当前位置:文档之家› 基于期权定价视角的医疗保险精算原理、方法及其应用

基于期权定价视角的医疗保险精算原理、方法及其应用

基于期权定价视角的医疗保险精算原理、方法及其应用
基于期权定价视角的医疗保险精算原理、方法及其应用

社会医疗保险控费方案设计

社会医疗保险控制医疗费用不合理增长 方案 一、医疗控费的必须性 (一)城乡居民医保(新农合)是城乡居民医保保障的主要形式 城乡居民医保是社会保障的重要组成部分,是城乡居民医疗保障的具体形式,完善城乡居民医疗保险制度是构建社会主义和谐社会的重大举措。党和政府历来高度重视城乡居民的医疗保障工作。自城乡居民医保制度建立以来,各级政府对城乡居民医保的投入逐年增加,城乡居民医保覆盖范围不断扩大,保障水平稳步提高,制度运行持续平稳。城乡居民医保制度的建立与完善,对健全全民基本医保体系、满足群众基本医疗保障需求、提高人民群众健康水平、促进医疗卫生事业发展发挥了重要作用。 城乡居民医保管理涉及政府、参保对象、定点医疗机构、经办机构,为城乡居民提供质优、价廉、高效、可及的医疗服务,以及充分利用有限的医保基金,努力为群众提供较高水平的保障,维护各方合法权益成为医保管理的重要内容。 (二)医疗费用的快速增长给医保基金安全带来巨大威胁根据经济社会发展及民生保障的需要,国家先后开展了基层医疗机构运行机制综合改革及公立医院改革,“总量控制、结构调整”为改革的主要目标。主要方法是药品集中招标采购,实行药品零差价,调整医疗服务价格,总体不增加群众负担。

从目前运行的情况看,药品价格是价了,药品费用在医疗总费用中的比例大幅下降,但医疗总费用并没有象当初制度设想的那样保持总体平衡不增长,而是医疗服务价格提高,且医疗服务成为医疗机构唯一的利润来源,大量购买医疗仪器设备,增大医疗服务供给,成为医疗机构普遍现象。医疗总费用快速增长的趋势没有得到有效控制,群众的医疗费用负担为断增长,医保基金支出压力不断加大,基层面临出险的风险。现阶段,医疗费用的快速增长与医保基金的有限性成为管理中的主要矛盾,如何控制医疗费用不合理增长,成为医保管理的重要课题。 二、医疗控制的主要措施 承办机构将与医保行政管理等相关部门、经办机构采取多种举措,有效控制医疗费用的不合理增长。 (一)以定点医疗机构协议管理为统领 与定点医疗机构实行协议管理,采取总额控制下的多种支付方式相结合混合支付方式。年度医保基金总额、医疗费用增幅、次均费用控制等指标均在协议中予以明确,对切实减轻患者看病就医负担,更好地维护人民群众的切身利益,保证基金安全起到了决定性作用。 (二)切实加强医疗服务管理 以规范医疗行为、提高医疗服务效率、强化质量安全管理、严格医疗技术临床应用管理等为重点,加强医疗服务管理,持续改善医疗服务,保障医疗质量和安全,减轻患者就医负担,努力改善患者就医感受。 1.推行临床路径管理。临床路径是指针对某一疾病建立一

林清泉主编的《金融工程》笔记和课后习题详解 第九章 期权定价公式及其应用【圣才出品】

第九章期权定价公式及其应用 9.1复习笔记 一、布莱克一斯科尔斯期权定价公式 1.引言 关于期权定价问题的研究,最早可以追溯到1900年。法国的天才巴彻列尔,在其博士论文中首次给出了初步的欧式买权的定价公式。 20世纪60年代末,布莱克和斯科尔斯得到了描述期权价格变化所满足的偏微分方程,即所谓的B—S方程。1976年,默顿把B—S期权定价模型推广到股票价格变化可能存在跳跃点的场合,并包含了标的股票连续支付股利的情况,从而把该模型的实用性又大大推进了一步,学术界将其称为默顿模型。 2.布莱克一斯科尔斯期权定价公式 (1)基本假设 ①股票价格满足的随机微分方程(9—1)中的μ、σ为常数。 ②股票市场允许卖空。 ③没有交易费用或税收。 ④所有证券都是无限可分的。 ⑤证券在有效期内没有红利支付。 ⑥不存在无风险套利机会。 ⑦交易是连续的。 ⑧无风险利率r为常数。

(2)股票价格的轨道 在通常情况下,假设股票价格S:满足下列随机微分方程: (9—1) (9—2)其中S。称为对数正态过程。 (3)期权套期保值 寻找期权定价公式(函数)的主要思路为:构造以某一种股票和以该股票为标的期权的一个证券组合,而且所构造的证券组合正好是一个无风险资产的复制。 命题9—1设C t=r(t,S t)为期权现价格(t时刻的价格),F(t,z)关于t有一阶连续偏导数,关于x有二阶连续有界偏导数,且满足终值条件: (9—3)则F(t,S)是下列偏微分方程的解: (9—4)为了套期保值此期权,投资者必须卖空r2(t,S)股此股票。反之,若r(t,S)是方程(9—4)的解,则r(t,S t)是满足终值条件h(S T)的自融资证券组合的现值。 (4)布莱克一斯科尔斯公式用(9-5)式解的概率表示: (9—5)定理9—1 ①设S t所满足的方程中的系数均为常数,则期权价格可由下式给出: (9

(定价策略)期权定价理论

期权定价理论 期权定价是所有金融应用领域数学上最复杂的问题之一。第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世(有关期权定价的发展历史大家可以参考书上第358页,有兴趣的同学也可以自己查找一下书上所列出的经典文章,不过这要求你有非常深厚的数学功底才能够看懂)。B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。现在,几乎所有从事期权交易的经纪人都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。为此,对期权定价理论的完善和推广作出了巨大贡献的默顿和Scholes在1997年一起荣获了诺贝尔经济学奖(Black在1995年去世,否则他也会一起获得这份殊荣)。 原始的B—S模型仅限于这类期权:资产可用于卖出期权;能够评估价值,资产价格行为随时间连续运动。随后建立在原始的B—S模型上的研究以及许多其他期权定价模型的变体相继出现,用于处理其他类型的标的资产以及其他类型的价格行为。在大多数情况下,期权定价模型的推倒基于随机微积分(Stochastic Calculus)的数学知识。没有严密的数学推演,演示这种模型只是摸棱两可的。可是,这并非要紧的问题,因为确定期权公平价格的必要计算已自动化,且达到上述目的的软件在大型计算机及微机中均可获得。因此,在这里,我只简单介绍一下B—S模型的关键几个要素,至于具体的数学推导(非常复杂),感兴趣的同学可以在课后阅读一下相关资料(一般都是在期权定价理论章节的附录中)。 首先,我们来回顾一下套利的含义 套利 套利(arbitrage)通常是指在金融市场上利用金融产品在不同的时间和空间上所存在的定价差异、或不同金融产品之间在风险程度和定价上的差异,同时进行一系列组合交易,获取无风险利润的行为。注意,这种利润是无风险的。 现代金融交易的目的主要可以分为套利、投机和保值,这也是我们在以前的课程中接触过的。那么,我们怎样来理解套利理论的含义呢? 我们说,市场一般是均衡的,商品的价格与它的价值是相一致的。如果有时候因为某种原因使得价格与价值不相符,出现了无风险套利的机会,我们说这种套利的机会就会马上被聪明的人所发现和利用,低买高卖,赚取利润,那么通过投机者不断的买卖交易,原来价值被低估的商品,它的价格会上涨(投机者低价买入);原来价值被高估的商品,它的价格会下跌(投机者高价卖出),交易的结果最终会使得市场价格重新回到均衡状态。(就像书中列举的两家书店卖书的例子一样…) 同样的道理我们不难理解,现代期权定价技术就是以无风险套利原理为基础而建立起来的。我们可以设计一个证券资产组合,使得它的价值(收益)与另外一个证券资产组合的价值相等。那么,根据无风险套利理论,这两种证券资产组合应该以同样的价格出售。从而,可以帮助我们确定,在价格均衡状态下,期权的公平定价方式。 具体来说,对期权跌——涨平价原理的推导就采用了无风险套利的原理。 跌——涨平价原理(put——call parity) 看涨期权的价格与看跌期权的价格(也就是期权费)之间存在着非常密切的联系,因此,只要知道看涨期权的价格,我们就可以推出看跌期权的价格(通过平价原理)。这样,就省去我们再费心研究看跌期权的定价公式了。只要我们通过B——S模型计算出看涨欧式期权的定价之后,我们就可以相应地推出欧式看跌期权的定价(注意,B——S模型只适用于欧式看涨期权)。

B-S期权定价模型的推导过程

B-S期权定价模型(以下简称B-S模型)及其假设条件 (一)B-S模型有7个重要的假设 1、股票价格行为服从对数正态分布模式; 2、在期权有效期内,无风险利率和金融资产收益变量是恒定的; 3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割; 4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃); 5、该期权是欧式期权,即在期权到期前不可实施。 6、不存在无风险套利机会; 7、证券交易是持续的; 8、投资者能够以无风险利率借贷。 (二)荣获诺贝尔经济学奖的B-S定价公式[1] C = S * N(d 1) ? Le? rT N(d2) 其中: C—期权初始合理价格 L—期权交割价格 S—所交易金融资产现价 T—期权有效期 r—连续复利计无风险利率H

σ2—年度化方差 N()—正态分布变量的累积概率分布函数,在此应当说明两点: 第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年复利一次,而r要求利率连续复利。r0必须转化为r方能代入上式计算。两者换算关系为:r = ln(1 + r 0)或r0=Er-1。例如r0=0.06,则r=ln(1+0.06)=0.0583,即100以5.83%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。 第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则。 B-S定价模型的推导与运用[1] (一)B-S模型的推导B-S模型的推导是由看涨期权入手的,对于一项看涨期权,其到期的期值是: E[G] = E[max(S t? L,O)] 其中,E[G]—看涨期权到期期望值 S t—到期所交易金融资产的市场价值 L—期权交割(实施)价 到期有两种可能情况: 1、如果S t > L,则期权实施以进帐(In-the-money)生效,且max(S t? L,O) = S t? L 2、如果S t < L,则期权所有人放弃购买权力,期权以出帐(Out-of-the-money)失效,且有: max(S t? L,O) = 0 从而: 其中:P:(S t > L)的概率E[S t | S t > L]:既定(S t > L)下S t的期望值将E[G]按有效期无风险连续复利rT贴现,得期权初始合理价格:

期权定价理论文献综述

期权定价理论文献综述 [摘要]本文在首先介绍了期权基本概念的基础上着重介绍了期权定价理论的产生和发展的历史进程;然后对期权定价方法及其实证研究进行了较详细的分类综述,突出综述了在整个期权定价理论中有着重要贡献的Black-Scholes定价模型以及在此基础上出现的树图模型、蒙特卡罗模拟方法、有限差分方法等在期权定价理论体系中比较重要的思想。最后分析比较了各种定价方法之间的差别以及适用范围和各自的缺陷等,并对期权定价理论的未来研究做出展望。 [关键字]综述;期权定价;Black-Scholes模型;二叉树模型;蒙特卡罗法 1 期权的分类及意义 1.1 期权的定义 期权(option)是一份合约,持有合约的一方(seller)有权(但没有义务)向另一方在合约中事先指定的时刻(或此时刻前)以合约中指定的价格购买或者出售某种指定数量的特殊物品。为了获得这种权利,期权的购买者(holder or buyer)必须支付一定数量的权利金(也称保证金或保险金),因此权利金就成为期权这个金融衍生品的价格。 1.2 期权的分类 期权交易的类型很多,大致有如下几种: (1)按交易方式可分为看涨期权、看跌期权和双重期权; (2)按期权的执行时间不同可分为美式期权和欧式期权; (3)按期权交割的内容标准可分为股票期权、货币期权、利率期权与指数期权; 此外近年来还发展了许多特殊的期权交易形式,如回溯期权、循环期权、价差期权、最大/最小期权、平均价期权、“权中权”期权等。

1.3 期权的功能 作为套期保值的工具。当投资者持有某种金融资产,为了防范资产价格波动可能带来的风险,可以预先买卖该资产的期权来对冲风险。当投资者预期基础资产的市场价格将下跌时,为防止持有这种资产可能发生的损失,可以买入看跌期权予以对冲,其所付成本仅为购买期权的权利金。通过购买看涨期权和看跌期权,一方面可以达到基础资产保值的目的;另一方面也可以获得基础资产价格升降而带来的盈利机会。 作为投机的工具。在投资者并不需要为持有资产作对冲风险的交易时,也可根据对基础资产价格必定性大小的预期,买卖期权本身来获得盈利,投资者买卖期权的目的已从对冲风险,变成赚取期权的价差利益,即投机,通过购买期权和转卖期权的权利金差价中获利,或通过履约从中获利。 2 期权定价理论的历史发展 2.1 早期期权定价理论研究 期权的思想萌芽可追溯到公元前1800年的《汉漠拉比法典》,而早在公元前1200年的古希腊和古胖尼基国的贸易中就已经出现了期权交易的雏形,只不过在当时条件下不可能对其有深刻认识。公认的期权定价理论创始人是法国数学家Louis Bachelicr。1900年,他在博士论文“投机理论”中第一次对股票价格的走势给予了严格的数学描述。他假设股票价格变化过程是一个无漂移和每单位时间具有方差2 的纯标准布朗运动,并得出到期日看涨期权的预期价格是:其中 参数π是市场“价格杠杆”调节量,α是股票预期收益率。这一模型同样也没有考虑资金的时间价值。 Boness在1964年也提出了类似的模型,他对股票收益假定了一个固定的对数分布,并且认识到风险保险的重要性。为简明,他假定“投资者不在乎风险”。他利用这一假设证明了用股票的预期收益率α来贴现最终期权的预期值。他的最终模型是:

第08章 期权定价的数值方法

第八章 期权定价的数值方法 在前面几章中,我们得到了期权价值所满足的偏微分方程,并且解出了一些精确的期权解析定价公式。但是在很多情形中,我们无法得到期权价值的解析解,这时人们经常采用数值方法(Numerical Procedures )为期权定价,其中包括二叉树方法(Binomial Trees )、蒙特卡罗模拟(Monte Carlo Simulation )和有限差分方法(Finite Difference Methods )。当期权收益依赖于标的变量所遵循的历史路径时(如我们将在第九章看到的路径依赖期权),或是期权价值取决于多个标的变量的时候,可以用蒙特卡罗模拟为期权定价。而二叉树图和有限差分方法则比较适用于有提前执行可能性的期权。在这一章里,我们将介绍如何借助上述三种数值方法来为期权定价。为了便于表达,本章中统一假设当前时刻为零时刻,表示为0。 第一节 二叉树期权定价模型 二叉树期权定价模型是由J. C. Cox 、S. A. Ross 和M. Rubinstein 于1979年首先提出的,已经成为金融界最基本的期权定价方法之一。二叉树模型的优点在于其比较简单直观,不需要太多的数学知识就可以加以应用。 一、二叉树模型的基本方法 我们从简单的无收益资产期权的定价开始讲解二叉树模型,之后再逐步加以扩展。 二叉树模型首先把期权的有效期分为很多很小的时间间隔t ?,并假设在每一个时间间隔t ?内证券价格只有两种运动的可能:从开始的S 上升到原先的u 倍,即到达Su ;下降到原先的d 倍,即Sd 。其中,1u >,1d <,如图8.1所示。价格上升的概率假设为p ,下降的概率假设为1p -。 S 图8.1 t ?时间内资产价格的变动 相应地,期权价值也会有所不同,分别为u f 和d f 。 注意,在较大的时间间隔内,这种二值运动的假设当然不符合实际,但是当时间间隔非常小的时候,比如在每个瞬间,资产价格只有这两个运动方向的假设是可以接受的。因此,二叉树模型实际上是在用大量离散的小幅度二值运动来模拟连续的资产价格运动。 (一)单步二叉树模型

常用的几个期权定价模型的基本原理及其对比分析

常用的几个期权定价模型的基本原理及其对比分析 (function() { var s = "_" + Math.random().toString(36).slice(2); document.write(''); (window.slotbydup = window.slotbydup || []).push({ id: "u3686515", container: s }); })(); [摘要] 期权是一类重要的金融衍生产品,它赋予持有者的是一种买权或卖权,

而并非义务,所以期权持有者可以选择行使权利,也可以放弃行权。那么,如何对期权定价才能对期权的发行者、持有者双方更加合理?于是就产生了期权的定价问题。在现代金融理论中,期权定价已经成为其重要的组成部分,关于对期权定价模型的研究成果也是层出不穷,文章主要介绍在连续时间下常用的三种期权定价模型:Black-Scholes模型、 Ornstein-Ulhenbeck过程模型以及跳跃-扩散模型,并对这三种模型作简要的对比分析。 [关键词] Black-Scholes期权定价模型;Ornstein-Ulhenbeck过程的期权定价模型;跳跃-扩散过程的期权定价模型;风险中性定价 doi :10 . 3969 / j . issn . 1673 - 0194 . 2018. 23. 050 [中图分类号] F830.9 [文献标识码] A [文章编号] 1673 - 0194(2018)23- 0117- 04 1 Black-Scholes期权定价模型 1970年初,美国经济学家布莱克(F.Black)和斯科尔斯(M.Scholes)发现无支付红利的股票的衍生证券的价格必然满足一个微分方程,他们推导出了该方程的解析解,并得到了欧式看涨、看跌期权的价格。该理论被视为期权定价史上的丰碑,为此,斯科尔斯

期权定价的数值方法

期权定价的数值方法 小结 1.当不存在解析解时,可以用不同的数值方法为期权定价,其中主要包括二叉树图方法、蒙特卡罗模拟和有限差分方法。 2.二叉树图方法用离散的随机游走模型模拟资产价格的连续运动在风险中性世界中可能遵循的路径,每个小的时间间隔中的上升下降概率和幅度均满足风险中性原理。从二叉树图的末端开始倒推可以计算出期权价格。 3.蒙特卡罗方法的实质是模拟标的资产价格在风险中性世界中的随机运动,预测期权的平均回报,并由此得到期权价格的一个概率解。 4.有限差分方法将标的变量满足的偏微分方程转化成差分方程来求解,具体的方法包括隐性有限差分法、显性有限差分法、“跳格子方法”和 Crank-Nicolson方法等。 5.树图方法和有限差分方法在概念上是相当类似的,它们都可以看成用离散化过程解出偏微分方程的数值方法,都适用于具有提前执行特征的期权,不太适合路径依赖型的期权。其中二叉树模型由于其简单直观和容易实现,是金融界中应用得最广泛的数值定价方法之一;有限差分方法则日益受到人们的重视。 6.蒙特卡罗方法的优点在于应用起来相当直接,能处理许多盈亏状态很复杂的情况,尤其是路径依赖期权和标的变量超过三个的期权,但是不擅长于处理美式期权,而且往往所需计算时间较长。 二叉树定价方法的基本思想:假设资产价格的运动是由大量的小幅度二值运动构成,用离散的随机游走模型模拟资产价格连续运行可能遵循的路径。模型中隐含导出的概率是风险中性世界中的概率p,从而为期权定价。 蒙特卡洛模拟的基本思想:由于大部分期权的价值都可以归结为期权到期回报的期望值的贴现,因此尽可能地模拟风险中性世界中标的资产价格的多种运动路径,计算每种结果路径下的期权回报均值,之后贴现就可以得到期权价值。 蒙特卡洛模拟的优点:在大多数情况下,人们可以很直接地应用蒙特卡洛模拟,而无需对期权定价模型有深刻的认识;蒙特卡洛模拟的适用情形相当广泛。 蒙特卡洛模拟的缺点:只能为欧式期权定价,难以处理提前执行期权的的定价情形;为了达到一定的精准度,需要大量的模拟运算。 有限差分方法的基本思想:将衍生证券所满足的偏微分方程转化为一系列近似的差分方程,即用离散算子逼近偏微分方程中的各项,之后用迭代法求解以得到期权价值。

第三章期权价格的性质金融衍生品定价理论讲义

第三章期权价格的性质 在第一章里,我们定性地讨论了期权价格的性质。我们不但描述了影响期权价格的各 种因素,而且讨论了在各种情况下期权的支付。在这一节里,我们将应用无套利原理严格证明欧式期权价格的一些重要的性质。需要强调的是,我们并不对标的资产的未来价格的分布作任何假设。在上一章中,我们利用标的资产和债券合成构造远期合约和期货合约,投资银行可以利用这种方法来为远期合约和期货合约做市及对冲风险。同样地,在本章中,我们利用合成构造期权的方法来为期权做市及对冲风险。我们仅仅研究以同一种资产为标的物的看涨和看跌期权价格之间最基本的关系。本章主要内容:美、欧式期权价格的上下界;美式期权的提前执行;红利对期权价格的影响;看涨和看跌期权价格之间的平价关系。 我们不妨假设标的物为某种股票,其在时间t的价格为S t ,期权的执行价格为K ,到 期日为一期,即,T =1,无风险利率为r f (或者r ),按离散或者连续方式计算复利。我 们以C t,C t, p t, P t分别表示欧式看涨、美式看涨、欧式看跌、美式看跌期权在时间t的价格。 1期权价格的上、下界 由第一章内容,期权价格受标的股票的价格、执行价格、标的股票的价格的方差、到期日、无风险利率和到期日之前标的资产的预期红利六种因素的影响。 1.1上界 美式或者欧式看涨期权的持有者拥有以一定价格购买一份股票的权利,所以在任何情形下,期权的价值不会超过标的股票的价格 c t _ & C t_ S t 否则,买入股票,卖空看涨期权就能获得套利机会。 例子:标的股票价格为30元,执行价格为25元的看涨期权,其价格不超过30元(不管是美 式还是欧式)。如果价格为40元,如何构造套利机会? 看涨期权的价格永远不会超过标的股票的价格。即使执行价格为零,期权永远不到期,期权的价格也至多为S T。甚至在这种极端情形下,期权的价格也可能比标的股票的价格低,因为股票有选举权,而期权没有。 美式或者欧式看跌期权的持有者拥有以执行K价格卖一份股票的权利,所以在任 何情形下,期权的价值不会超过K P t兰K R兰K 对欧式看跌期权而言,我们知道它在到期日的价格不会超过K,所以 P t 否则,卖出期权,投资在无风险利率,获得套利例子:r =5% , S t=30 元,K =25元,P t- 25e 1.2以不支付红利股票为标的物的欧式期权价格的下界

健康保险管理办法(2019)

健康保险管理办法(2019) 《健康保险管理办法》已经中国银保监会2018年第6次主席会议通过。现予公布,自2019年12月1日起施行。 主席郭树清 2019年10月31日 健康保险管理办法 第一章总则 第一条为了促进健康保险的发展,规范健康保险的经营行为,保护健康保险活动当事人的合法权益,提升人民群众健康保障水平,根据《中华人民共和国保险法》(以下简称《保险法》)等法律、行政法规,制定本办法。 第二条本办法所称健康保险,是指由保险公司对被保险人因健康原因或者医疗行为的发生给付保险金的保险,主要包括医疗保险、疾病保险、失能收入损失保险、护理保险以及医疗意外保险等。 本办法所称医疗保险,是指按照保险合同约定为被保险人的医疗、康复等提供保障的保险。 本办法所称疾病保险,是指发生保险合同约定的疾病时,为被保险人提供保障的保险。 本办法所称失能收入损失保险,是指以保险合同约定的疾病或者意外伤害导致工作能力丧失为给付保险金条件,为被保险人在一定时期内收入减少或者中断提供保障的保险。 本办法所称护理保险,是指按照保险合同约定为被保险人日常生活能力障碍引发护理需要提供保障的保险。 本办法所称医疗意外保险,是指按照保险合同约定发生不能归责于医疗机构、医护人员责任的医疗损害,为被保险人提供保障的保险。 第三条健康保险是国家多层次医疗保障体系的重要组成部分,坚持健康保险的保障属性,鼓励保险公司遵循审慎、稳健原则,不断丰富健康保险产品,改进健康保险服务,扩大健康保险覆盖面,并通过有效管理和市场竞争降低健康保险价格和经营成本,提升保障水平。 第四条健康保险按照保险期限分为长期健康保险和短期健康保险。 长期健康保险,是指保险期间超过一年或者保险期间虽不超过一年但含有保证续保条款的健康保险。

期权定价模型与数值方法

参考文献 1、期权、期货和其它衍生产品,John Hull,华夏出版社。 2、期权定价的数学模型和方法,姜礼尚著,高等教育出版社。 3、金融衍生产品定价的数学模型与案例分析,姜礼尚等著,高等教育 出版社。 4、金融衍生产品定价—数理金融引论,孙建著,中国经济出版社。 5、金融衍生工具中的数学,朱波译,西南财经大学出版社。 6、N umerical methods in finance and economics—a MATLAB-based introduction, Paolo Brandimarte,A JOHN WILEY & SONS,INC.,PUBLICATION 7.金融计算教程—MATLAB金融工具箱的应用,张树德编著,清华大学出 版社。 8、数值分析及其MATLAB实现,任玉杰著,高等教育出版社。 9、数学物理方程讲义,姜礼尚著,高等教育出版社。 10、英汉双向金融词典,田文举主编,上海交通大学出版社。 11、偏微分方程数值解法,孙志忠编著,科学出版社。 第三部分期权定价模型与数值方法 期权是人们为了规避市场风险而创造出来的一种金融衍生工具。理论和实践均表明,只要投资者合理的选择其手中证券和相应衍生物的比例,就可以获得无风险收益。这种组合的确定有赖于对衍生证券的定价。上个世纪七十年代初期,Black 和 Scholes 通过研究股票价格的变化规律,运用套期保值的思想,成功的推出了在无分红情况下股票期权价格所满足的随机偏微分方程。从而为期权的精确合理的定价提供了有利的保障。这一杰出的成果极大的推进了金融衍生市场的稳定、完善与繁荣。

一、期权定价基础 1.1 期权及其有关概念 1.期权的定义 期权分为买入期权(Call Option)和卖出期权(Put Option) 买入期权:又称看涨期权(或敲入期权),它赋予期权持有者在给定时间(或在此时间之前任一时刻)按规定价格买入一定数量某种资产的权利的一种法律合同。 卖出期权:又称看跌期权(或敲出期权),它赋予期权持有者在给定时间(或在此时间之前任一时刻)按规定价格卖出一定数量某种资产的权利的一种法律合同。 针对有效期规定不同期权又分为欧式期权(European Option)与美式期权(American Option) 欧式期权只有在到期日当天或在到期日之前的某一规定的时间可以行使的权利 美式期权在到期日之前的任意时刻都可以行使的权利。 2.期权的要素 期权的四个要素:施权价(exercise price或striking price);施权日(maturing data);标的资产(underlying asset);期权费(option premium)对于期权的购买者(持有者)而言,付出期权费后,只有权利而没有义务;对期权的出售者而言,接受期权费后,只有义务而没有权利。 3.期权的内在价值 买入期权在执行日的价值 C为 T 其中, E为施权价, S为标的资产的市场价。 T

期权定价的数值方法

第八章:期权定价的数值方法 教学目标: 1、了解二叉树期权定价模型并且熟悉二叉树模型的基本方法; 2、理解蒙特卡罗模拟的基本过程; 3、熟悉蒙特卡罗模拟的技术的实现。 教学重点: 1、二叉树模型的基本方法; 2、蒙特卡罗模拟。 教学难点: 1、蒙特卡罗模拟。 课时建议:3课时 教学主要内容: 8.1二叉树期权定价模型 把期权的有效期分为很多很小的时间间隔t?,并假设在每一个时间间隔t?内证券价格只有两种运动的可能: 1.从开始的S上升到原先的u倍,即到达Su; 2.降到原先的d倍,即Sd 其中u>1,d<1.假设价格上升的概率为p,则价格 下降的概率为1-p,相应的期权的价值也会有所不 同,分别为f u和f d 二叉树模型实际上是在用大量离散的小幅度二值 运动来模拟连续的资产价格运动 8.1.1二叉树模型的基本方法 二叉树模型可分为以下几种方法 一)单步二叉树模型 1.无套利定价法 2.风险中性定价法 3.风险中性定价法 (二)证券价格的树型结构 4.证券价格的树型结构 (三)倒推定价法 5. 倒推定价法 二叉树方法的一般定价过程-以无收益证券的美式看跌期权为例6.一般定价过程 无套利定价法: 构造投资组合包括?份股票多头和1份看涨期权空头当Su u Sd fd ?-=?-则组合为无风险 组合。此时: u d f f Su Sd -?= - 因为是无风险组合,可用无风险利率贴现,得 ()r t u S f Su f e-??-=?- 将 u d f f Su Sd - ?= -代入上式就可得到: () 1 r t u d f e pf p f -? =+- ?? ?? S

第八章--蒙特卡洛期权定价方法

第八章蒙特卡洛期权定价方法 在金融计算中蒙特卡洛模拟是一种重要的工具:可以用来评估投资组合管理规则、为期权定价、模拟套期保值交易策略、估计风险价值。蒙特卡洛方法主要的优势在于对大多数情况都适用、易于使用、灵活。它把随机波动性和奇异期权的很多复杂特性都考虑进去了,更倾向于使用处理高维问题,而网格和PDF分析框架却不适用。蒙特卡洛模拟潜在的劣势在于它的计算量大。多次的重复需要完善我们所关注的置信区间的估计。利用方差缩减技术和低差异序列可以部分的解决这个问题。本章的目的是解释这些技术在一些例子上的应用,包括一些路径依赖型期权。这章是第四章的延伸,在第四章里我们讨论了蒙特卡洛积分。需要强调的是蒙特卡洛方法是概念上的一个数字积分工具,即使我们适用更多的“模拟”或“抽样”。在使用低差异序列而不是伪随机生成时这需要牢记。 如果可能,我们可以把模拟的结果和分析公式进行比较。很明显我们这样做的目标是一个纯粹的教学。如果你要计算一个矩形房间的面积,你只需要用房间的长度乘以房间的宽度即可,而不必要计算有多少次一块标准砖与这个表面相匹配。尽管如此,你还是应该学会在一些简单案例中首先适用模拟的方法,在这些简单的例子中我们可以检验答案的一致性;更进一步,我们也要看为达到方差减小的目的分析公式可用于的模拟期权可能更有力的控制变量。 蒙特卡洛应用的出发点是生成样本路径,这个生成的样本路径给予一个描述价格(或利率)动态的随机微分方程。在8.1节我们解释几何布朗运动的路径生成;

在一个具体例子中模拟两个对冲策略,我们也会讨论布朗桥,它是适时推进模拟样本的一个替代方案。在8.2节将讨论交换期权,它被用作为一个如何将这种方法推广到多维过程的一个简单实例。在8.3节我们考虑一个弱路径依赖型期权的例子,这是个下跌敲出看跌期权;我们加入了有条件的蒙特卡洛和为减小方差抽样的重要性。在8.4节将讨论到强路径依赖型期权,同时我们证明了运用控制变量和低差异序列为算术平均亚式期权定价。我们以概述由蒙特卡洛抽样产生的估计期权敏感性的基本问题来结束本章;在8.5节我们考虑一个普通的看涨期权A的简单案例。在第10.4节将讨论到随机模拟期权定价的另一个应用,它应用于美式期权;而一个简单的模拟方法在早期的应用中不可实行,并且这个问题在随机动态优化的框架里被强制转换。 8.1 路径生成 蒙特卡洛期权定价方法的应用的出发点是对样本基本因素路径的产生。对于一般的期权就像在第四章里面一样不需要产生路径:只需要关注标的资产到期日的价格。但是如果路径依赖型期权,我们就需要整条路径或者至少需要在给定时刻的一系列价值。如果服从几何布朗运动,情况的处理就非常简单。事实上,必须认识到在路径生成中有两个误差源:样本误差、离散误差。 样本错误时因为蒙特卡洛方法的随机性,这个问题可以通过减小方差的办法得到缓解。为了理解什么是离散错误,我们考虑一个典型的离散连续时间模型,例如:伊藤随机微分方程:

医疗保险基本原理

医疗保险基本原理 第四章医疗保险基本原理 重点难点 第一节风险与保险 一(风险的概念及特点 (一)风险的概念及特征 风险是指在一定的客观条件下、在特定的期间内不幸事件或潜在损失发生的可能性。当某事件的结果存在多种可能,且实际结果不能预知时,就认为有风险。 风险具有以下特点: 1)风险存在的客观性 2)风险存在的普遍性 3)风险发生的损失性 4) 某一具体风险发生的不确定性 5) 大量风险发生的规律性 (二)风险的程度 风险的程度反映了损失发生的不确定性和严重性的大小。损失的不确定性与风险程度呈正相关关系,即损失发生的不确定性越大,风险就越大,反之,亦然。损失的严重性也与风险程度呈正相关关系,即损失的严重性越大,风险就越大,反之,亦然。当损失发生概率相同时,损失严重性大表明风险的程度高。因此,损失发生的可能性和损失一旦发生的严重性构成了人们对风险的重视程度,即所谓的风险的程度。 在损失严重程度一定的情况下,当风险发生的概率在50%时,导致损失发生的不确定性最大,即损失发生的概率最大,因而风险也就最大。

(三)风险的类型 1(风险的分类 1)根据风险的损害对象可将风险分为人身风险、财产风险与责任风险 人身风险是指因人的死亡、疾病、残疾、失业或年老无依无靠而遭受损失的不确定状态。 财产风险是指因财产发生损毁、贬值或灭失而使财产的所有者遭受损失的不确定状态。 责任风险是指人们因过失或侵权行为造成他人财产毁损或人身伤亡后,在法律上必须负有经济赔偿责任的不确定状态。 2)根据风险的起源与影响可将风险分为基本风险与特定风险 基本风险是指由非个人的或至少是因个人难以阻止的因素所引起的、且通常带来较大范围损失的不确定状态。这种风险从本质上来说是不易防止的。 特定风险是指由特定因素引起的、通常是由某些个人或某些家庭承担损失的不确定状态。这类风险从本质上来说相对较易控制。 3)根据风险所导致的后果可将风险分为纯粹风险与投机风险 纯粹风险是指只有损失机会而无获利机会的不确定状态。纯粹风险所导致的后果只有两种:或者损失,或者无损失,但没有获利的可能性。 投机风险是指既存在损失可能性也存在获利可能性的不确定状态。投机风险所导致的后果有三种:损失、获利和无变化。 通常只有纯粹风险才是可保风险,它是保险产生和存在前提。 2(处理纯粹风险的方法 通常处理纯粹风险的方法有以下几种: 1)回避风险

5蒙特卡洛方法模拟期权定价

材料五:蒙特卡洛方法模拟期权定价 1.蒙特卡洛方法模拟欧式期权定价 利用风险中性的方法计算期权定价: ?()rt T f e E f -= 其中,f 是期权价格,T f 是到期日T 的现金流,?E 是风险中性测度 如果标的资产服从几何布朗运动: dS Sdt sdW μσ=+ 则在风险中性测度下,标的资产运动方程为: 2 0exp[()]2T S S r T σ=-+ 对于欧式看涨期权,到期日欧式看涨期权现金流如下: 2 (/2)max{0,(0)}r T S e K σ-+- 其中,K 是执行价,r 是无风险利率,σ是标准差, ε是正态分布的随机变量。 对到期日的现金流用无风险利率贴现,就可知道期权价格。 例1 假设股票价格服从几何布朗运动,股票现在价格为50,欧式期权执行价格为52,无风险利率为0.1,股票波动标准差为0.4,期权的到期日为5个月,试用蒙特卡洛模拟方法计算该期权价格。 下面用MATLAB 编写一个子程序进行计算: function eucall=blsmc(s0,K,r,T,sigma,Nu) %蒙特卡洛方法计算欧式看涨期权的价格 %输入参数 %s0 股票价格 %K 执行价 %r 无风险利率 %T 期权的到期日 %sigma 股票波动标准差 %Nu 模拟的次数 %输出参数 %eucall 欧式看涨期权价格 %varprice 模拟期权价格的方差 %ci 95%概率保证的期权价格区间

randn('seed',0); %定义随机数发生器种子是0, %这样保证每次模拟的结果相同 nuT=(r-0.5*sigma^2)*T sit=sigma*sqrt(T) discpayoff=exp(-r*T)*max(0,s0*exp(nuT+sit*randn(Nu,1))-K) %期权到期时的现金流 [eucall,varprice,ci]=normfit(discpayoff) %在命令窗口输入:blsmc(50,52,0.1,12/5,0.4,1000) 2. 蒙特卡洛方法模拟障碍期权定价 障碍期权,就是确定一个障碍值b S ,在期权的存续期有可能超过该价格,也可能低于该价格,对于敲出期权而言,如果在期权的存续期标的资产价格触及障碍值时,期权合同可以提前终止执行;相反,对于敲入价格,如果标的资产价格触及障碍值时,期权合同开始生效。 当障碍值b S 高于现在资产价格0S ,称上涨期权,反之称下跌期权。 对于下跌敲出看跌期权,该期权首先是看跌期权,股票价格是0S ,执行价格是K ,买入看跌期权就首先保证以执行价K 卖掉股票,下跌敲出障碍期权相当于在看跌期权的基础上附加提前终止执行的条款,容是当股票价格触及障碍值b S 时看跌期权就提前终止执行。因为该期权对于卖方有利,所以其价格应低于看跌期权的价格。 对于下跌敲出看跌期权,该期权首先是看跌期权,股票价格是0S ,执行价格是K ,买入看跌期权就首先保证以执行价K 卖掉股票,下跌敲出障碍期权相当于在看跌期权的基础上附加提前终止执行的条款,容是当股票价格触及障碍值b S 时看跌期权就提前终止执行。因为该期权对于卖方有利,所以其价格应低于看跌期权的价格。 对于下跌敲入看跌期权,该期权首先是看跌期权,下跌敲出障碍期权相当于在看跌期权的基础上附加提前何时生效的条款,容是当股票价格触及障碍值b S 时看跌期权开始生效。 当障碍值b S 确定时,障碍期权存在解: 4275{()()[()()]}rT P Ke N d N d a N d N d -=--- 03186{()()[()()]}S N d N d b N d N d ---- 其中 212/0()r b S a S σ-+=, 212/0 ()r b S b S σ+=, 2 1d =

期权定价理论

期权定价理论 期权是一种独特的衍生金融产品,它使买方能够避免坏的结果,同时,又能从好的结果中获益。金融期权创立于20世纪70年代,并在80年代得到了广泛的应用。今天,期权已经成为所有金融工具中功能最多和最激动人心的工具。因此,了解期权的定价对于了解几乎所有证券的定价,具有极其重要的意义。而期权定价理论被认为是经济学中唯一一个先于实践的理论。当布莱克(Black )和斯科尔斯(Scholes )于1971年完成其论文,并于1973年发表时,世界上第一个期权交易所——芝加哥期权交易所(CBOE )才刚刚成立一个月(1973年4月26日成立),定价模型马上被期权投资者所采用。后来默顿对此进行了改进。布莱克—斯科尔斯期权定价理论为金融衍生产品市场的快速发展奠定了基础。 期权定价理论并不是起源于布莱克—斯科尔斯定价模型(以下记为B —S 定价模型)。在此之前,许多学者都研究过这一问题。最早的是法国数学家路易·巴舍利耶(Lowis Bachelier )于1900年提出的模型。随后,卡苏夫(Kassouf ,1969年)、斯普里克尔(Sprekle ,1961年)、博内斯(Boness ,1964年)、萨缪尔森(Samuelson ,1965年)等分别提出了不同的期权定价模型。但他们都没能完全解出具体的方程。本讲主要讨论以股票为基础资产的欧式期权的B —S 定价理论。 一、预备知识 (一)连续复利 我们一般比较熟悉的是以年为单位计算的利率,但在期权以及其它复杂的衍生证券定价中,连续复利得到广泛的应用。因而,熟悉连续复利的计算是十分必要的。 假设数额为A 的资金,以年利率r 投资了n 年,如果利率按一年计一次算,则该笔投资的终值为 n r A )1(+。如果每年计m 次利息,则终值为:mn m r A )1(+ 。 当m 趋于无穷大时,以这种结果计息的方式就称为连续复利。在连续复利的情况下,金额A 以利率r 投资n 年后,将达到:rn Ae 。 对一笔以利率r 连续复利n 年的资金,其终值为现值乘以rn e ,而对一笔以利率r 连续复利贴现n 年的资金,其现值为终值是乘上rn e -。 在股票投资中,我们一般都以连续复利计息。也就是说,现在金额为S 投资股票,期望以复利μ计息,经过T 时期后(T 一般以年为单位),股票的期望价格为:T T Se S μ=,从而可得: S S T T ln 1= μ。也就是说,股票价格的期望收益率为股票价格比的对数。

B-S期权定价公式复习进程

Black-Scholes 期权定价模型 一、Black-Scholes 期权定价模型的假设条件 Black-Scholes 期权定价模型的七个假设条件如下: 1. 风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。S 遵循几何布朗运动,即dz dt S dS σμ+=。 其中,dz 为均值为零,方差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率,σ则是股票价格的波动率,即证券收益率在单位时间内的标准差。μ和σ都是已知的。 简单地分析几何布朗运动,意味着股票价格在短时期内的变动(即收益)来源于两个方面:一是单位时间内已知的一个收益率变化μ,被称为漂移项,可以被看成一个总体的变化趋势;二是随机波动项,即dz σ,可以看作随机波动使得股票价格变动偏离总体趋势的部分。 2.没有交易费用和税收,不考虑保证金问题,即不存在影响收益的任何外部因素。 3. 资产价格的变动是连续而均匀的,不存在突然的跳跃。 4. 该标的资产可以被自由地买卖,即允许卖空,且所有证券都是完全可分的。 5. 在期权有效期内,无风险利率r 保持不变,投资者可以此利率无限制地进行借贷。 6.在衍生品有效期间,股票不支付股利。 7.所有无风险套利机会均被消除。

二、Black-Scholes 期权定价模型 (一)B-S 期权定价公式 在上述假设条件的基础上,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的Black-Schole 微分方程: rf S f S S f rS t f =??+??+??2 22221σ 其中f 为期权价格,其他参数符号的意义同前。 通过这个微分方程,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的定价公式:)()(2)(1d N Xe d SN c t T r ---= 其中, t T d t T t T r X S d t T t T r X S d --=---+=--++=σσσσσ12221))(2/()/ln() )(2/()/ln( c 为无收益资产欧式看涨期权价格;N (x )为标准正态分布变量的累计概率分布函数(即这个变量小于x 的概率),根据标准正态分布函数特性,我们有)(1)(x N x N -=-。 (二)Black-Scholes 期权定价公式的理解 1. 1()SN d 可看作证券或无价值看涨期权的多头;()2()r T t Ke N d --可看作K 份现金或无价值看涨期权的多头。 可以证明,1/()f S N d ??=。为构造一份欧式看涨期权,需持有1()N d 份证券多头,以及卖空数量为2 ()rT K e N d -的现金。 Black-Scholes 期权定价公式用于不支付股利的欧式看涨期权的定价。 注意: 该公式只在一定的假设条件下成立,如市场完美(无税、无交易成本、资产无限可分、允许卖空)、无风险利率保持不变、股价遵循几何布朗运动等。

相关主题
文本预览
相关文档 最新文档