当前位置:文档之家› 等腰三角形(讲义及答案)

等腰三角形(讲义及答案)

等腰三角形(讲义及答案)
等腰三角形(讲义及答案)

等腰三角形(讲义)

? 知识点睛

1. 等腰三角形

D

C B

A 2α

α

α

α

αD

C B A

延长CB 到点D ,使BD =BA 作∠ABC 的平分线

E

α2αA

B C D 2ααα

D

C B A

作AC 的垂直平分线 作∠DCB =∠ABC

2. 等边三角形

(1)定义:三边都相等的三角形叫做等边三角形.

(2)性质:

①边:等边三角形三边都相等;

②角:等边三角形三个内角都相等,并且每个角都等于_____; ③线:等边三角形三线合一. (3)判定:

①_____________的等腰三角形是等边三角形; ②_____________的三角形是等边三角形.

3. 在直角三角形中,如果一个锐角等于30°,那么它所对的

________等于_______的一半.

4. 在证明时,先假设_____________不成立,然后推导出与定义、基本事实、已有定

理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明的方法称为反证法.

? 精讲精练

1. 如图,在△ABC 中,AB =AC ,∠A =32°,以点C 为圆心,BC 长为半径作弧,交

AB 于点D ,交AC 于点E ,连接BE ,则∠ABE 的度数为______.

A

D

E

B C C D B

A

第1题图 第2题图 2. 如图,在等腰三角形ABC 中,AB =AC ,D 为边BC 上一点,CD =AC ,AD =BD ,则∠BAC =______.

3. 如图,AD =BC ,AC =BD ,求证:△ABE 是等腰三角形.

E

D

C

B

4. 如图,B ,D ,E ,C 在同一直线上,AB =AC ,∠ADE =∠AED .

求证:BD =CE .

A

B C

D E

5. 如图,点C 在线段AB 上,AD ∥BE ,AC =BE ,AD =BC ,CF 平分∠DCE .求证:

DF =EF .

F

D

C

A

6. 如图,BD ,CE 分别是∠ABC 和∠ACB 的平分线,已知

AG ⊥BD ,AF ⊥CE .若BF =2,FG =6,CG =4,则△ABC 的周长为__________.

A

E B

C

G

D

A D

B

第6题图 第7题图 7. 如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,

∠A =∠ABD ,若AC =6,BC =4,则BD 的长为( ) A .1

B .1.5

C .2

D .2.5

8. 如图,在Rt △ABC 中,∠BAC =90°,AC =6,BC =10,过点A 作BC 的平行线,交

∠ABC 的平分线于点E ,交∠ACB 的平分线于点D ,则DE 的长为_________.

E

D

C

B

A

9.如图,∠ABC的平分线与△ABC的外角∠ACD的平分线交于点E,过点E作BC

的平行线,交AB于点F,交AC于点G,若BF=8 cm,CG=5 cm,则

FG=__________.

G

A

B C D E

F

E

A

D

C

F B

12. 如图,在△ABC 中,点D ,E 在BC 上,且BD =DE =AD =AE =EC ,则∠BAC 的度

数为_______________.

E D C

B A

13. 如图,在等边三角形ABC 的三边上分别取点D ,E ,F ,使AD =BE =CF .求证:△

DEF 是等边三角形.

E

D

C

B

A F

14. 如图,在△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC ,交BC 于点D .若BC =6,

则CD 的长为________.

B C

D

A

15. 如图,四边形ABCD 中,AD =4,BC =1,∠A =30°,∠B =90°,∠ADC =120°,则

CD =________.

?知识点睛

1.(2)②的两底角相等;等边对等角;③顶角的平分线;底边上的中线;底边上的

高线

(3)有两个角相等

2.(2)②60°

(3)①有一个角等于60°;②三个角都相等

3.直角边;斜边

4.命题的结论

?精讲精练

1.21°

2.108°

3.证明略;

提示:先证△ABC≌△BAD(SSS),再在△ABE中由“等角对等边”,证明△ABE是等腰三角形.

4.证明略;

提示:先在△ABC中由“等腰三角形两底角相等”,得到

∠B=∠C,

再证△ABD≌△ACE(AAS),求证BD=CE.

5.证明略;

提示:先证△ACD≌△BEC(SAS),得到CD=EC,

再在△CDE中由“等腰三角形三线合一”,求证DF=EF.

6.30

7. A

8.14

9. 3 cm

10.证明略;

提示:延长BC至点E,使CE=CA,连接AE

先证∠E=∠B,得到AB=AE,再证BD=DE,

在△ABE中由“等腰三角形三线合一”,求证AD⊥BC.

11.1 2

12.120°

13.证明略;

提示:先证△ADF≌△BED(SAS),得到DF=ED,

再证DE=EF,根据DF=ED=EF,求证△DEF是等边三角形.

14.4

15.2

16.有两个角是直角

17.尺规作图略

提示:分类讨论,α为等腰三角形的顶角或底角

等腰三角形典型例题练习(含答案)

等腰三角形典型例题练习 一.选择题(共2小题) 1.如图,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=5cm ,BD=3cm , 则点D 到AB 的距离为( ) 2.如图,已知C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为边并且在AB 的同一侧作等边△ACD 和等边△BCE ,连接AE 交CD 于M ,连接BD 交CE 于N .给出以下三个结论: ①AE=BD ②CN=CM ③MN ∥AB 其中正确结论的个数是( ) 二.填空题(共1小题) 3.如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于_________ . 三.解答题(共15小题) 4.在△ABC 中,AD 是∠BAC 的平分线,E 、F 分别为AB 、AC 上的点,且 ∠EDF+∠EAF=180°,求证DE=DF . 5.在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,过点O 作DE ∥BC ,分别交AB 、AC 于点D 、E .请说明DE=BD+EC . 6.已知:如图,D 是△ABC 的BC 边上的中点,DE ⊥AB ,DF ⊥ AC , 垂足分别为 E ,F ,且DE=DF .请判断△ABC 是什么三角形?并说明理由. 7.如图,△ABC 是等边三角形,BD 是AC 边上的高,延长BC 至E ,使CE=CD .连接DE . (1)∠E 等于多少度? (2)△DBE 是什么三角形?为什么? 8.如图,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,∠A=30°.求证:AB=4BD . 9.如图,△ABC 中,AB=AC ,点D 、E 分别在AB 、AC 的延长线上,且BD=CE ,DE 与BC 相交于点F .求证:DF=EF . A . 5cm B . 3cm C . 2cm D . 不能确定 A . 0 B . 1 C . 2 D . 3

二次函数与等腰三角形

以二次函数与等腰三角形问题为背景的解答题 【学习目标】 这类问题主要是以一点(或以一条线段)为依托,动点和函数思想相结合以几何图形为背景,以动点为元素,构造动态型几何问题。解此类题目,应从相关图形的性质和数量关系分类讨 论来解决。此类问题较多地关注学生对图形性质的理解,用动态的观点去看待一般函数和图形结合的问题,具有较强的综合性. 【教学过程】解题思路:等腰三角形的存在性的解题方法:①几何法三步:先分类;再画图;后计算.② 代数法三步:先罗列三边;再分类列方程;后解方程、检验.再以二次函数与等腰三角形问题为背景的解答题中,这两种方法往往结合使用. 一、考点突破 12 例1、如图,已知抛物线y=﹣x2+bx+4 与x 轴相交于A、B两点,与y 轴相交于点C,若 4 已知 A 点的坐标为(﹣2,0). (1)求抛物线的解析式; 2)连接AC、BC,求线段BC 所在直线的解析式; P,使△ACP为等腰三角形?若存在,求出符合条件的(3)在抛物线的对称轴上是否存在 点P 点坐标;若不存在,请说明理

【例2】如图,在平面直角坐标系中,直线y=﹣2x+10与x 轴,y 轴相交于A,B 两点,点C 的坐标是(8,4),连接AC,BC. (1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状; (2)动点P从点O出发,沿OB以每秒 2 个单位长度的速度向点 B 运动;同时,动点Q 从点 B 出发,沿BC以每秒 1 个单位长度的速度向点C运动.规定其中一个动点到达端点时, 另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA=QA? (3)在抛物线的对称轴上,是否存在点M ,使以A,B,M 为顶点的三角形是等腰三角形? 若存在,求出点M 的坐标;若不存在,请说明理由.

等腰三角形习题(含答案)

| 等腰三角形 1. 选择题:等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为( ) A. 2cm B. 8cm C. 2cm 或8cm D. 以上都不对 2. 如图,AB C ?是等边三角形,BC BD 90CBD ==∠, ,则1∠的度数是________。 C A 1 D B 2 3 3. AB C ?中, 120A AC AB =∠=,,AB 的中垂线交AB 于D ,交CA 延长线于E ,求证: BC 2 1 DE = 。 A E D O B C 1 2 / 4. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。求证:M 是BE 的中点。 E 5. 如图,已知:AB C ?中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。 A B C D }

6. 已知:如图,AB C ?中,AB CD AC AB ⊥=,于D 。求证:DCB 2B AC ∠=∠。 C ~ 7、已知:如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足。求证:AE =AF 。 A E F B D C 【 8、如图,AB C ?中, 100=∠=A AC AB ,,BD 平分ABC ∠。 求证:B C B D AD =+。 E F C "

— 等腰三角形答案: 1. B 2. 分析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。 解:因为AB C ?是等边三角形 所以 60ABC BC AB =∠=, 因为B C B D =,所以B D A B = 所以23∠=∠ 在AB D ?中,因为 60ABC 90CBD =∠=∠, 所以 150ABD =∠,所以 152=∠ 所以 75ABC 21=∠+∠=∠ ] 3.分析:此题没有给出图形,那么依题意,应先画出图形。题目中是求线段的倍半关系,观察图形,考虑取BC 的中点。 证明:过点A 作BC 边的垂线AF ,垂足为F 。 4、分析:欲证M 是BE 的中点,已知DM ⊥BC ,所以想到连结BD ,证BD =ED 。因为△ABC 是等边三角形,∠DBE =21∠ABC ,而由CE =CD ,又可证∠E =2 1 ∠ACB ,所以∠1=∠E ,从而问题得证。 证明:因为三角形ABC 是等边三角形,D 是AC 的中点 所以∠1= 2 1 ∠ABC 又因为CE =CD ,所以∠CDE =∠E 所以∠ACB =2∠E 即∠1=∠E 所以BD =BE ,又DM ⊥BC ,垂足为M 所以M 是BE 的中点 (等腰三角形三线合一) 5、分析:题中所要求的BAC ∠在AB C ?中,但仅靠AC AB =是无法求出来的。因此需要考虑DB A D =和CA DC =在题目中的作用。此时图形中三个等腰三角形,构成了内外角的关系。因此可利用等腰三角形的性质和三角形的内外角关系定理来求。 解:因为AC AB =,所以C B ∠=∠ 因为DB A D =,所以C DAB B ∠=∠=∠; 因为CD CA =,所以CDA CAD ∠=∠(等边对等角) 而 DAB B ADC ∠+∠=∠ 所以B DAC B ADC ∠=∠∠=∠22, ~ 所以B 3B AC ∠=∠ 又因为 180=∠+∠+∠BAC C B 即 180B 3C B =∠+∠+∠ 所以 36B =∠ 即求得 108BAC =∠ 说明1. 等腰三角形的性质是沟通本题中角之间关系的重要桥梁。把边的关系转化成角的关系是此等腰三角形性质的本质所在。本条性质在解题中发挥着重要的作用,这一点在后边的解题中将进一步体现。 2. 注意“等边对等角”是对同一个三角形而言的。3. 此题是利用方程思想解几何计算题,而边证边算又是解决这类题目的常用方法。 6、分析:欲证角之间的倍半关系,结合题意,观察图形,BAC ∠是等腰三角形的顶角,于是想到构造它的一半,再证与DCB ∠的关系。 证明:过点A 作B C AE ⊥于E ,AC AB = 所以BAC 2 1 21∠= ∠=∠(等腰三角形的三线合一性质) 因为 90B 1=∠+∠ 又AB CD ⊥,所以 90CDB =∠ 所以 90B 3=∠+∠(直角三角形两锐角互余) 所以31∠=∠(同角的余角相等) 即DCB 2B AC ∠=∠ 说明: 1. 作等腰三角形底边高线的目的是利用等腰三角形的三线合一性质,构造角的倍半关系。因此添加底边的高是一条常用的辅助线; 2. 对线段之间的倍半关系,常采用“截长补短”或“倍长中线”等辅助线的添加方法,对角间的倍半关系也同理,或构造“半”,或构造“倍”。因此,本题还可以有其它的证法,如构造出DCB ∠的等角等。 》 7、证明:因为AC AB =,所以C B ∠=∠ 又因为AC DF AB DE ⊥⊥,

二次函数与等腰三角形结合1

二次函数与几何综合(一) ------等腰三角形问题 北京市第十三中学分校 郝凤霞 2012年10月25日 教学过程 设计意图 活动1. 在直角坐标平面中,O 为坐标原点,二次函数2(1)4y x k x =-+-+的图 象与y 轴交于点A ,与x 轴的负半轴交于点B ,且6OAB S ?=.(1)求点A 与点B 的坐标;(2)求此二次函数的解析式;(3)如果点P 在x 轴上,且△ABP 是等腰三角形,求点P 的坐标. 活动1中,“p 在x 轴上”,通过此 例明确等腰三角形的分类方法, 初步探究二次函 数背景下等腰三角形问题的分析,确定问题解 决思路,同时,鼓励学生发散多种做法,拓宽思路. 科目 数学 课题 二次函数背景的等腰三角形问题 班级 初三(2)班 任课教师 郝凤霞 学 生 情 况 分 析 有关等腰三角形的分类讨论,在之前的几何综合题中有涉及,学生基本理解等腰三角形的分类标准及解题方法;通过前一段时间的学习,学生已经掌握二次函数的图象和性质,待定系数法求函数解析式,求函数图象的交点坐标,较熟练运用函数知识解决实际问题;二次函数知识本身就是数形结合思想的数学思想的一个很好的体现,在解决这类问题时,学生往往要么只注意到代数知识,要么只注意到几何知识,不会把它们互相转化,如坐标系中点的坐标与几何图形中线段的长的关系;坐标系中互相垂直的两直线之间的代数关系等,本节课的教学重点是引导学生在二次函数背景的背景下研究等腰三角形问题,提炼方法. 教 学 目 标 掌握二次函数背景下等腰三角形的分类讨论问题的方法与步骤 进一步渗透分类讨论思想数形结合思想以及方程思想,培养学生将几何问题与 代数问题的转化思想 体会解题过程中方法的筛选与调整,树立解决综合题的信心 教学 重点 运用转化的数学思想方法,数形结合分析等腰三角形问题 教学 难点 准确对等腰三角形分类,确定解决代几综合问题的思路

中考数学压轴题函数等腰三角形问题

2012中考数学压轴题函数等腰三角形问题(一) 例1 如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D. (1)求点D的坐标(用含m的代数式表示); (2)当△APD是等腰三角形时,求m的值; (3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H 所经过的路长(不必写解答过程). 图1 图2 动感体验 请打开几何画板文件名“11湖州24”,拖动点P在OC上运动,可以体验到,△APD的三个顶点有四次机会可以落在对边的垂直平分线上.双击按钮“第(3)题”,拖动点P由O向C运动,可以体验到,点H在以OM为直径的圆上运动.双击按钮“第(2)题”可以切换. 思路点拨 1.用含m的代数式表示表示△APD的三边长,为解等腰三角形做好准备. 2.探求△APD是等腰三角形,分三种情况列方程求解.

3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C . 满分解答 (1)因为PC //DB ,所以1CP PM MC BD DM MB ===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ). (2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32 m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43 m =(如图4)或4m =(不合题意,舍去). ③当DA =DP 时,2(4)m -244(2)m =+-.解得23 m =(如图5)或2m =(不合题意,舍去). 综上所述,当△APD 为等腰三角形时,m 的值为32,43或23 . 图3 图4 图5 (3)点H 所经过的路径长为54 π. 考点伸展

一次函数与全等三角形综合题

27题精选1(2011-11-27) 1、直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1)求AC 的解析式; (2)在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并证明你的结论。 (3)在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的值不变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 2、如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA=OB 时,试确定直线L 的解析式; (2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。 (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 x y x y 第 2题图① 第2题图② 第2题图③

3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, (1)求直线2l 的解析式; 的外部作一条直线3l ,过点 B 作BE ⊥3l 于E,过点 C 作CF ⊥3l 于F 分别,请画出图形并求证: BE +CF =EF (3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。 4、如图,在平面直角坐标系中,A (a ,0),B (0,b ),且a 、b 满足. (1)求直线AB 的解析式; (2)若点M 为直线y =mx 上一点,且△ABM 是以AB 为底的等腰直角三角形,求m 值; (3)过A 点的直线 交y 轴于负半轴于P ,N 点的横坐标为-1,过N 点的直 线交AP 于点M ,试证明 的值为定值.

等腰三角形单元测试题(含答案)

等腰三角形典型例题练习

等腰三角形典型例题练习 一.选择题(共2小题) 1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为()A.5cm B.3cm C.2cm D.不能确定 2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且 在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N. 给出以下三个结论:①AE=BD ②CN=CM ③MN∥AB 其中正确结论的个数是() A.0B.1C.2D.3 二.填空题(共1小题) 3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点, DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之 比等于_________. 三.解答题(共15小题) 4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上 的点,且∠EDF+∠EAF=180°,求证DE=DF. 5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC, 分别交AB、AC于点D、E.请说明DE=BD+EC. 6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC, 垂足分别为E,F,且DE=DF.请判断△ABC是什么三角形?并说明理由. 7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE. (1)∠E等于多少度? (2)△DBE是什么三角形?为什么? 8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD. 9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

二次函数中等腰三角形的存在性

知识回顾: 1、二次函数的三种形式: 2、已知一边,求等腰三角形周长的方法: 3、等腰三角形的特点: 例题分析: 例1、如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)求抛物线的解析式; (3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由. 例2、已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点.(1)求抛物线的函 数关系式; (2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ),请求出△CBE 的面积S 的值; (3)在抛物线上求一点0P 使得△ABP 0为等腰三角形,并写出0P 点的坐标; (4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?P (要求简要说明理由,但不证明);若不存在这 2,将这个直角三角形放置在平面直角坐标系中,其斜边AB 与x 轴重合(其中OA0,

n >0),连接DP 交BC 于点E 。①当△BDE 是等腰三角形时,直接写出.... 此时点E 的坐标。 ②又连接CD 、CP (如图3),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没有,请说明理由。 例4、如图9,抛物线2 812(0)y ax ax a a =-+<与x 轴交于、两点(点在点的 左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角求线段OC 的长.: (2)求该抛物线的函数关系式.: (3)在x 轴上是否存在点P ,使△BCP 求出所有符合条件的P 点的坐标;若不存在,请说明理由 例5、在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标 轴上,且点(02)A , ,点(10)C -,,如图所示:抛物线2 2y ax ax =+-经过点B . 图1 图2 图3

一次函数与等腰三角形存在性培优专题

一次函数与等腰三角形存在性培优专题 1.已知一次函数1 y x =-+的图象与x轴、y轴分别交于点A点、B点,点P在x轴上,并且使以点A、B、P为顶点的三角形是等腰三角形,则这样的点有() A.2个B.3个C.4个D.5个 2.已知一次函数 4 4 3 y x =+的图象分别交x轴,y轴于A,B两点,点C在x轴的正半轴上, 若ABC △为等腰三角形,则点C的坐标为______________________________________.3.如图,直线OB是一次函数2 y x =-的图象,点A的坐标为(02) ,,在直线OB上找点C,使ACO △为等腰三角形,则点C的坐标是______________________________________. 4.一次函数1 y x =+的图象交x轴于点A,交y轴于点B,点C在x轴上,且使得ABC △是等腰三角形,符合题意的点C坐标为______________________________________. 5.如果一次函数 3 6 4 y x =-+的图象与x轴、y轴分别交于A、B两点,M点在x轴上, 并且使得以点A、B、M为定点的三角形是等腰三角形,则M点的坐标为______________________________________.

6.如图所示,一次函数4 =-+与坐标轴交于A、B两点,点P是线段AB上的一个动点 y x (不包含A、B两个端点),C是线段OB上一点,45 △是等腰三角形, OPC ∠=?,若OPC 试求点P的坐标? 7.如图,在平面直角坐标系中,等腰Rt ABC △的顶点A在y轴正半轴上,顶点B在x轴正半轴上,4 OB=. OA=,3 (1)求点C的坐标; (2)求经过点B,C的一次函数的解析式; (3)在x轴上是否存在点P,使PCB △为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.

等腰三角形的性质练习(含答案)

等腰三角形的性质 一、基础能力平台 1.选择题: (1)等腰三角形的底角与相邻外角的关系是() A.底角大于相邻外角B.底角小于相邻外角 C.底角大于或等于相邻外角D.底角小于或等于相邻外角 (2)等腰三角形的一个内角等于100°,则另两个内角的度数分别为() A.40°,40°B.100°,20° C.50°,50°D.40°,40°或100°,20° (3)等腰三角形中的一个外角等于100°,则这个三角形的三个内角分别为()A.50°,50°,80°B.80°,80°,20° C.100°,100°,20°D.50°,50°,80°或80°,80°,20° (4)如果一个等腰三角形的一个底角比顶角大15°,那么顶角为() A.45°B.40°C.55°D.50° (5)等腰三角形一腰上的高与底边所成的角等于() A.顶角B.顶角的一半 C.顶角的2倍D.底角的一半 (6)已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A 的度数为() A.30°B.45°C.36°D.72°

(1)(2)(3)2.填空题: (1)如图2所示,在△ABC中,①因为AB=AC,所以∠________=∠______; ②因为AB=AC,∠1=∠2,所以BD=_____,_____⊥______. (2)若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为______. (3)已知等腰三角形的一个角是80°,则顶角为______. (4)在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是450,则△ABC 的面积为________. (5)如图3所示,O为△ABC内一点,且OA=OB=OC,∠ABO=20°,∠BCO=30°,则∠CAO=______. 3.等腰三角形两个内角的度数比为4:1,求其各个角的度数. 4.如图,已知线段a和c,用圆规和直尺作等腰三角形ABC,使等腰三角形△ABC?以a和c为两边,这样的三角形能作几个? c a

二次函数中等腰三角形专题

二次函数中等腰三角形专题 一.解答题(共15小题) 1.如图,经过点A(0,-6)的抛物线y= 1/2x2+bx+c与x轴相交于B(-2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC 内,求m的取值范围;(3)在(2)的结论下,新抛物线y1上是否存在点Q,使得△QAB 是以AB为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围. 2.如图,二次函数y=4/3 x2+bx+c的图象与x轴交于A(3,0),B(-1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ 的形状,并求出D点坐标. 3.在平面直角坐标系xOy中,二次函数y=-1/2 x2+3/2 x+2的图象与x轴交于点A,B(点B 在点A的左侧),与y轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=-1/2 x2+3/2 x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由. 4.如图,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x-2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.

一次函数与三角形综合题

一次函数与三角形综合题培优试题 1.如图,在直角坐标系中,直线l⊥x轴交负半轴于点A(a,0),点C在直线l上,过点C的另一 直线交y轴于点B(0,b),且a,b满足0 - + a -b )1 ( 22= (1)求AOB ?的面积 (2)求证:AB平分∠COB; (3)在y轴正半轴上有一动点M,CB的延长线上有一动点N,在运动的过程中,恰使∠AMB= ∠ANB,当M,N的位置发生变化时,MB-NB的值是否发生变化,如果不变,求其值,若变化,说明理由.

2、

3、如图①所示,直线y=x+1交x轴于点A,交y轴于点C,OB=3OAM在直线AC上,AC=CM, (1),求直线BM的解析式. (2)如图①所示,点N在MB的延长线上,BN=AC,连CN交x轴于点P,求点P的坐标; (3)如图②所示,连OM,在直线BM上是否存点K,使得∠MOK=45°,若存在,求点K的坐标,若不存在,说明理由. 图①图②

4、直线1l :y =mx +4m 与x 轴负半轴、y 轴正半轴分别交于A 、B 两点. (1)当OA=OB 时,试确定直线1l 的解析式; (2)直线2l :y =-2mx +4m 过B 点交x 轴于C 点, 直线y=t (t >4m )分别交直线1l 、直线2l 、y 轴 正半轴于M 、D 、N ,画出图形,求 DN DM 的值; (2) 如图分别以OB 、AB 和等腰直角△ABE ,连EF 交y 轴于P 点,问当m 变化时,现给出两个结论: ①BP 的长度不变;② OB BP 的值不变, 其中有且只有一个结论是正确的,请你证明正确的结论 并求出其的长度.

等腰三角形练习题(含答案)

等腰三角形 第1课时等腰三角形的性质 1.已知等腰三角形的一个底角为50°,则其顶角为________. 2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=________cm. 第2题图第3题图 3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为() A.35° B.45° C.55° D.60° 4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为() A.50° B.80° C.50°或80° D.40°或65° 5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数. 6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF. 求证:DE=DF.

第2课时等腰三角形的判定 1.在△ABC中,∠A=40°,∠B=70°,则△ABC为() A.等腰三角形B.直角三角形 C.等腰直角三角形D.钝角三角形 2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=________. 3.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,使其可以确定△ABC为等腰三角形,则添加的条件是________. 第3题图第4题图 4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有________个等腰三角形. 5.如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF.求证:AB=AC. 6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G. 求证:△EFG是等腰三角形.

等腰三角形与函数

1.如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)求直线BC的函数解析式; (3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P 的坐标,若不存在,请说明理由. (4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果) 2.如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时的点E的坐标. 3.如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x= (1).求抛物线的解析式 (2).M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.

4.如图①,已知抛物线(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C。(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标。 5..如图,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3)。(1)求抛物线的解析式; (2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由; (3)若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标

二次函数中的等腰三角形问题

教学过程 一、复习预习 1.二次函数的基础知识 2.等腰三角形的性质 3.相似三角形的性质 二、知识讲解 考点1 二次函数的基础知识 1.一般地,如果y=ax2+bx+c(a,b,c是常数且a≠0),那么y叫做x的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.当b=c=0时,二次函数y=ax2是最简单的二次函数. 2.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的三种表达形式分别为:一般式:y=ax2+bx+c,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a(x-h)

2+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1) (x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言, 其顶点坐标为(-2b a ,2 44ac b a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),? 由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点. 考点2 等腰三角形的性质 1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。 2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。 3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4.等腰三角形底边上的垂直平分线到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。 7.等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。 8.等腰三角形中腰的平方等于高的平方加底的一半的平方 9.等腰三角形的腰与它的高的关系 直接的关系是:腰大于高。间接的关系是:腰的平方等于高的平方加底的一半的平方。 考点3 相似三角形的性质 1.相似三角形对应角相等,对应边成正比例。 2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。 3.相似三角形周长的比等于相似比。

(完整版)一次函数与等腰三角形的存在性问题

一次函数与等腰三角形的存在性问题 一.选择题(共3小题) 1.在平面直角坐标系中有两点:A(﹣2,3),B(4,3),C是坐标轴x轴上一点,若△ABC是直角三角形,则满足条件的点C共有() A.2个B.3个C.4个D.6个 2.(2008?天津)在平面直角坐标系中,已知点A(﹣4,0),B(2,0),若点C在一次函数y=﹣x+2的图象上,且△ABC为直角三角形,则满足条件 的点C有() A.1个B.2个C.3个D.4个 3.(2016?江宁区一模)已知点A,B的坐标分别为(﹣4,0)和(2,0), 在直线y=﹣x+2上取一点C,若△ABC是直角三角形,则满足条件的点C 有() A.1个B.2个C.3个D.4个 二.填空题(共4小题) 4.(2015?杭州模拟)在平面直角坐标系xOy中,点A(﹣4,0),B(2,0),设点C是函数y=﹣(x+1)图象上的一个动点,若△ABC是直角三角形,则点C的坐标是. 5.(2009秋?南昌校级期末)在直角坐标系中,点A、B、C的坐标分别为(1,2)、(0,0)、(3,0),若以点A、B、C、D为顶点构成平行四边形,则点D 的坐标应为. 6.(2009秋?扬州校级期中)在平面直角坐标系中若△ABC的顶点坐标分别为:A(3,0)、B(﹣1,0)、C(2,3)、若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为. 7.(2010春?江岸区期中)一个平行四边形在平面直角坐标系中三个顶点的 坐标分别是(﹣1,﹣1),(﹣2,3),(3,﹣1),则第四个顶点的坐标 为. 三.解答题(共14小题) 8.四边形ABCD中,BD,AC相交于O,且BD⊥AC,求证:AB2+CD2=AD2+BC2.9.如图,直线y=﹣x+3与x轴、y轴分别交于点A,点B,在第一象限是 否存在点P,使以A,B,P为顶点的三角形是等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

函数中的等腰三角形

函数中的等腰三角形问题 典型问题1. 如图,一次函数4 3 4y x =-+的图象分别交y 轴、x 轴交于点A ,B ,点P 是x 轴上一动点, 当 ABP ?为等腰三角形时,求点P 的坐标. 解:【分析】对于一个等腰三角形,我们需要确定腰和底,本题中点P 是x 轴上一动点,那么腰和底就会发生变化,因此要对腰进行分类讨论,有三种情况:P A =PB ,AB =AP ,BA =BP ,我们先从最简单的入手. 当x =0时,y =4 ∴(0,4)A 当y =0时,=4 3 40x -+,解得3x = ∴(3,0)B 若AP =AB ,如图1 ∵AO ⊥x 轴 ∴PO =BO =3 ∴1(3,0)P - 若BA =BP ,如图2 在Rt △AOB 中,5AB == ∴BP =BA =5 ∴532OP BP BO =-=-=或+5+38OP BP BO === ∴2(2,0)P -,3(8,0)P 若P A =PB ,如图3 设OP a =,则3PA PB a ==+ 在Rt △AOP 中,222+=OP OA PA ∴2224(3)a a +=+ ∴7=6 a ∴47 (,0)6 P - 【点评】因为腰的确定性产生了分类讨论,本题有三种情况:P A =PB ,AB =AP ,BA =BP ,定点A ,B 为等腰顶点的情况比较好做,动点P 为等腰顶点则用到了勾股定理列方程进行求解,同学们做题时可注意顺序. 中考真题: 1.如图,抛物线25y x x n =-++经过点(1,0)A ,与y 轴交于点B . (1)求抛物线的解析式; (2)P 是y 轴正半轴上一点,且PAB ?是以AB 为腰的等腰三角形,试求P 点坐标. 图1 图2 图3

等腰三角形常用辅助线专题练习含答案

等腰三角形常用辅助线专题练习(含答案) 1.如图:已知,点D、E在三角形ABC的边BC上,AB=AC,AD=AE,求证: B D= C E。证明:作AF⊥BC,垂足为F,则AF⊥DE。∵AB=AC,AD=AE 又∵AF⊥BC,AF⊥DE,∴BF=CF,DF=EF(等腰三角形底边上的高与底边上的中线互相重合)。∴BD=CE. 2.如图,在三角形ABC中,AB=AC,AF平行BC于F,D是AC边上任意一点,延长BA到E,使AE=AD,连接DE,试判断直线AF与DE的位置关系,并说明理由 解:AF⊥DE.理由:延长ED交BC于G,∵AB=AC,AE=AD∴∠B=∠C,∠E=∠ADE∴∠B+∠E=∠C+∠ADE∵∠ADE=∠CDG∴∠B+∠E=∠C+∠CDG∵ ∠B+∠E=∠DGC,∠C+∠CDG=∠BGE,∠BGE+∠CGD=180°∴∠BGE=∠CGD=90°∴EG⊥BC.∵AF∥BC∴AF⊥DE.

解法2: 过A点作△ABC底边上的高, 再用∠BAC=∠D+AED=∠2∠ADE,即∠CAG=∠AED,证明AG∥DE利用AF∥BC证明AF⊥DE 3.如图,△ABC中,BA=BC,点D是AB延长线上一点,DF⊥AC交BC于E,求证:△DBE是等腰三角形。

证明:在△ABC中,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形. 4.如图,△ABC中,AB=AC,E在AC上,且AD=AE,DE的延长线与BC相交于F。求证:DF⊥BC. 证明:∵AB=AC,∴∠B=∠C,又∵AD=AE,∴∠D=∠AED, ∴∠B+∠D=∠C+∠AED,∴∠B+∠D=∠C+∠CEF, ∴∠EFC=∠BFE=180°×1/2=90°,∴DF⊥BC; 若把“AD=AE”与结论“DF⊥BC”互换,结论也成立。 若把条件“AB=AC”与结论“DF⊥BC”互换,结论依然成立。 5.如图,AB=AE,BC=ED,∠B=∠E,AM⊥CD,A求证:CM=MD. 证明:连接AC,AD ∵AB=AE,∠B=∠E,BC=ED∴△ABC≌△AED(SAS) ∴AC=AD ∵AM⊥CD∴∠AMC=∠AMD=90°∵AM=AM(公共边)∴RT△ACM≌RT△ ADM(HL)

二次函数与等腰三角形存在性问题

老师 学生学管师 学科 名称 年级上课时间月日 _ _ :00-- __ :00 课题 名称 等腰三角形的存在问题 教学 重点 教 学 过 程 1.(2011?)如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另 一点C(3,0). (1)求抛物线的解析式; (2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由. 2.(2011?)如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于

点B. (1)求此二次函数关系式和点B的坐标; (2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. 3.(2011?)如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段 AB上的一动点(不与A、B重合),坐标为(m,1﹣m)(m为常数).

(1)求经过O、P、B三点的抛物线的解析式; (2)当P点在线段AB上移动时,过O、P、B三点的抛物线的对称轴是否会随着P的移动而改变;(3)当P移动到点()时,请你在过O、P、B三点的抛物线上至少找出两点,使每个点都能与P、B两点构成等腰三角形,并求出这两点的坐标. 4.(2011?市綦江县潭已知抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.

(1)求该抛物线的解析式: (2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由; (3)在(2)的结论下,直线x =1上是否存在点M ,使△MPQ 为等腰三角形?若存在,请求出所有点M 的坐标;若不存在,请说明理由. 4.(2011?贵港)如图,已知直线y=﹣x+2与抛物线y=a (x+2)2 相交于A 、B 两点,点A 在y 轴上,M 为抛物线的顶点. (1)请直接写出点A 的坐标及该抛物线的解析式; C A B y x O P D Q

相关主题
文本预览
相关文档 最新文档