应满足什么条件? 解题指导 设P 球自由下落到圆周最高点的时间为t ,由自由落体运动规律可得 12gt 2=h ,解得t =2h g . Q 球由图示位置转至最高点的时间也是t ,才能与P 球在圆周最高点相碰,其做匀速圆周运动,设周期为T ,有 t =(4n +1)T 4 (n =0,1,2,3…) 两式联立再由T =2πω得(4n +1)π2ω=2h g . 所以ω=π2(4n +1)g 2h (n =0,1,2,3…). 答案 π2(4n +1)g 2h (n =0,1,2,3…)

图2 如图2所示,B 物体放在光滑的水平地面上,在水平恒力F 的作用下由静止开始运动,B 物体质量为m ,同时A 物体在竖直面内由M 点开始逆时针做半径为r 、角速度为ω的匀速圆周运动.求力F 为多大时可使A 、B 两物体在某些时刻的速度相同. 答案 2mrω2 (4n +3)π (n =0,1,2…) 解析 因为物体B 在力F 的作用下沿水平地面向右做匀加速直线运动,速度方向水平向右,要使A 与B 速度相同,则只有当A 运动到圆轨道的最低点时,才有可能. 设A 、B 运动时间t 后两者速度相同(大小相等,方向相同). 对A 物体有:t =34 T +nT =????n +342πω(n =0,1,2…),v A =rω. 对B 物体有:F =ma ,a =F m ,v B =at =F m t . 令v B =v A ,得F m ????n +342πω =ωr . 解得F =2mrω2 (4n +3)π (n =0,1,2…).

圆周运动脱轨和临界问题(教案)

竖直平面内的圆周运动 竖直平面内的圆周运动是典型的变速运动,高中阶段只分析通过最高点和最低点的情况,经常考查临界状态,其问题可分为以下两种模型. 一、两种模型 模型1:“轻绳类” 绳对小球只能产生沿绳收缩方向的拉力(圆圈轨道问题可归结为轻绳类),即只能沿某一个方向给物体力的作用,如图1、图2所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况: (1)临界条件:在最高点,绳子(或圆圈轨道) 对小球没有力的作用,v gR = (2)小球能通过最高点的条件:v gR ≥,当v gR >时绳对球产生拉力,圆圈轨道对球产生向下的压力. (3)小球不能过最高点的条件:v gR <,实际上球还没到最高点就脱离了圆圈轨道,而做斜抛运动. 模型2:“轻杆类” 有物体支撑的小球在竖直平面内做圆周运动过最高点的情况,如图3所示,(小球在圆环轨道内做圆周运动的情况类似“轻杆类”,如图4所示,): (1)临界条件:由于硬杆和管壁的支撑作用,小球恰能到达最高点的临界速度0 v= (2)小球过最高点时,轻杆对小球的弹力情况: ①当0 v=时,轻杆对小球有竖直向上的支持力N,其大小等于小球的重力,即N mg =; ②当0v gR << 2 v mg N m R -=,则 2 v N mg m R =-. 轻杆对小球的支持力N竖直向上,其大小随速度的增大而减小,其取值范围是0 mg N >>.③当v gR0 N=; ④当v gR 2 v mg N m R +=,即 2 v N m mg R =-, 杆对小球有指向圆心的拉力,其大小随速度的增大而增大,注意杆与绳不同,在最高点,杆对球既能产生拉力,也能对球产生支持力,还可对球的作用力为零. 小结如果小球带电,且空间存在电磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力作为向心力,此时临界速度v gR应根据具体情况具体分析).另外,若在月球上做 圆周运动则可将上述的g换成g 月,若在其他天体上则把g换成g 天体 . 图1 图2 图3 图4

高中物理 4.1匀速圆周运动快慢的描述3每课一练 鲁科版必修2

高中物理 4.1匀速圆周运动快慢的描述3每课一练鲁科版 必修2 1.关于角速度和线速度,下列说法正确的是( B ) A.半径一定,角速度与线速度成反比 B.半径一定,角速度与线速度成正比 C.线速度一定,角速度与半径成正比 D.角速度一定,线速度与半径成反比 2.下列关于甲乙两个做圆周运动的物体的有关说法正确的是( C ) A.它们线速度相等,角速度一定相等 B.它们角速度相等,线速度一定也相等 C.它们周期相等,角速度一定也相等 D.它们周期相等,线速度一定也相等 3.时针、分针和秒针转动时,下列正确说法是( A B ) A.秒针的角速度是分针的60倍 B.分针的角速度是时针的60倍 C.秒针的角速度是时针的360倍 D.秒针的角速度是时针的86400倍 4. 关于匀速圆周运动,下列说法中正确的是(B ) A.线速度的方向保持不变 B.线速度的大小保持不变 C.角速度大小不断变化 D.线速度和角速度都保持不变 5. 一个物体以角速度ω做匀速圆周运动时,下列说法中正确的是( A ) A.轨道半径越大线速度越大 B.轨道半径越大线速度越小 C.轨道半径越大周期越大 D.轨道半径越大周期越小 6. 对于做匀速圆周运动的物体,下列说法中不正确的是(C ) A.相等的时间内通过的路程相等 B.相等的时间内通过的弧长相等 C.相等的时间内通过的位移相等 D.相等的时间内通过的角度相等 7. 如图所示,球体绕中心线OO’转动,则下列说法中正确的是( A D ) A.A、B两点的角速度相等 B.A、B两点的线速度相等 C.A、B两点的转动半径相等 D.A、B两点的转动周期相等 8、如图,一个匀速转动的圆盘上有a、b、c三点,已知,则下面说法中 不正确的是( C ) A、a,b两点线速度大小相等 B、a、b、c三点的角速度相同 C、a点的线速度大小是c点线速度大小的一半 D、a、b、c三点的运动周期相同 9、甲、乙两个做匀速圆周运动的物体,它们的半径之比为3:2,周期之比是1:2,则 A.甲与乙的线速度之比为1:2 B.甲与乙的线速度之比为3:1 C.甲与乙的角速度之比为2:1 D.甲与乙的角速度之比为1:2 10、甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3:1,线速度之比为2:3,那么,下列说法中正确的是() A.它们的半径比是2:9 B.它们的半径比是1:2 C.它们的周期比为2:3 D.它们的周期比为1:3 11、如图5-4-2所示皮带传动装置,皮带轮O和Oˊ上的三点A、B和 C,OA=OˊC=r,OˊB=2r。则皮带轮转动时A、B、C三点的情况是 ()

匀速圆周运动快慢的描述教案

匀速圆周运动快慢的描述 厦大附中陈庆昴 教学目标: 一、知识与技能: 1、知道什么是匀速圆周运动 2、理解什么是线速度、角速度和周期 3、理解线速度、角速度和周期之间的关系 二、过程与方法: 1、能够用类比等方法学习新知识。 2、能够通过实验来探究规律。 3、能够应用匀速圆周运动的有关公式分析和解决有关问题。 三、情感态度与价值观: 通过描述匀速圆周运动快慢的教学,使学生了解对同一个问题可以从不同的侧面进行研究。教学重点: 1、理解线速度、角速度和周期的概念。 2、知道什么是匀速圆周运动 3、线速度、角速度及周期之间的关系 教学难点: 可以用不同的物理量描述匀速圆周运动的快慢 教学过程: 一、引入 师:前面我们学习了曲线运动中一种比较简单的运动形式——抛体运动,而在日常生活中,我们还经常见到另一种比较简单的曲线运动——圆周运动。 师:什么是圆周运动呢?

生:圆周运动就是运动轨迹是圆周的运动。 师:同学们能不能举一些日常生活中常见的圆周运动? 生:如机械钟表的指针、齿轮、电风扇的叶片、汽车的车轮在转动时的运动都是圆周运动。 师:播放生活中常见的圆周运动的视频。 二、匀速圆周运动 师:我们刚才举到的这些例子中,有些圆周运动的规律是比较复杂的,如过山车的运动。而我们研究一种运动,都是先研究其最简单的运动形式,如在直线运动规律的学习中,我们只研究了最简单的两种直线运动的规律,即匀速直线运动和匀变速直线运动的规律。对于圆周运动,我们也先研究其中最简单的运动形式,那最简单的圆周运动应该是怎样的? 生:最简单的圆周运动应该是运动快慢不变的圆周运动。 师:我们把这种运动快慢不变的圆周运动称为匀速圆周运动。 师:匀速圆周运动与匀速直线运动的区别是什么? 生:匀速圆周运动的运动方向不断变化。 1、线速度 演示实验:将自行车倒过来放置,匀速转动脚踏板,观察并比较小自行车上AB 两点、BC 两点的运动快慢。 生:观察、思考及讨论。给出观点: 1、A 点比B 点运动得快 2、AB 两点运动快慢一样 3、BC 两点运动快慢一样 4、B 点比C 点运动得快 师:同学们得到的这些结论到底哪些是正确的哪些是错误的呢?我们应该如何确定匀速圆周运动的快慢呢? 师:我们先回顾一下我们是如何描述直线运动的快慢。 生:用速度这个物理量,t s v = ,是位移与时间的比值。 师:那速度这个物理量能不能准确地描述匀速圆周运动的快慢呢? 生:学生思考讨论。 师:提示可以举一个匀速圆周运动实例:如图(1)所示 ,一物体从A 点出发,沿顺时针做匀速圆周运动,经过时间t 1,第一次运动到了B 点;经过时间t 2第一次运动到了C 点 。物体在运动过程中运动的快慢是不变的。 物体在t 1时间内的平均速度11t S V AB = ;时间t 2内的平均速度2 2t S V AC =。因S AB >S AC t 1

圆周运动中的临界问题分析+教案+教学设计

《圆周运动中的临界问题》教学设计 高一物理组龙 一、教材分析 圆周运动的临界问题继是人教版高中《物理》必修2第五章的内容。在此之前,学生已经学习了直线运动的相关内容,和曲线运动的基本知识,自然界和日常生活中运动轨迹为圆周的许多事物也为学生的认知奠定了感性基础,本节课主要是帮助学生在原有的感性基础上进一步认识圆周运动,为今后学习万有引力等知识打下基础。 二、学情分析 高一(14)班是二层次班级,学生基础、领会能力相对较弱。不过学生已经学习了圆周运动、向心加速度、向心力等圆周运动的相关知识,已基本了解和掌握了圆周运动的特点和规律,对圆周运动的临界问题的学习已打下了基础。 三、学习目标 1. 通过学生讨论,小组合作,老师引导,让学生进一步熟练圆周运动问题的解题步骤; 2. 通过学生讨论,小组合作,老师讲解,达到知道临界状态的目标; 3. 通过学生讨论,小组合作,老师讲解,达到知道圆周运动中的临界问题,并能正确解题的目标。 四、教学重难点 1. 重点

a圆周运动问题的解题步骤 b 竖直水平圆周运动的临界状态 c 运用所学知识解决圆周运动中的临界问题 2. 难点 a竖直水平圆周运动的临界状态 b 运用所学知识解决圆周运动中的临界问题 五、导入 播放视频—电唱机做匀速圆周运动,创设情境,导入新课六、教学设计 (一) 预习案 1.公式默写 角速度: 线速度: 运行周期:

向心加速度: 向心力: 复习巩固 (二) 探究案 1.圆周运动问题的解题步骤

例、例. 如图所示,半径为R的圆筒绕竖直中心轴OO′转动,小物块A靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使A不下落,则圆筒转动的角速度ω至少为( D ) 小组讨论,得出结果,并归纳总结出圆周运动解题步骤。 解:A物体不下落,说明静摩擦力等于重力,A随着转动过程中,支持力提供向心力 即 且 联立解得

匀速圆周运动的多解问题专题辅导不分版本

匀速圆周运动的多解问题 匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其一做匀速圆周运动,另一个物体做其他形式的运动。因此,依据等时性建立等式求解待求量是解答此类问题的基本思路。特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n ”正是这一考虑的数学外化。 例1:如图1所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。若子弹穿出后在圆筒上只留下一个弹孔,则圆筒运动的角速度为多少 解析:子弹穿过圆筒后作匀速直线运动,当它再次到达圆筒壁时,若原来的弹孔也恰好运动到此处,则圆筒上只留下一个弹孔。在子弹运动位移为d 的时间内,圆筒转过的角度为2n ππ+,其中n =0123,,,…,即 d v n =+2ππω 解得角速度为:ωππ= +=20123n d v n (),,,… 例2:质点P 以O 为圆心做半径为R 的匀速圆周运动,如图2所示,周期为T 。当P 经过图中D 点时,有一质量为m 的另一质点Q 受到力F 的作用从静止开始作匀加速直线运动。为使P 、Q 两质点在某时刻的速度相同,则F 的大小应满足什么条件 解析:速度相同包括大小相等和方向相同。由质点P 的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同。即质点P 应转过()n + 34周(n =0123,,,…),经历的时间 t n T n =+=()()()3 401231,,,… 质点P 的速度v R T = 22π() 在同样的时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得 v =F m t ()3 联立以上三式,解得:F mR n T n = +=84301232π()(),,,… 例3:如图3所示,在同一竖直面内A 物体从a 点做半径为R 的匀速圆周运动,同时B 物体从圆心O 处自由落下,

圆周运动中的临界问题

圆周运动中的临界问题 一、水平面圆周运动的临界问题 关于水平面匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。 1、与绳的拉力有关的临界问题 例1 如图1示,两绳系一质量为kg m 1.0=的小球, 上面绳长m l 2=,两端都拉直时与轴的夹角分别为 o 30与o 45,问球的角速度在什么围,两绳始终紧, 当角速度为s rad /3时,上、下两绳拉力分别为多大? 2、因静摩擦力存在最值而产生的临界问题 例2 如图2所示,细绳一端系着质量为kg M 6.0= 的物体,静止在水平面上,另一端通过光滑小孔吊着 质量为kg m 3.0=的物体,M 的中心与圆孔距离为m 2.0 并知M 与水平面间的最大静摩擦力为N 2,现让此平面 绕中心轴匀速转动,问转动的角速度ω满足什么条件 可让m 处于静止状态。(2/10s m g =) 3、因接触面弹力的有无而产生的临界问题 C 图1 图2

二、竖直平面圆周运动的临界问题 对于物体在竖直平面做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。 1、轻绳模型过最高点 如图所示,用轻绳系一小球在竖直平面做圆周运动过最高点的情况,与小球在竖直平面光滑轨道侧做圆周运动过最到点的情况相似,都属于无支撑的类型。 临界条件:假设小球到达最高点时速度为0v ,此时绳子的拉力(轨道的弹力) 刚好等于零,小球的重力单独提供其做圆周运动的向心力,即r v m mg 2 0=, gr v =0,式中的0v 是小球过最高点的最小速度,即过最高点的临界速度。 (1)0v v = (刚好到最高点,轻绳无拉力) (2)0v v > (能过最高点,且轻绳产生拉力的作用) (3)0v v < (实际上小球还没有到最高点就已经脱离了轨道) 例4、如图4所示,一根轻绳末端系一个质量为kg m 1=的小球, 绳的长度m l 4.0=, 轻绳能够承受的最大拉力为N F 100max =, 现在最低点给小球一个水平初速度,让小球以轻绳的一端O 为 圆心在竖直平面做圆周运动,要让小球在竖直平面做完整 的圆周运动且轻绳不断,小球的初速度应满足什么条件?(2/10s m g =) 2、轻杆模型过最高点 如图所示,轻杆末端固定一小球在竖直平面做圆周运动过最高点的情况,与小球在竖直放置的圆形管道过最到点的情况相似,都属于有支撑的类型。

圆周运动中的临界问题专题

课题28圆周运动中的临界问题 一、竖直面内圆周运动的临界问题 (1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用: mg=mv 2/R →v 临界=Rg (可理解为恰好转过或 恰好转不过的速度) 即此时小球所受重力全部提供向心力 注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力提供向心力,此时临界速度V 临≠ Rg ②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤gR 3 10,则有关小球能够上升到最大高 度(距离底部)的说法中正确的是( ) A 、一定可以表示为g v 220 B 、可能为3 R C 、可能为R D 、可能为 3 5R 【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度 gr v 时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动,因为 桥面不能对汽车产生拉力. (2)如右图所示,小球过最高点时,轻质杆(管)对球产生的弹力情况: 特点:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力. ①当v =0时,F N =mg (N 为支持力) ②当 0<v <Rg 时, F N 随v 增大而减小,且mg >F N >0,F N 为支持力. ③当v =Rg 时,F N =0 ④当v >Rg 时,F N 为拉力,F N 随v 的增大而增大(此时F N 为拉力,方向指向圆心) 典例讨论 1.圃周运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点.结合圆周运动的知识,列出相应的动力学方程 【例题2】在图中,一粗糙水平圆盘可绕过中心轴OO / 旋转,现将轻质弹簧的一端固定 O O R R

圆周运动知识点

描述圆周运动的物理量及相互关系 圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。 2、描述匀速圆周运动的物理量 (1)轨道半径(r ) (2)线速度(v ): 定义式:t s v = 矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上。 (3)角速度(ω,又称为圆频率): T t π? ω2= = (φ是t 时间内半径转过的圆心角) 单位:弧度每秒(rad/s ) (4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。 (5)频率(f ,或转速n ):物体在单位时间内完成的圆周运动的次数。 各物理量之间的关系: r t r v f T t rf T r t s v ωθππθωππ==??? ??? ? ?====== 2222 注意:计算时,均采用国际单位制,角度的单位采用弧度制。 (6)向心加速度 r r v a n 22ω==(还有其它的表示形式,如:()r f r T v a n 2 2 22ππω=?? ? ??==) 方向:其方向时刻改变且时刻指向圆心。 对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量,r 为曲率半径;物体的另一加速度分量为切向加速度τa ,表征速度大小改变的快慢(对匀速圆周运动而言,τa =0) (7)向心力 匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任何性质的 力,常见的提供向心力的典型力有万有引力、洛仑兹力等。对于一般的非匀速圆周运动,物体受到的合力的法向分力n F 提供向心加速度(下式仍然适用),切向分力τF 提供切向加速度。 向心力的大小为:r m r v m ma F n n 22 ω===(还有其它的表示形式,如:

圆周运动中的临界问题

圆周运动中的临界问题 一、水平面内圆周运动的临界问题 关于水平面内匀速圆周运动的临界问题,涉及的就是临界速度与临界力的问题,具体来说,主要就是与绳的拉力、弹簧的弹力、接触面的弹力与摩擦力有关。 1、与绳的拉力有关的临界问题 例1 如图1示,两绳系一质量为kg m 1.0=的小球, 上面绳长m l 2=,两端都拉直时与轴的夹角分别为 o 30与o 45,问球的角速度在什么范围内,两绳始终张紧, 当角速度为s rad /3时,上、下两绳拉力分别为多大? 2、因静摩擦力存在最值而产生的临界问题 例2 如图2所示,细绳一端系着质量为kg M 6.0= 的物体,静止在水平面上,另一端通过光滑小孔吊着 质量为kg m 3.0=的物体,M 的中心与圆孔距离为m 2.0, 并知M 与水平面间的最大静摩擦力为N 2,现让此平面 绕中心轴匀速转动,问转动的角速度ω满足什么条件 可让m 处于静止状态。(2/10s m g =) 3、因接触面弹力的有无而产生的临界问题 二、竖直平面内圆周运动的临界问题 对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点与最低点的情况,并且也经常会出现临界状态。 1、轻绳模型过最高点 如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。 临界条件:假设小球到达最高点时速度为0v ,此时绳子的拉力(轨道的弹力)刚好等于零,小球的重力单独提供其做圆周运动的向心力,即 r v m mg 2 0=,gr v =0,式中的0v 就是小球过最高点的最小速度,即过最高点的临界速度。 (1)0v v = (刚好到最高点,轻绳无拉力) C 图1 图2

2020高中物理4.1匀速圆周运动快慢的描述学案1鲁科版必修2

《匀速圆周运动》学案 【学习目标】 (1)理解并记住描述圆周运动的物理量。 (2)学会解匀速圆周运动的运动学问题。 (3)掌握解圆周运动动力学问题的一般方法。 【知识要点】 一、匀速圆周运动的特点: 1、轨迹:_____________________________________ 2、速度:_____________________________________ 二、描述圆周运动的物理量: 1、线速度 (1) 物理意义:描述质点___________________________________________________ (2) 方向:_________________________________________________________________ ⑶大小:___________________________________________________________________ 2、角速度 (1)物理意义:描述质点____________________________________________________ ⑵大小:___________________________________________________________________ (3) 单位:________________________________________________________________ 3、周期和频率 (1)定义:做圆周运动的物体_________________________ 叫周期。 做圆周运动的物体_____________________________ 叫频率。 (2) 周期与频率的关系:____________________________________________________

相关主题
文本预览
相关文档 最新文档