当前位置:文档之家› 高等数学ch7-3空间曲线与曲面的参数方程

高等数学ch7-3空间曲线与曲面的参数方程

高等数学ch7-3空间曲线与曲面的参数方程
高等数学ch7-3空间曲线与曲面的参数方程

4.5常见曲面的参数方程

§4.5 常见曲面的参数方程 本节重点:掌握空间中的三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面的参数方程的建立。 掌握直纹面的参数方程。 本节难点:旋转曲面的参数方程。直纹面的参数方程。 在第二章中,我们已经引进一般曲面与曲线的参数方程的概念、并给出简单曲面与曲线的参数表示,例如球面与圆柱螺旋线,直线的参数方程。现在再介绍旋转曲面、直纹面的参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面的参数方程,球坐标与柱坐标 设旋转曲面的轴为Z 轴,母线Γ的参数方程是 )()()()(b t a t h Z t g Y t f X ≤≤=== 则此旋转曲面可由Γ上每一点生成的纬圆所构成的。由于这纬圆上动点),,(Z Y X P 与它在坐标面XOY 上的投影' P 具有相同的Y X ,坐标,所以Γ上任一点),,(1111Z Y X P 生成的纬圆的参数方程是 ??? ????=+=+=121212121sin cos Z Z Y X Y Y X X θθ )20(πθ<≤ 其中2121Y X +是纬圆半径,即1P 到Z 轴的距离,而参数θ是X 轴到1OP 的转角。设1P 对应的参数是1t ,则 )())(())((112 1212121t h Z t g t f Y X =+=+ 再让1t 在其取值范围内变动,即得这旋转曲面的参数方程 ??? ????=+=+=)(sin ))(())((cos ))(())((2222t h Z t g t f Y t g t f X θθ ???? ??<≤≤≤πθ20b t a (4.5.1) 特别地,当母线P 为坐标面XOZ 上的径线 )(0) (t h Z Y t f X === 时,(4.5.1)成为

2.2常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程 一椭圆的参数方程 1、中心在坐标原点,焦点在x 轴上,标准方程是22 221(0)x y a b a b +=>>的椭圆的参数方程 为cos (sin x a y b ? ??=??=? 为参数) 同样,中心在坐标原点,焦点在y 轴上,标准方程是22 221(0)y x a b a b +=>>的椭圆的参 数方程为cos (sin x b y a ? ??=??=? 为参数) 2、椭圆参数方程的推导 如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,和小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。 设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有 cos cos ,sin sin x OA a y OB b ????==== 3 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ? ?? =??=?为 参数) 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ θθ =?? =?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆 的参数方程cos (sin x a y b ? ?? =?? =?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点 (,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋 转角,通常规定[)0,2?π∈ 4、椭圆参数方程和普通方程的互化

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人教B版选修44

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人 教B 版选修44 学习目标:1.了解圆的渐开线和摆线的参数方程.(重点)2.了解渐开线与摆线的参数方程的推导过程.(难点) 1.摆线 (1)定义 一圆周沿一直线作无滑动滚动时,圆周上的一定点M 的轨迹称为摆线. (2)参数方程 ????? x =a (t -sin t )y =a (1-cos t ) (t 是参数). 2.圆的渐开线 (1)定义 把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆. (2)参数方程 ? ?? ?? x =a (cos t +t sin t )y =a (sin t -t cos t )(t 是参数). 思考:圆的渐开线和摆线的参数方程中,参数t 的几何意义是什么? [提示] 根据渐开线的定义和求解参数方程的过程,可知其中的字母a 是指基圆的半径,而参数t 是指绳子外端运动时绳子与基圆的切点B 转过的角度,如图,其中的∠AOB 即是角 t .显然点M 由参数t 惟一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐 标转化为与三角函数有关的问题,使求解过程更加简单. 同样,根据圆的摆线的定义和建立参数方程的过程,可知其中的字母a 是指定圆的半径,参数t 是指圆上定点相对于定直线与圆的切点所张开的角度.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.

1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线 B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 C .正方形也可以有渐开线 D .对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状就不同 [解析] 不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同. [答案] C 2.半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( ) A .π B .2π C .12π D .14π [解析] 根据条件可知圆的摆线的参数方程为? ?? ?? x =3t -3sin t y =3-3cos t (t 为参数),把y =0代 入可得cos t =1,所以t =2k π(k ∈Z ).而x =3t -3sin t =6k π(k ∈Z ).根据选项可知应选C. [答案] C 3.半径为4的圆的渐开线的参数方程是________. [解析] 将a =4代入圆的渐开线方程即可. [答案] ? ?? ?? x =4(cos t +t sin t ) y =4(sin t -t cos t ) 4.给出某渐开线的参数方程? ?? ?? x =3cos t +3t sin t y =3sin t -3t cos t (t 为参数),根据参数方程可以看 出该渐开线的基圆半径是______,当参数t 取π 2 时,对应的曲线上的点的坐标是________. [解析] 与渐开线的参数方程进行对照可知,a =3,即基圆半径是3,然后把t =π 2代入, 可得????? x =3π2,y =3. [答案] (3π 2 ,3)

高数第八章

高数第八章

第八章 第一节 向量及其线性运算 重点:1.方向角与方向余弦 2.向量在轴上的投影 典型题目: 例7.已知两点M 1(2,2,2)和M 2(1.,3,0),计算向量21M M 的模、方向余弦和方向角。 解:21M M =(1-2,3-2,0-2)=(-1,1,-2), |21M M |= 2 222)(-(1)(-1)++= 2 211=++; COS α=-21,COS β=21 ,COS γ=-2 2 ; α=π32,β=3π,γ=4 3π. 例9.设立方体的一条对角线为OM ,一条棱为OA ,且|OA|=a ,求. P OM OA OA rj 方向上的投影在 解:记∠MOA=θ,有COS θ=3 1| || |=OM OA , θθ 于是OA rj P =|3 a θ||= COS .

θ 马云赵振 第二节数量积向量积混合积 1.两向量的数量积 a·b=│a││b│cos θ θ为两向量间的角度 (1)a·a=│a│2 (2)如果两个向量垂直,那么数量积为0,反之亦然(3)数量积满足交换律,分配率 结合律如下时才成立 (Λa)·b=Λ(a·b) 2.向量积 a·b=│a││b│sin θ (1)b×a=-a×b a×b=0的充分必要条件是a平行于b

(2)满足分配率 结合律如下时才成立 (3)(Λa)×b=a×(Λb )=Λ(a×b ) 用三阶行列式表示 i j k a×b= │ a x a y a z │ b x b y b z 例题 1.已知三角形ABC 的顶点分别是A (1,2,3),B (3,4,5),C (2,4,7),求三角形的面积 解:S ABC =1∕2│c ││b │sinA =1∕2│c ×b │ i j k c ×b= │ 2 2 2 │ =4i-6j+2k 1 2 4 S ABC =1∕2│4i-6j+2k │= 2222)6(4+-+=14 2.a=3i-j-2k ,b=i+2j-k ,求

5常见曲面的参数方程

§ 常见曲面的参数方程 本节重点:掌握空间中的三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面的参数方程的建立。 掌握直纹面的参数方程。 本节难点:旋转曲面的参数方程。直纹面的参数方程。 在第二章中,我们已经引进一般曲面与曲线的参数方程的概念、并给出简单曲面与曲线的参数表示,例如球面与圆柱螺旋线,直线的参数方程。现在再介绍旋转曲面、直纹面的参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面的参数方程,球坐标与柱坐标 设旋转曲面的轴为Z 轴,母线Γ的参数方程是 )()()()(b t a t h Z t g Y t f X ≤≤=== 则此旋转曲面可由Γ上每一点生成的纬圆所构成的。由于这纬圆上动点),,(Z Y X P 与它在坐标面XOY 上的投影' P 具有相同的Y X ,坐标,所以Γ上任一点),,(1111Z Y X P 生成的纬圆的参数方程是 ??? ????=+=+=121212121sin cos Z Z Y X Y Y X X θθ )20(πθ<≤ 其中2121Y X +是纬圆半径,即1P 到Z 轴的距离,而参数θ是X 轴到1OP 的转角。设1P 对应的参数是1t ,则 )())(())((112 1212121t h Z t g t f Y X =+=+ 再让1t 在其取值范围内变动,即得这旋转曲面的参数方程 ??? ????=+=+=)(sin ))(())((cos ))(())((2222t h Z t g t f Y t g t f X θθ ???? ??<≤≤≤πθ20b t a (4.5.1) 特别地,当母线P 为坐标面XOZ 上的径线

常见曲面的参数方程

§4、5 常见曲面得参数方程 本节重点:掌握空间中得三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面得参数方程得建立。 掌握直纹面得参数方程、 本节难点:旋转曲面得参数方程。直纹面得参数方程。 在第二章中,我们已经引进一般曲面与曲线得参数方程得概念、并给出简单曲面与曲线得参数表示,例如球面与圆柱螺旋线,直线得参数方程。现在再介绍旋转曲面、直纹面得参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面得参数方程,球坐标与柱坐标 设旋转曲面得轴为轴,母线得参数方程就是 则此旋转曲面可由上每一点生成得纬圆所构成得、由于这纬圆上动点与它在坐标面上得投影具有相同得坐标,所以上任一点生成得纬圆得参数方程就是 其中就是纬圆半径,即到轴得距离,而参数就是轴到得转角、设对应得参数就是,则 再让在其取值范围内变动,即得这旋转曲面得参数方程 (4、5.1) 特别地,当母线为坐标面上得径线 时,(4。5、1)成为 (4.5.2) 例1、如图,以原点为中心,为半径得球面可瞧作就是由坐标面上得半圆, ()绕轴旋转所生成得,由(4.5。2)得其参数方程为 (4、5。3) 它与§2。1中得球面参数方程得形式就是相同得。 (4、5、3)中得参数分别叫做经度与纬度,序对叫做地理坐标、显然,除两极外,球面上得点与序对一一对应。这种利用曲面参数方程中得两个参数来表示曲面上得点得坐标叫做曲纹坐标,它对于曲面理论得进一步研究有着重要得作用。 利用球面得这种曲纹坐标还可以引入空间得另一种坐标系。设为空间任意一点,它到原点得距离为,过作以原点为中心,以为半径得球面,则在这球面上具有地理坐标,可令点P对应有序数组;反之,由非负实数可确定所在得球面,再由在这球面上确定点。空间中点得这种坐标叫做球坐标。显然,轴上点得球坐标可取任意值、 把(4.5。3)中得常数换为变数,就成为球坐标与直角坐标得变换式,即 (4、5。4) 反之,有 (4。5.5) 当时,=0,于就是,对坐标面上得点,只需序对即可确定、这里不就是别得,正就是大家熟知得极坐标。这时原点就是极点,轴就是极轴,因此,球坐标可以瞧作就是平面极坐标在空间中得一种推广。 例2、如图4-17,以轴为对称轴,半径为得圆柱面可瞧作就是由坐标面上得直线: ,

(完整版)第四节空间曲线及其方程教案

重庆科创职业学院授课教案 课名:高等数学(上)教研窒:高等数学教研室班级:编写时间:

课题: 第四节 空间曲线及其方程 教学目的及要求: 介绍空间曲线的各种表示形式。为重积分、曲面积分作准备的,学生应知道各种常用立体的解析表达式,并简单描图,对投影等应在学习时特别注意。 教学重点: 1.空间曲线的一般表示形式 2.空间曲线在坐标面上的投影 教学难点: 空间曲线在坐标面上的投影 教学步骤及内容 : 一、空间曲线的一般方程 空间曲线可以看作两个曲面的交线,故可以将两个曲面联立方程组形 式来表示曲线。 ? ? ?==0),,(0 ),,(z y x G z y x F 特点:曲线上的点都满足方程,满足方程的点都在曲线上,不在曲线上的 点不能同时满足两个方程。 二、空间曲线的参数方程 将曲线C 上的动点的坐标表示为参数t 的函数: ?? ? ??===)()()(t z z t y y t x x 当给定1t t =时,就得到曲线上的一个点),,(111z y x ,随着参数的变化可得到曲线上的全部点。 旁批栏:

三、空间曲线在坐标面上的投影 设空间曲线C 的一般方程为 ? ? ?==0),,(0 ),,(z y x G z y x F (1) 消去其中一个变量(例如z )得到方程 0),(=y x H (2) 曲线的所有点都在方程(2)所表示的曲面(柱面)上。 此柱面(垂直于xoy 平面)称为投影柱面,投影柱面与xoy 平面的交线叫做空间曲线C 在xoy 面上的投影曲线,简称投影,用方程表示为 ?? ?==0 ),(z y x H 同理可以求出空间曲线C 在其它坐标面上的投影曲线。 在重积分和曲面积分中,还需要确定立体或曲面在坐标面上的投影,这 时要利用投影柱面和投影曲线。 例1:设一个立体由上半球面224y x z --=和锥面)(322y x z -=所围 成,见下图,求它在xoy 面上 的投影。 解:半球面与锥面交线为 ?????+=--=) (34:2 222y x z y x z C 消去z 并将等式两边平方整理得投影曲线为: ?? ?==+0 1 22z y x 即xoy 平面上的以原点为圆心、1为半径的圆。立体在xoy 平面上的投影为圆所围成的部分: 122≤+y x 旁批栏:

第二章第二节曲面的参数方程

第二章 曲面论 第二节 曲面的参数方程 一、 曲面的参数方程 设曲面∑是由显式 D y x y x f z ∈=),(),,( 所表示。 设),,(z y x 是曲面∑上的点,记向量),,(z y x r = ,则它们可构成一一对应。 于是曲面∑上的点可以用向量值函数 D y x y x f y x r ∈=),()),,(,,( 来表示, 也可以写为参数形式 ?????===),(, ,y x f z y y x x D y x ∈),(。

一般地,设3),(R v u r r ∈= ,其中参 数?∈),(v u ,这里?是2R 中的一 个区域。 我们称由3),(R v u r r ∈= , ?∈),(v u ,所构成的3R 中点集∑为一张参数曲面,(即曲面∑,可以表示为参数方程表示的点集。) 记为?∈=∑),(),,(:v u v u r r ,(1) 把(1)用分量表示出来,就是 ?? ???===),(),(),,(v u z z v u y y v u x x ,?∈),(v u (2) 通常,我们称(1)是曲面∑的向量方程,而(2)是曲面∑的参数方程。 显然方程(1)和(2)之间的转换是直截了当的,所以我们可以认为(1)与(2)是一回事。

二、 几个用参数方程表示的常见 曲面 例1 平面的参数方程, 设30000),,(R z y x p ∈= 是一个固定的点, ),,(321a a a a = 与),,(321b b b b = 是自0p 出发的两个不平行的向量。这时,由a 与b 张成的平面可以用向量方程, 20),(,R v u b v a u p r ∈++= 来表示; 写成分量表示为 v b u a x x 110++=, v b u a y y 220++=, v b u a z z 330++=,

空间曲线及其方程

§7.6 空间曲线及其方程 一空间曲线的一般方程 空间曲线可看作两曲面的交线,设 F x y z (,,)=0和G x y z (,,)=0 是两曲面的方程,它们的交线为C。曲线上的任何点的坐标x y z ,,应同时满足这两个曲面方程,因此,应满足方程组 F x y z G x y z (,,) (,,) = = ? ? ? (1) 反过来,如果点M不在曲线C上,那么它不可能同时两曲面上。所以,它的坐标不满足方程组(1)。由上述两点可知:曲线C可由方程组(1)表示。 方程组(1)称作空间曲线的一般方程。 二空间曲线的参数方程 对于空间曲线C,若C上的动点的坐标x y z ,,可表示成为参数t的函数x x t y y t z z t = = = ? ? ? ? ? () () () (2) 随着t的变动可得到曲线C上的全部点,方程组(2)叫做空间曲线参数方程。【例1】如果空间一点M在圆柱面x y a 222 +=上以角速度ω绕z轴旋转,同时又以线速度v沿平行于z轴的正方向上升(其中:ω,v均为常数),那未点M 的轨迹叫做螺旋线,试建立其参数方程。 解:取时间t为参数。 设当t=0时,动点与x轴上的点A a(,,) 00重合,经过时间t,动点由A a(,,) 00运动到M x y z (,,)。记M在xoy面上的投影为' M,它的坐标为' M x y (,,)0。

由于动点在圆柱面上以角速度ω绕z 轴旋转,经过时间t ,∠'=?AoM t ω 从而 x a t y a t ==???cos sin ωω 又由于动点同时以线速度v 沿平行于z 轴正方向上升,所以 z vt = 因此,螺旋线的参数方程为 x a t y a t z vt ===???? ?cos sin ωω 或令θω=?t ,则方程形式可化为 x a y a z b b v ===???? ?=cos sin (,)θθθωθ为参数 螺旋线有一个重要性质: 当θ从θ0变到θα0+时,z 由b θ0变到b b θα0+;这表明当oM '转过角α时,M 点沿螺旋线上升了高度h b =α; 特别地,当oM '转过一周,即απ=2时,M 点就上升固定的高度为 h b =2π,这个高度在工程技术上叫螺距。 空间曲线的一般方程也可以化为参数方程,下面通过例子来介绍其处理方法。 【例2】将空间曲线C x y z x z 222921 ++=+=????? 表示成参数方程。 解:由方程组消去z 得

旋转曲面的参数方程(利用正交变换作旋转)

旋转曲面的参数方程 ---------利用正交变换作旋转 众所周知,yOz 坐标面上的曲线(,)0F y z =绕z 轴旋转而成的旋转曲面的方程为 ()0F z = (1) (见同济大学《高等数学》(5版上册),313页)。 如果以上曲线的方程能写成显函数()y f z =(a z b ≤≤),则该旋转曲面的方程为 ()f z =或 222[()]x y f z += (2) 这个方程的几何意义是:对曲线上的每一点(0,,)P y z ,这个方程给出圆心在(0,0,)z ,半径为()f z 的一个垂直于z 轴的圆。当z 取遍[,]a b 中的每一个值时,这些圆就构成一个旋转曲面。 如果曲线的方程是显函数()y f z =(a z b ≤≤),我们也可以用参数方程来表示这个旋转面: ()c o s ()s i n x f z y f z z z θθ?=?=??=? (02θπ≤≤,a z b ≤≤) (3) 这个方程的几何意义是:对每一个[,]z a b ∈,参数方程给出一个半径为()f z 的垂直于z 轴的圆。当z 取遍[,]a b 中的每一个值时,这些圆就构成一个旋转曲面。 如果曲线的方程能写成参数方程() ()y f t z g t =??=?(a t b ≤≤),则旋转曲面的参数方程为: ()cos ()sin ()x f t y f t z g t θ θ?=? =??=? (02θπ≤≤,a t b ≤≤) (4) 这个方程的几何意义是:对每一个[,]t a b ∈,参数方程给出一个半径为()f t 的垂直于z 轴的圆。当t 取遍[,]a b 中的每一个值时,这些圆就构成一个旋转曲面。 推而广之,如果该曲线是空间曲线,其参数方程为() ()()x h t y f t z g t =??=??=? (a t b ≤≤),则此曲线绕z 轴旋转而成的旋转曲面的参数方程为:

常见曲面的参数方程

.常见曲面的参数方程

————————————————————————————————作者:————————————————————————————————日期:

§4.5 常见曲面的参数方程 本节重点:掌握空间中的三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面的参数方程的建立。 掌握直纹面的参数方程。 本节难点:旋转曲面的参数方程。直纹面的参数方程。 在第二章中,我们已经引进一般曲面与曲线的参数方程的概念、并给出简单曲面与曲线的参数表示,例如球面与圆柱螺旋线,直线的参数方程。现在再介绍旋转曲面、直纹面的参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面的参数方程,球坐标与柱坐标 设旋转曲面的轴为Z 轴,母线Γ的参数方程是 )()()()(b t a t h Z t g Y t f X ≤≤=== 则此旋转曲面可由Γ上每一点生成的纬圆所构成的。由于这纬圆上动点),,(Z Y X P 与它在坐标面XOY 上的投影' P 具有相同的Y X ,坐标,所以Γ上任一点),,(1111Z Y X P 生成的纬圆的参数方程是 ??? ????=+=+=12 12121 21sin cos Z Z Y X Y Y X X θθ )20(πθ<≤ 其中 2121Y X +是纬圆半径,即1P 到Z 轴的距离,而参数θ是X 轴到1OP 的转角。设1P 对 应的参数是1t ,则 )())(())((112 1212121t h Z t g t f Y X =+=+ 再让1t 在其取值范围内变动,即得这旋转曲面的参数方程 ??? ????=+=+=)(sin ))(())((cos ))(())((2 222t h Z t g t f Y t g t f X θθ ??? ? ??<≤≤≤πθ20b t a (4.5.1) 特别地,当母线P 为坐标面XOZ 上的径线 )(0) (t h Z Y t f X === 时,(4.5.1)成为

高中数学学案:常见曲线的参数方程

高中数学学案:常见曲线的参数方程 基础诊断 1. 方程 ???x = t ,y = 3t 3 (t 为 参 数 ) 表 示 的 曲 线 是 ________________________________________________________________________. 2. 直线???x =2t ,y =t (t 为参数)与曲线???x =2+cos θ,y =sin θ(θ为参数)的公共点的个数为________. 3. 参数方程???x =3t 2+2, y =t 2 -1 (t 为参数),且0≤t ≤5表示的曲线是________.(填序号)

①线段;②双曲线;③圆弧;④射线. 4. 直线?????x =1+1 2t ,y =-33+3 2t (t 为参数)和圆x 2+y 2=16交于A 、B 两点,则AB 的中点坐标为 ________. 范例导航 考向 例1 (1) 将参数方程??? ??x =2? ?? ??t +1t ,y =4? ?? ??t -1t (t 为参数)化为普通方程; (2) 将参数方程???x =2sin θ, y =1+2cos 2 θ(θ为参数)化为普通方程. 在曲线C 1:???x =1+cos θ, y =sin θ (θ为参数)上求一点,使它到直线C 2:?????x =-22+1 2t ,y =1-12t (t 为参数)

的距离最小,并求出该点的坐标和最小距离. 考向 例2已知直线l经过点P(1,1),倾斜角α=6. (1) 写出直线l的参数方程; (2) 设直线l与圆x2+y2=4相交于A、B两点,求点P到A、B两点的距离之积. 点P(x,y)是椭圆2x2+3y2=12上的一个动点,求x+2y的最大值.

45常见曲面的参数方程

§4.5 常见曲面的参数方程 本节重点:掌握空间中的三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面的参数方程的建立。 掌握直纹面的参数方程。 本节难点:旋转曲面的参数方程。直纹面的参数方程。 在第二章中,我们已经引进一般曲面与曲线的参数方程的概念、并给出简单曲面与曲线的参数表示,例如球面与圆柱螺旋线,直线的参数方程。现在再介绍旋转曲面、直纹面的参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面的参数方程,球坐标与柱坐标 设旋转曲面的轴为Z 轴,母线Γ的参数方程是 )()()()(b t a t h Z t g Y t f X ≤≤=== 则此旋转曲面可由Γ上每一点生成的纬圆所构成的。由于这纬圆上动点),,(Z Y X P 与它在坐标面XOY 上的投影' P 具有相同的Y X ,坐标,所以Γ上任一点),,(1111Z Y X P 生成的纬圆的参数方程是 ??? ????=+=+=121212121sin cos Z Z Y X Y Y X X θθ )20(πθ<≤ 其中2121Y X +是纬圆半径,即1P 到Z 轴的距离,而参数θ是X 轴到1OP 的转角。设1P 对应的参数是1t ,则 )())(())((112 1212121t h Z t g t f Y X =+=+ 再让1t 在其取值范围内变动,即得这旋转曲面的参数方程 ??? ????=+=+=)(sin ))(())((cos ))(())((2222t h Z t g t f Y t g t f X θθ ??? ? ??<≤≤≤πθ20b t a (4.5.1) 特别地,当母线P 为坐标面XOZ 上的径线 )(0) (t h Z Y t f X === 时,(4.5.1)成为

相关主题
文本预览
相关文档 最新文档