当前位置:文档之家› 物理化学实验数据处理剖析

物理化学实验数据处理剖析

物理化学实验数据处理剖析
物理化学实验数据处理剖析

物理化学实验数据处理

实验一 电极的制备及电池电动势的测定与应用

一、实验数据记录

二、数据处理

1饱和甘汞电极电动势的温度校正

)298/(1061.72415.0/4-?-=-K T V SCE ?

15.273+=t T t 组成饱和甘汞电极的KCl 溶液的温度,℃。

2测定温度下锌、铜电极电动势的计算 1) 测定温度下锌电极电势的计算

Zn Zn SCE Hg Zn E /2)(+-=-??平均值 )(/2平均值Hg Zn SCE Zn Zn E --=∴+??

2) 测定温度下铜电极电势的计算

SCE Cu Cu Hg Cu E ??-=+-/2)(平均值 SCE Hg Cu Cu Cu E ??+=∴-+)(/2平均值

3) 测定温度下标准锌电极电极电势的计算

++

+

+±++=+=2222ln 2)(ln 2/2//Zn Zn

Zn Zn Zn Zn Zn m F RT Zn F RT γ?α??θ

θ

+++

±-=∴222ln 2//Zn Zn Zn Zn

Zn m F

RT γ??θ(±γ参见附录五表V-5-30,11.02-?=+l mol m Zn ) 4) 测定温度下标准铜电极电极电势的计算

++

+

+±++=+=2222ln 2)(ln 2/2//Cu Cu

Cu Cu Cu Cu Cu m F RT Cu F RT γ?α??θ

θ

+++

±-=∴222ln 2//Cu Cu Cu Cu

Cu m F

RT γ??θ(±γ参见附录五表V-5-30,11.02-?=+l mol m Cu ) 2 298K 时锌、铜电极标准电极电势的计算 1)锌电极标准电极电势的计算

)298/(000016.0)298(/)(//22-?-=+

+K T K V T Zn

Zn Zn Zn θθ?? )298/(000016.0/)()298(//22-?+=∴++

K T V T K Zn

Zn Zn Zn θ

θ?? 1)铜电极标准电极电势的计算

2

6//)298/(1031.0)298/(0001.0)298(/)(22-?+-?+=-+

+K T K T K V T Cu

Cu Cu Cu θθ?? 26//)298/(1031.0)298/(0001.0)()298(22-?+-?-=∴-+

+K T K T T K Cu

Cu Cu Cu θ

θ?? 15.273+=t T t 组成相应电极的电解质溶液的温度,℃。

参考数值:V K Zn Zn 7627.0)298(/2-=+θ?,V K Cu

Cu 3419.0)298(/2=∴+

θ

?。 3 铜-锌原电池理论电动势的计算

铜电极的理论电极电势计算:

2

6/)298/(1031.0)298/(0001.03419.0/)(2-?+-?+=-+

K T K T V T Cu

Cu

θ? ++

+

±+=222ln 2)(//Cu Cu

Cu Cu

Cu

m F

RT

T γ??θ 锌电极的理论电极电势计算:

)298/(000016.07627.0/)(/2-?--=+

K T V T Zn

Zn

θ

?

++

+

±+=222ln 2)(//Zn Zn

Zn Zn

Zn

m F

RT

T γ??θ 铜-锌原电池理论电动势的计算:Zn Zn Zn Cu Cu Zn E //22++-=-?? 误差计算:%100)

(?-=

--Cu

Zn Cu Zn E E E Error 平均

实验二 溶液法测定极性分子偶极矩

一、实验数据记录

1. 首先算出实验温度时两种纯液体的密度。(实验温度用温度计直接测出,密度可由软件计算)或采用下式计算:

2

63469.0109110.11063255.1)(t t CCl t ?-?-=--ρ

3926352309.610405.0102710.11093932.0)(t t t H COOC CH t ?-?-?-=---ρ

,t 为测量温度℃,密度单位:g/ml

2. 计算测量温度下CCl 4介电常数εCCl4、真空电容C 0和仪器分布电容C d 。 )20(0020.0238.2)(4--=t CCl ε

1

)(404--=

CCl C C C CCl ε空测

测,1

)()(444--=

CCl C CCl C C CCl d εε测

空测

3. 计算每个溶液的电容值及介电常数

d C C C -=测量溶液,0

C C 溶液

溶液=

ε 4.作图分别由斜率求算γβα,,。

)1(24

x CCl αεε+=溶液,)1(24

x CCl βρρ+=溶液,)1(24

x n n CCl γ+=溶液

5. 由课本166页II-31-7式及II-31-11计算∞2P ,。∞

2R 由II-31-13计算523H COOC CH 的分子

偶极矩。理论值为: m C ??--31

1030.687.5

实验三 粘度法测定水溶性高聚物相对分子质量

二、作图。

三、计算大分子的分子量

两直线相交处约为255.15。即[η]=255.15,[η]=KM α α=0.79,K=3.8×10-3cm 3g -1,得M=1288670=1.289×106。

实验四 电导法测定乙酸乙酯皂化反应的速率常数

一、数据记录

室温: ℃ 大气压力: pa κ0 (30℃) 。 κ0 (40℃) 。

1.将t ,κt 数据列表。

240

2502602702800

0.0005

0.001

0.0015

2. 以)((/)(0∞--κκκκt t c 对时间t 作图,可两条直线。

3.由直线的斜率分别计算两个温度下的速率常数k 和反应半衰期t 1/2。

4.由两温度下的速率常数,按Arrhenius 公式,计算乙酸乙酯皂化反应的活化能。

实验五 丙酮碘化反应速率方程的确定

1、 数据记录

2计算εb

lg =-==

A A T bc b c

εε 3计算反应速率

用表中数据以A 对时间作图,求得四条直线,各直线斜率为??

???

dc b dt ε.用斜率分别计算反应速率r 1,r 2,r 3,r 4.

根据上式可计算出α、β、γ。 4、建立丙酮碘化反应速率方程式

A

12

lg()lg =

B r r n m

5、分别计算

1、2、3、和4 号瓶中丙酮和酸的初始浓度,再根据上式计算四种不同初始浓度(配好的各容量瓶中组分的浓度)的反应速率常数,求其平均值。

332

1

1CH COCH HCl I r k C C C αβγ

=

??,依次得到k 2,k 3,k 4,求取平均值。

实验六 溶液表面张力的测定-最大泡压法

C

5% 10% 15% 20% 25% 30% 35% 40% ⊿p 1(kPa) ⊿p 2(kPa) ⊿p 3(kPa)

平均

1以纯水测量结果计算K ’值,纯水表面张力可查表得到(计算时要注意单位,测量值单位为KPa )

1

111

' '=?=

?K p K p σσ

2计算各种浓度溶液的σ值:

'n n

K p σ=?

3作σ-c 图,并在图上取10个点,分别做出切线,并求得对应的斜率d dc T

σ??

???。

浓度c 斜率

四、根据公式 求的不同浓度下的吸附量,作出c -Γ图,

浓度c

吸附量Γ

d dc T

c ΓRT σ??=- ???

热重分析实验报告

热重分析实验报告

————————————————————————————————作者: ————————————————————————————————日期: ?

材料与建筑工程学院实验报告 课程名称: 材料物理性能 专业:材料科学与工程 班级: 2013级本科 姓名:张学书 学号: 3

指导老师:谢礼兰老师 贵州师范大学学生实验报告 成绩 实验一:STA449F3同步热分析仪的结构原理及操作方法 一、实验目的 1、熟悉同步热分析仪的基本原理。 2、了解STA449 F3型同步热分析仪的构造原理及性能。 3、学习STA449 F3型同步热分析仪的操作方法。 二、实验原理 差示扫描量热法(DSC)是指在加热的过程中,测量被测物质与参比物之间的能量差与温度之间的关系的一种方法技术。图1-1为功率补偿式DSC仪器示意图:

图1-1 功率补偿式D SC 示意图 1.温度程序控制器; 2.气氛控制;3.差热放大器;4.功率补偿放大器;5.记录仪 当试样发生热效应时,譬如放热,试样温度高于参比物温度,放置在它们下面的一组差示热电偶产生温差电势U ΔT ,经差热放大器放大后送入功率补偿放大器,功率补偿放大器自动调节补偿加热丝的电流,使试样下面的电流Is减小,参比物下面的电流IR 增大,而Is +IR 保持恒定。降低试样的温度,增高参比物的温度,使试样和参比物之间的温差ΔT 趋于零。上述热量补偿能及时,迅速完成,使试样和参比物的温度始终维持相同。 设两边的补偿加热丝的电阻值相同,即RS =RR=R,补偿电热丝上的电功率为PS=IR 和P R=IR 。当样品没有热效应时,PS=P R;当样品存在热效应时,PS 和PR 的差ΔP能反映样品放(吸)热的功率: ΔP= PS-PR= IR -IR=(I S+IR)( I S-IR)R =(IS+IR ) ΔV =I ΔV? (1) 由于总电流IS+IR 为恒定,所以样品的放(吸)热的功率ΔP只和ΔV 成正比, 3 1 2 4 5

解析路基不均匀沉降的形成原因危害及处理措施

路基不均匀沉降形成原因危害及处理措施 09土木(交通)赵鑫龙0919011011 【关键词】:路基纵向不均匀沉降,路基横向不均匀沉降,形成原因,造成危害,处理措施。 【摘要】:近年来,科学技术发展的为我国的交通事业的发展注入了强大的原动力。我国的交通状况正发生着日新月异的变化交通的高速发展已成为我国的经济版图中最引人注目的心篇章,数字化交通征打造着我国交通的新理念。然而路基的不均匀沉降这一难题始终困扰着我们的工程技术人员,阻扰在公路工程的发展和完善。 一,路基不均匀沉降的类型 1)纵向不均匀沉降 路基纵向不均匀沉降主要表现为桥头跳车和纵向填挖交界处不均匀沉降,致使路、桥过渡段出现不同程度的台阶,且路面平整性受损,严重影响了公路的使用功能。 2)横向不均匀沉降 由于车载、地下水及自重等作用,路基横向不均匀沉降引起的公路工程病害已成为公路工程质量通病之一。 二,路基横向不均匀沉降的原因分析 路基横向不均匀沉降的发生是多方面因素综合作用的结果。其中,内因在于地基及路基本身;外因是车载、地下水及自重等作用。 1.地基对路基横向不均匀沉降的影响 (1)路堤地基处理不当 ①伐树除根及表土处理不彻底或是路基基底的压实度不够,致使路堤形成后,一旦杂

质腐烂变质,地基将会发生松软和不均匀沉降。 ②地面横坡大于1:5的路段,路堤填筑前地基未按规定要求挖成台阶,填料与地基结合不良,在荷载作用下填料极易失稳而沿坡面发生滑移,从而产生横向不均匀沉降。 (2)特殊地基地段 ①软土地基对路基横向不均匀沉降的影响 当路基修筑在软土地段时,软土层本身力学性能差,在附加应力作用下,会发生固结沉降、次固结沉降和侧向塑性挤出,导致明显的沉降变形。有些河谷、水塘地段虽作了清淤处理,但是处理不彻底或回填材料控制得不好,从而形成人为的相对软土层,造成路基的不均匀沉降。在高填方填筑后,地基出现不均匀沉降,甚至路面开裂。在一些地表水和地下水自然排泄困难的地方,地基土中的软土层在固结过程中的较大沉降变形,也是产生过大沉降和沉降差的重要原因。有些路段所处地基不属于软土地基,但处于低洼、河谷处,长期受水冲蚀,天然含水量较高,在设计时未发现或未作特殊处理,在施工时也未做等载或超载预压,也会产生不均匀沉降。 ②岩溶地基对路基横向不均匀沉降的影响 在碳酸盐岩地区,路基下有时分布有岩溶洼地或漏斗,其中的沉积物松软,在行车动载的作用下,沉积物压实、侧向流动和下陷,造成路基沉陷。比较有代表性的工程实例是在昆明至瑞丽公路,有一处属这种类型。该公路通过处为灰岩地区的凹状地形区,自1991年开始,路面每年下沉约1.5m,1993年7~9个月,每月垫高路面0.5m,侧向变形作用不明显。其原因主要是路基以下为岩溶洼地,洼地内风化残积物疏松软弱,该处在地貌上易于地下水的汇集。在交通荷载作用下,残积物压密和侧向流动,使路基近于垂直下沉。一般说来,土层的天然含水量越高、天然孔隙比越大,则压缩系数越大、承载力越低,则路基的沉降量和沉降差越大;抗剪强度和承载力越低,则侧向塑性挤出甚至局部坍滑的可能性越大。故地基中存在岩溶,容易导致路基的横向不均匀沉降。 2.路基本身引起的路基横向不均匀沉降 (1)路堤填料不均匀 在公路施工过程中,对填料、级配很难得到有效的控制。若填料中混入种植土、腐殖土或泥沼等劣质土,或土中含有未经打碎的大块土或冻土等,或在填石路堤中石料规格不一,性质不匀,乱石中空隙很大,在一定期限(例如雨季)可能产生局部明显横向下沉。另外,填料常常是路堑的挖方、隧道掘进产生的废方。这些填料性质差异大、级配也相差很远。在施工过程中,如果分层碾压厚度过大,小颗粒填料和软弱物质很难得到有效压实,在荷载的长

STATA面板数据模型操作命令

STATA 面板数据模型估计命令一览表 一、静态面板数据的STATA 处理命令 εαβit ++=x y it i it 固定效应模型 εαμit +=it it 随机效应模型 (一)数据处理 输入数据 ●tsset code year 该命令是将数据定义为“面板”形式 ●xtdes 该命令是了解面板数据结构 ●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析) ●gen lag_y= αi αi αi εit ~e it ~1-t e i ,8858.0~=θ5.0-~=θ验:是否存在门槛效应 混合面板: reg is lfr lfr2 hc open psra tp gr,vce(cluster sf) 固定效应、随机效应模型 xtreg is lfr lfr2 hc open psra tp gr,fe est store fe xtreg is lfr lfr2 hc open psra tp gr,re est store re hausman fe 两步系统GMM 模型 xtdpdsys rlt plf1 nai efd op ew ig ,lags(1) maxldep(2) twostep artests(2) 注:rlt 为被解释变量,“plf1 nai efd op ew ig ”为解释变量和控制变量; maxldep(2)表示使用被解释变量的两个滞后值为工具变量;pre ()表示以某一个变量为前定解释变量;endogenous ()表示以某一个变量为内生解释变量。

自相关检验:estat abond 萨甘检验:estat sargan 差分GMM模型 Xtabond rlt plf1 nai efd op ew ig ,lags(1) twostep artests(2) 内生:该解释变量的取值是(一定程度上)由模型决定的。内生变量将违背解释变量与误差项不相关的经典假设,因而内生性问题是计量模型的大敌,可能造成系数估计值的非一致性和偏误;外生:该解释变量的取值是(完全)由模型以外的因素决定的。外生解释变量与误差项完全无关,不论是当期,还是滞后期。 前定:该解释变量的取值与当期误差项无关,但可能与滞后期误差项相关。

差热分析__实验报告

差热分析 一、实验目的 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图5-1)。A 两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-1 差热分析原理图 图5-1 典型的差热图从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小。相同条件下,峰面积大的表示热效应也大。在相同的测

定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 本实验采用CuSO 4·5H 2O ,CuSO 4·5H 2O 是一种蓝色斜方晶系,在不同温度下,可以逐步失水: CuSO 4·5H 2O CuSO 4·3H 2O CuSO 4·H 2O CuSO 4 (s ) 从反应式看,失去最后一个水分子显得特别困难,说明各水分子之间的结合能力不一样。 四个水分子与铜离子的以配位键结合,第五个水分子以氢键与两个配位水分子和SO 4 2-离子结合。 加热失水时,先失去Cu 2+ 左边的两个非氢键原子,再失去Cu 2+ 右边的两个水分子,最后失去以氢键连接在SO 4 2- 上的水分子。 三、仪器试剂 差热分析仪1套;分析物CuSO 4·5H 2O ;参比物α-Al 2O 3。 四、实验步骤 1、 开启仪器电源开关,将各控制箱开关打开,仪器预热。开启计算机开关。 2、参比物(α-Al 2O 3)可多次重复利用,取干净的坩埚,装入CuSO 4·5H 2O 样品、装满,再次加入CuSO 4·5H 2O 将坩埚填满,备用。 3、抬升炉盖,将上步装好的CuSO 4·5H 2O 样品放入炉中,盖好炉盖。 4、打开计算机软件进行参数设定,横坐标2400S 、纵坐标300℃、升温速率

路基沉降的原因及处理措施

路基沉降的原因及处理措施 作者:唐勇军来源:本站原创发布时间:2010年01月06日点击数: 1275 摘要:文中就路基沉降的原因进行了分析,并就路基产生沉降的处理措施进行了探讨,指出应从设计方法与施工两个方面着手,分析路基沉降造成的原因并采取切实有效的措施,以避免及减小路基沉降的发生。 关键词:路基沉降原因措施 路基是路面的基础,路基不均匀沉降必然会引起路面的不平整,导致路面产生许多病害,主要表现为坑凹、起拱、波浪、接缝台阶、碾压车辙、桥头或涵洞两端路面沉降、桥梁伸缩缝的跳车等,不仅难以满足汽车高速行驶的要求,而且还会增加汽车的燃料消耗和轮胎磨损,加大运输成本,增加运输时间,降低社会经济效益甚至危及行车安全。 一、路基不均匀沉降的原因 造成路基不均匀沉降的原因很多,下面笔者从以下几点进行论述:1. 1路基填土压实度不足 由于压实度不足,往往导致填方路基的不均匀沉降变形,路基两侧出现纵向裂缝,路基土体压实度不足的主要原因有以下几点: (1)施工受实际条件的限制。路基施工时,天气太干燥,局部路堤填料粘土土块粉碎不足致使路基压实度不均匀;暗埋式构造物处因构造物长度限制使路基边缘不能超宽碾压,致使路基边缘压实度不够;某些加减速车道与行车道没有同步施工,当拼接处理得不好时,其拼接处也会产生压实度不足的情况。

(2)考虑到施工安全和进度,使得压力或压力作用时间不足,路基压实不充分,致使路基压实度达不到规范要求。 (3)由于填方土体的最佳含水量控制不好,压实效果达不到规范要求。 (4)在填方路堤施工中,当路堤施工到一定高度以后,路堤边缘土体往往存在压实度不足问题,对于较高的填方路基,通常都要做相应的处治。 填方土体压实度不足,其结果是土体前期固结压力小于自重应力和各种附加应力之和,在自重作用下就会发生沉降变形,这些附加应力主要来自以下几个方面: ①车载,尤其超载情况;②含水量变化造成土体容重的改变;③地下水位升降而导致浮力作用改变;④土体饱和度改变,引起负孔隙水压力改变。这些附加应力引起土体中有效应力改变,从而导致土体发生压缩变形。 土体压实度不足还会导致填土路基的侧向变形。目前采用的地基沉降计算方法是假定侧向完全受限,仅有竖向变形,实际路基土中存在有侧向变形,这种侧向变形会引起沉降。 1.2路堤填料不均匀,控制不当 在公路施工过程中,对填料、级配很难得到有效的控制,填料常常是开挖路堑、隧道掘进产生的废方,这些填料性质差异大、级配也相差很远。一方面,在施工过程中,如果分层碾压厚度过大,小颗粒填料和软弱物质很难得到有效压实,在荷载的长期作用下,回填料会产生不协调沉降变形,路面会产生局部沉陷,刚性路面还可能产生裂纹。

最新差热分析DTA实验报告

差热分析DTA 一、实验目的 掌握热分析方法─差热分析法基本原理和分析方法。 了解差热分析和热重分析仪器的基本结构和基本操作。 二、差热分析基本原理 差热分析法(Differential Thermal Analysis,DTA)是在程序控温下测量样品和参比物的温度差与温度(或时间)相互关系的一种技术。 物质在加热或冷却过程中会发生物理或化学变化,同时产生放热或吸热的热效应,从而导致样品温度发生变化。因此差热分析是一种通过热焓变化测量来了解物质相关性质的技术。样品和热惰性的参比物分别放在加热炉中的两个坩埚中,以某一恒定的速率加热时,样品和参比物的温度线性升高;如样品没有产生焓变,则样品与参比物的温度是一致的(假设没有温度滞后),即样品与参比物的温差DT=0;如样品发生吸热变化,样品将从外部环境吸收热量,该过程不可能瞬间完成,样品温度偏离线性升温线,向低温方向移动,样品与参比物的温差DT<0;反之,如样品发生放热变化,由于热量不可能从样品瞬间逸出,样品温度偏离线性升温线,向高温方向变化,温差DT>0。上述温差DT(称为DTA 信号)经检测和放大

以峰形曲线记录下来。经过一个传热过程,样品才会回复到与参比物相同的温度。 在差热分析时,样品和参比物的温度分别是通过热电偶测量的,将两支相同的热电偶同极串联构成差热电偶测定温度差。当样品和参比物温差DT=0,两支热电偶热电势大小相同,方向相反,差热电偶记录的信号为水平线;当温差DT10,差热电偶的电势信号经放大和A/D换,被记录为峰形曲线,通常峰向上为放热,峰向下为吸热。差热曲线直接提供的信息主要有峰的位置、峰的面积、峰的形状和个数,通过它们可以对物质进行定性和定量分析,并研究变化过程的动力学。峰的位置是由导致热效应变化的温度和热效应种类(吸热或放热)决定的,前者体现在峰的起始温度上,后者体现在峰的方向上。不同物质的热性质是不同的,相应的差热曲线上的峰位置、峰个数和形状也不一样,这是差热分析进行定性分析的依据。分析DTA 曲线时通常需要知道样品发生热效应的起始温度,根据国际热分析协会(ICTA)的规定,该起始温度应为峰前缘斜率最大处的切线与外推基线的交线所对应的温度T(如图2),该温度与其它方法测得的热效应起始温度较一致。DTA峰的峰温Tp虽然比较容易测定,但它既不反映变化速率到达最大值时的温度,也与放热或吸热结束时的温度无关,其物理意义并不明确。此外,峰的面积与

实验六 差热分析草酸钙的热分解过程

实验六差热分析草酸钙的热分解过程 一、实验目的 1. 掌握差热分析法的基本原理。 2. 了解热分析仪的结构,掌握仪器的基本操作。 3. 利用差热分析技术研究草酸钙的热分解过程。 二、实验原理 热分析是在程序控制温度下测量物质的物理性质与温度关系的一类技术。程序控制温度一般是指线性升温或线性降温,也包括恒温、循环或非线性升温、降温。物质性质包括质量、温度、热焓变化、尺寸、机械特性、声学特性、电学和磁学特性等等。 在热分析技术中,热重法是指在程序控制温度下,测量物质质量与温度关系的一种技术,被测参数为质量(通常为重量),检测装置为“热天平”,热重法测试得到的曲线称为热重曲线(TG)。热重曲线以质量作为纵坐标,可以用重量、总重量减少的百分数、重量剩余百分数或分解分数表示。曲线从上往下表示质量减少,以温度(或时间)作横坐标,从左向右表示温度(或时间)增加,所得到的重量变化对温度的关系曲线则称之为热重曲线。 热重法的主要特点是定量性强,能准确地测量物质质量变化及变化的速率。在正常的情况下,热重曲线的水平部分看作是恒定重量的特征,变化最陡峭的部分,可以给出重量变化的斜率,曲线的形状和解析取决于试验条件的稳定性。热重曲线开始偏离水平部分的温度为反应的起始温度,测量物质的质量是在加热情况下测量试样随温度的变化,如含水和化合物的脱水,无机和有机化合物的热分解。物质在加热过程中与周围气氛的作用,固体或液体物质的升华和蒸发等,都是在加热过程中伴随有重量的变化。 从热重法派生出微商热重法(DTG)和二阶微商法(DDTG),前者是TG 曲线对温度(或时间)的一阶导数,后者是TG 曲线的二阶导数。 差热分析(DTA)是在程序控制温度下,测量物质与参比物之间的温度差与温度函数关系的一种技术,只要被测物质在所用的温度范围内具有热活性,则热效应联系着物理或化学变化,在所记录的差热曲线上呈现一系列的热效应峰,峰

差热分析_实验报告

学生实验报告 实验名称差热分析 姓名:学号:实验时间: 2011/5/20 一、实验目的 1、掌握差热分析原理和定性解释差热谱图。 2、用差热仪测定和绘制CuSO4·5H2O等样品的差热图。 二、实验原理 1、差热分析原理 差热分析是测定试样在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及花絮而反应的一种分析方法,简称DTA(Differential Thermal Analysis)。 物质在受热或者冷却过程中个,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸收、脱附等物理或化学变化,因而产生热效应,其表现为体系与环境(样品与参比物之间)有温度差;另有一些物理变化如玻璃化转变,虽无热效应发生但比热同等某些物理性质也会发生改变,此时物质的质量不一定改变,但温度必定会变化。差热分析就是在物质这类性质基础上,基于程序控温下测量样品与参比物的温度差与温度(或时间)相互关系的一种技术。 DTA的工作原理(图1 仪器简易图)是在程序温度控制下恒速升温(或降温)时,通过热偶点极连续测定试样同参比物间的温度差ΔT,从而以ΔT对T 作图得到热谱图曲线(图2 差热曲线示意图),进而通过对其分析处理获取所需信息。 图1 仪器简易图

实验仪器实物图 图2 差热曲线示意图 在进行DTA测试是,试样和参比物分别放在两个样品池内(如简易图所示),加热炉以一定速率升温,若试样没有热反应,则它的温度和参比物温度间温差ΔT=0,差热曲线为一条直线,称为基线;若试样在某温度范围内有吸热(放热)反应,则试样温度将停止(或加快)上升,试样和参比物之间产生温差ΔT,将该信号放大,有计算机进行数据采集处理后形成DTA峰形曲线,根据出峰的温度 及其面积的大小与形状可以进行分析。 差热峰的面积与过程的热效应成正比,即 ΔH。式中,m为样品质量;b、d分别为峰的 起始、终止时刻;ΔT为时间τ内样品与参比物的温差;

Stata软件基本操作和大数据分析报告入门

Stata软件基本操作和数据分析入门 第一讲 Stata操作入门 张文彤赵耐青 第一节概况 Stata最初由美国计算机资源中心(Computer Resource Center)研制,现在为Stata公司的产品,其最新版本为7.0版。它操作灵活、简单、易学易用,是一个非常有特色的统计分析软件,现在已越来越受到人们的重视和欢迎,并且和SAS、SPSS一起,被称为新的三大权威统计软件。 Stata最为突出的特点是短小精悍、功能强大,其最新的7.0版整个系统只有10M左右,但已经包含了全部的统计分析、数据管理和绘图等功能,尤其是他的统计分析功能极为全面,比起1G以上大小的SAS系统也毫不逊色。另外,由于Stata在分析时是将数据全部读入内存,在计算全部完成后才和磁盘交换数据,因此运算速度极快。 由于Stata的用户群始终定位于专业统计分析人员,因此他的操作方式也别具一格,在Windows席卷天下的时代,他一直坚持使用命令行/程序操作方式,拒不推出菜单操作系统。但是,Stata的命令语句极为简洁明快,而且在统计分析命令的设置上又非常有条理,它将相同类型的统计模型均归在同一个命令族下,而不同命令族又可以使用相同功能的选项,这使得用户学习时极易上手。更为令人叹服的是,Stata语句在简洁的同时又拥有着极高的灵活性,用户可以充分发挥自己的聪明才智,熟练应用各种技巧,真正做到随心所欲。

除了操作方式简洁外,Stata的用户接口在其他方面也做得非常简洁,数据格式简单,分析结果输出简洁明快,易于阅读,这一切都使得Stata成为非常适合于进行统计教学的统计软件。 Stata的另一个特点是他的许多高级统计模块均是编程人员用其宏语言写成的程序文件(ADO文件),这些文件可以自行修改、添加和下载。用户可随时到Stata网站寻找并下载最新的升级文件。事实上,Stata的这一特点使得他始终处于统计分析方法发展的最前沿,用户几乎总是能很快找到最新统计算法的Stata程序版本,而这也使得Stata自身成了几大统计软件中升级最多、最频繁的一个。 由于以上特点,Stata已经在科研、教育领域得到了广泛应用,WHO的研究人员现在也把Stata作为主要的统计分析工作软件。 第二节 Stata操作入门 一、Stata的界面 图1即为Stata 7.0启动后的界面,除了Windows版本的软件都有的菜单栏、工具栏,状态栏等外,Stata的界面主要是由四个窗口构成,分述如下: 1.结果窗口:位于界面右上部,软件运行中的所有信息,如所执行的命令、执行结果和出错信息等均在这里列出。窗口中会使用不同的颜色区分不同的文本,如白色表示命令,红色表示错误信息。 2.命令窗口:位于结果窗口下方,相当于DOS软件中的命令行,此处用于键入需要执行的命令,回车后即开始执行,相应的结果则会在结果窗口中显示出来。

热分析仪实验报告

差热分析实验报告 一、实验目的 1、掌握差热分析的基本原理及测量方法 2、学会差热分析仪的操作,并绘制玻璃样品的差热图。 3、掌握差热曲线的处理方法,对实验结果进行分析。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析(Differentiai Thermal Analysis,简称DTA)就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图1)。两支笔记录的时间—温度(温差)图就称为差热图(见图2),或称为热谱图。 图1 差热分析原理图 图2 典型的差热图 从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小:相同条件

下,峰面积大的表示热效应也大。在相同的测定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 三、仪器与试剂 试剂:玻璃粉末,参比物:α-Al2O3,仪器:差热分析仪(HCT-1/2)一台,计算机一台。 四、实验步骤 1、开启仪器电源,预热20分钟 2、装入实验样品 升起加热炉,露出支撑杆(热电偶组件)。将参比物样品与实验样品分别装入陶瓷坩埚中(Al2O3),平稳放置在热电偶板上,双手降下加热炉体。 3、检查冷却循环水 4、检查仪器主机与计算机数据传输线连接情况 5、检查仪器注意气氛控制单元与外接气源连接情况 注意:在使用流动气氛进行实验时应先做一次或二次流动气氛的热重基线漂移实验,通过改变各路进气流量的方法,使热重基线稳定,漂移最小,为正式试验提供最佳的试验条件。同时,还应注意输入气体管路的欲通气体纯净,在正式试验前,让欲通气体流通约25分钟。 6、运行工作站软件,进入新采集设置界面进行参数设定,输入初始温度(25℃)、终止温度(1000℃)、升温速率(10℃/min)等参数。 7、点“采集”按钮后,系统自动执行实验数据采集命令。 8、到达终止温度后,仪器自动停止采集,将数据存盘。 7、利用Origin画出DTA图,并标出热效应的起始和终止温度以及峰顶温度。 五、数据记录和处理

热重分析实验报告

热重分析实验报告 南昌大学实验报告 学生姓名: _______ 学号: _______专业班级:__________ 实验类型:?演示?验证 ?综合?设计?创新实验日期:2013-04-09 实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度

变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示: 三、实验仪器及试剂 HCT-2 型 TG-DTA 综合热分析仪、镊子、五水硫酸铜晶体等 四、实验步骤 1、打开炉子,将左右两个陶瓷杆放入瓷坩埚容器,关好炉子在操作界面上调零。 2、将坩埚放在天平上称量,记下数值P1,然后将测试样放入已称坩埚中称量,记下试样的初始质量。 3、将称好的样品坩埚放入加热炉中吊盘内。 4、调整炉温,选择好升温速率。 5、开启冷却水,通入惰性气体。 6、启动电炉电源,使电源按给定的速率升温。 7、观察测温表,每隔一定时间开启天平一次,读取并记录质量数值。 8、测试完毕,切断电源,待温度降低至100摄氏度时切断冷却水。 五、实验结果及数据处理

材料分析与表征方法实验报告

材料分析与表征方法实验报告 热重分析实验报告 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造。 2.掌握热重分析仪的使用方法。 二、实验原理 热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。 三、实验原料 一水草酸钙CaC2O4·H2O 四、实验仪器 美国TA公司TGA55 升温与降温速率(K/min)0.1-100℃/min 天平灵敏度(μg)0.1μg 温度范围(°C)室温-1000℃ 五、操作条件

第一组:10℃/min空气条件下和20℃/min空气条件下,对TG和DTG 曲线进行对比。 第二组:10℃/min空气条件下和10℃/min氮气条件下,对DSC进行对比。 第三组:10℃/min氮气条件下,得到TG、DTG、DSC曲线。 六、结果与讨论 含有一个结晶水的草酸钙(242CaC.OHO)在100℃以前没有失重现象,其热重曲线呈水平状,为TG曲线的第一个平台。DTG曲线在0刻度。 在100℃和200℃之间失重并出现第二个平台。DTG曲线先升后降,在108.4℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在188.4℃达到最小值,即热功率的最小值。这一步的失重量占试样总质量的12.47%,相当于每mo CaC2O4·H2O失掉1mol H2O,其热分解反应为: CaC2O4·H2O CaC2O4 + H2O 在400℃和500℃之间失重并开始呈现第三个平台,DTG曲线先升后降,在

5分钟搞定Stata面板数据分析

【原创】5分钟搞定Stata面板数据分析简易教程ver2.0作者:张达 5分钟搞定Stata面板数据分析 简易教程 步骤一:导入数据 原始表如下, 数据请以时间(1998 ,1999,2000, 2001 ??)为横轴,样本名(北京,天津,河北??) 为纵轴 1 裁*■■別1A I 11 ■u 9K ILEXxl- V,j si ao LL B- iic190 ..1( HJ曲1 1 g力?r4 々■l* Mfl 1 KM J| JgRi MM3icm*w II7QQ -HQ SiqD tuff 1 'C4 3 4 IftJV -mi KH>loogi liW (0M 3M9WH jaii I MO Kai W w ■齐itm xm fill OTI Mil taiK ■5W?U|J TXE HH sia心?9 f Id 叼m in a* ft I*■JtaC如M~4 気Hi A|$A rm inoo IM? livra.w vtatr1IJMj X#*4>t1| 筑?BF7 ■?|!N I9*V1IRV gw 1W1VJ I-J H itW Ml ? 稠申审砂y li>M l>R Md w VIM e> mu IM HM 內)944 w 命■ n I L BII i mi 靜Ml hw w 3K:1ST? *7^ FJE inm ifini uni 4 5w 心 HtJ TW JTfl 9MI*HAS ■ilJto KO >4*461/M3 1 <141*11诃却4LJt 4ktt VM匸F w g ivt E4M laM ■ii T PD w im W i.JV 1 P w L*l 1tiZF MM7 <1 H1! liyi 将中文地名替换为数字。

草酸钙的热重-差热分析

综合热分析法测定草酸钙 【实验目的】 (1)掌握热重-差热分析原理和ZCT-A型综合热分析仪的操作方法,了解其应用范围。 (2)对草酸钙进行热重及差热分析,测量化学分解反应过程中的分解温度。 (3)测量物质在加热过程中所发生的物理化学变化,绘制相应曲线,从而研究材料的反应过程。 【实验原理】 热分析是物理化学分析的基本方法之一。综合热分析研究物质在加热过程中发生相变或其他物理化学变化时所伴随的能量、质量和体积等一系列的变化,可以确定其变化的实质或鉴定矿物。热分析技术种类很多,比较常用的方法有(1)差热法(DTA),(2)热重法(TG)[包括微分热重(DTG)],(3)差示扫描量热法(DSC)。 (1)热重分析 热重分析是在程序控制温度下,测量物质质量与温度关系的一种技术。热重法实验得到的曲线称为热重(TG)曲线。TG曲线以温度作横坐标,以试样的失重作纵坐标,显示试样的绝对质量随温度的恒定升高而发生的一系列变化。这些变化表征了试样在不同温度范围内发生的挥发组分的挥发,以及在不同温度范围内发生的分解产物的挥发。如图1、图2 CaC2O4·H2O的热重曲线,有三个非常明显的失重阶段。第一个阶段表示水分子的失去,第二个阶段表示CaC2O4分解为CaCO3,第三个阶段表示CaCO3分解为CaO。当然,CaC2O4·H2O的热失重比较典型,在实际上许多物质的热重曲线很可能是无法如次明了地区分为各个阶段的,甚至会成为一条连续变化地曲线。这时,测定曲线在各个温度范围内的变化速率就显得格外重要,它是热重曲线的一阶导数,称为微分热重曲线[图1也现示出了CaC2O4·H2O的微分热重曲线(DTG)]。微分热重曲线能很好地显示这些速率地变化。

热重分析实验报告

南昌大学实验报告 学生姓名:_______ 学号:_______专业班级:__________ 实验类型:□演示□验证□综合□设计□创新实验日期:2013-04-09实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示:

某设备基础沉降原因分析及处理方法

第17卷第4期 土 工 基 础 Vol.17 No.4 2003年12月 Soil Eng. and Foundation Dec. 2003 收稿日期:2003-04-03 作者简介:王子辉,男,1967年生,1995年毕业于哈尔滨建筑大学结构工程专业,现为硕士,主要研究方向为地基处理和基坑工程。 某设备基础沉降原因分析及处理方法 王子辉, 时向东, 邢纪波 (烟台大学土木系, 山东 烟台 264005) 摘 要: 对一设备基础沉降事故的原因进行分析,认为导致沉降的直接原因在于回填质量不符合设计要求,不能满足压实填土地基的要求。根据现场地质情况,采用深层搅拌桩进行地基加固,形成复合地基,从而满足设备荷载对地基承载力的要求,达到加固、稳定的目的。 关键词: 压实填土地基, 回填土, 压实系数, 深层搅拌桩 中图分类号: TU 471 文献标识码: B 文章编号: 1004-3152(2003)04-0041-03  当原始地面标高较低时,因建筑物地面标高的要求,常常先在原有场地上作一层回填土,再作基础和上部结构。对于建筑物内的设备基础,当基底压力较小且无震动荷载时,一般以经过压实的回填土作为地基,回填土材料及压实系数由设计者提出要求,施工时应严格按设计要求进行分层夯填,但监理单位及施工单位认为设备荷载不大,未能按设计要求进行施工质量控制,结果往往产生重大损失。本文通过介绍烟台开发区某污水处理站设备基础沉降原因的分析及处理措施,说明回填质量不容忽视。 1 工程概况 烟台开发区某污水处理站设备基础在上部钢 制罐体安装完毕后,采用水加载试运行,当水荷载接近设计最大荷载1200 kN 时,突然发生较大整体均匀沉降,试验人员随即排水,降低基础负荷,但 基础已出现较大沉降,沉降量达75 mm 。该污水处理站所在天然场地平坦但地势较低,因室内标高要求在场地内均匀铺设后又夯实填土,填土厚度为 5 m ,设备基础就直接放置在回填土上,天然土层情况见表1。 表1 土层情况 土层编号 土层名称 土层厚度 / m 压缩模量 / MPa 承载力标准值/ kPa 1 耕植土 0.4~0.7 2 粉质粘土及粉土 1~2 5.0 110 3 粉质粘土及粉土 1.30~3.90 10 100 4 粉质粘土 0.40~3.20 80 5 粉质粘土 1.0~4.5 5.5 95 6 中细砂 0.6~2.9 20 270 设计要求采用粘性土夯填,压实系数不小于0.95,设备基础为钢筋混凝土及双层双向配筋等厚平板,厚度为300 mm ,见图1。 图1 工程平面及场地剖面图(单位:mm)

南京大学-差热分析实验报告

差热分析 近代物理实验 一.实验目的 1?掌握差热分析的基本原理及测量方法。 2?学会差热分析仪的操作,并绘制CuSO4 5H2O等样品的差热图。 3?掌握差热曲线的处理方法,对实验结果进行分析。 二.实验原理 1、差热分析基本原理 物质在加热或冷却过程中,当达到特定温度时,会产生物理或化学变化,同时产生吸热和放热 的现象,反映了物质系统的焓发生了变化。在升温或降温时发生的相变过程,是一种物理变化,一般来说由固相转变为液相或气相的过程是吸热过程,而其相反的相变过程则为放热过程。在各种化学变化中,失水、还原、分解等反应一般为吸热过程,而水化、氧化和化合等反应则为放热过程。差热分析利用这一特点,通过对温差和相应的特征温度进行分析,可以鉴别物质或研究有关的转化温度、热效应等物理化学性质,由差热图谱的特征还可以用以鉴别样品的种类,计算某些反应的活化能和反应级数等。 在差热分析中,为反映微小的温差变化,用的是温差热电偶。在作差热鉴定时,是将与参比物 等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。样品在某一升温区没有任何变化,即也不吸热、也不放热,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线,已叫基线。如果在某一温度区间样 品产生热效应,在温差热电偶的两个焊接点上就产生了温差,从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动记录装置偏离基线而移动,反应完了又回到基线。吸热和放热效应所产生的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧,这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。 将在实验温区内呈热稳定的已知物质与试样一起放入一个加热系统中,并以线性程序温度对它们加热。如以AI2O3为参比物,它在整个试验温度内不发生任何物理化学变化,因而不产生任何热

建筑工程结构基础沉降原因与处理措施

建筑工程结构基础沉降原因与处理措施 1 建筑工程结构基础沉降危害概述 在建筑工程中经常会出现沉降情况,而该种情况无疑会严重危害到建筑工程的使用与施工安全。归纳来看,建筑工程结构基础出现沉降所带来的危害可归纳为如下几点:一是致使建筑物出现倾斜。而一旦建筑物结构基础周围任一部位出现沉降,则会致使整体建筑都向此方向倾斜,导致整体建筑面临倒塌风险。二是建筑物墙面出现开裂情况。如若局部基础结构内部出现沉降,该处垂直方向将会因受到巨大的剪力而使得该方向的墙体出现裂缝。三是局部基础结构出现沉降则会对整体建筑功能产生影响,并严重威胁到用户的生命与财产安全。 2 建筑工程结构基础沉降原因分析 根据笔者对部分建筑工程实例研究及结合自身工作实践来看,导致建筑工程结构基础出现沉降的原因通常涉及以下几个方面: 2.1 建筑工程设计原因 导致建筑工程结构沉降中设计失误或漏洞是较为常见的一个原因,这主要体现在下列两点:第一,设计单位在建筑工程结构基础设计中由于计算参数、尺寸繁琐等因素所影响因结果不正确而出现结构基础类型选择错误,进而造成其建设后出现沉降现象;第二,设计单位没有将建筑工程结构承重最大值予以准确地预估出来,这就使其设计中没有选择到刚度足够的材料来建设,这也造成了其建设中出现沉降现象。 2.2 建筑工程勘察原因 勘察作为建筑工程重要环节,其工作成效如何会在很大程度上影响着结构基础质量。但由部分出现结构基础沉降的建筑工程分析来看,勘察失误也是造成其

出现这一情况的重要原因。比如,部分勘察单位在开展建筑工程实地调查过程中由于仔细程度不足而造成坑洞、暗流等地下隐患没有被发现,进而诱发后期建筑工程结构基础沉降现象产生;又比如,部分勘察单位对于土(岩)质勘察资料搜集掌握十分重视,但却忽略了地下水情况,这样一来极易造成建筑工程结构基础因地下水渗流、管涌等情况出现而致使前者因此而出现沉降现象。 2.3 建筑工程施工原因 建筑工程施工规范性不足是造成结构基础出现沉降的最常见原因,这主要表现在以下几个方面,比如企业没有充分依据建筑工程地质情况下选择适宜的措施开展施工,譬如某工程地下水位置较高时,为了避免结构基础出现沉降,企业应在基坑工程中设置一些排水沟或者排水井以及做好结构基础底部防水工作;又比如,部分企业出于施工便捷性、成本等因素考量在结构基础建设中并没有严格依据设计与勘察单位所给出规范进行施工,如此一来易于造成结构基础使用过程中出现沉降情况。 3 建筑工程结构基础沉降处理措施 鉴于建筑工程结构基础所具有的重要性及造成其出现沉降的原因,笔者认为广大企业在其建设中应采取以下处理措施: 3.1 做好建筑工程结构基础设计工作 对任何类型建筑来说,设计都是确保其良好建设质量的重要前提,因而为了避免建筑工程结构基础沉降情况产生,做好其设计工作就显得十分必要。首先,建筑工程平面设计中除了必须满足相关要求外,还需特别注意做到结构简单,这样一来能够避免建筑地基因平面复杂性较强而出现局部荷载集中的现象,进而有助于降低结构基础产生沉降可能性。其次,单体建筑设计中要尽可能确保各部高

相关主题
文本预览
相关文档 最新文档