当前位置:文档之家› 典型热塑性材料燃烧特性概述

典型热塑性材料燃烧特性概述

典型热塑性材料燃烧特性概述
典型热塑性材料燃烧特性概述

典型热塑性材料燃烧特性概述热塑性材料由于其具有加工方便、质量轻、防水、防腐蚀且价格低廉等优点,已被广泛用于家具、内装修及建筑外保温等领域。然而,由于热塑性材料特殊的物理化学性质,受热易软化熔融并产生滴落或流动,形成壁面火或油池火,从而加快火灾蔓延速度,扩大火灾面积,极大地提高了火灾危险性。

1 热塑性材料火灾危险性

热塑性材料在现代人类日常生产生活中扮演着十分重要的角色,以室内装饰材料为例有:用于顶棚装修的木龙骨、泡沫塑料板;用于墙面装修的可燃墙纸、墙布;用于地面装修的地毯;用于隔断装修的胶合板、纤维板;用于沙发、卧具的聚氨酯泡沫塑料等。由于含有C、H、O等助燃性元素,大部分热塑性材料都具有热解性和燃烧性,可见热塑性材料在给予人们方便美观的同时,也增加了建筑的火灾荷载,带来了巨大的火灾隐患。

近年来国内许多大型火灾事故都与热塑性材料密切相关。例如:

1、2000年12月25日晚,河南洛阳东都商厦发生特大火灾,309人死亡,直接经济损失275万元。火灾是因该商厦地下一层非法施工、施焊,人员违章作业,电焊火花溅落到地下二层家具商场的沙发和塑料泡沫等物品上造成的。

2、2009年2月9日晚,央视新大楼北配楼发生火灾,直接经济损失1。6亿元,造成了严重恶劣的社会影响,其主要原因是外立面保温材料(热塑性材料)被烟花引燃,可燃物熔融燃烧后向下流淌,形成了火势由上向下、由外向内蔓延的特殊燃烧现象。

热塑性材料火灾危害性表现在四个方面:

一是增加建筑物火灾荷载;

二是火焰可通过可燃物表面蔓延,热塑性材料还会形成流动的液体,扩大了火灾范围;

三是加速火灾到达轰燃时间;

四是热塑性材料燃烧产生的大量有毒性气体和烟雾。

2 研究现状

热塑性材料参与的火灾过程是极为复杂的,不仅与材料的热解机理、点燃特性和火蔓延特性有关,而且与室内环境包括室内的温度、热辐射强度和烟气流动等因素密切相关[2]。目前国内外针对几种典型热塑性材料如PP(聚丙烯)、PE(聚乙烯)、PS(聚苯乙烯)、PMMA(聚甲基丙烯酸甲脂)和PVC(聚氯乙稀)的研究主要有:

2.1 小尺寸模拟实验

早期对热塑性材料的研究工作大多针对PMMA和PU等在燃烧过程中不会出现熔融流淌行为的材料,所得结论并不适用于大多数典型热塑性材料。近年来,对于热塑性材料熔融滴落等燃烧行为的研究逐渐开展起来,主要通过多种热分析仪器如锥形量热仪、热重仪,测得材料的热释放速率、辐射热通量、质量损失速率、发烟量、烟气毒性、减光性以及点燃特性等,以分析典型热塑性材料的热解动力学行为。但由于聚合物自身的化学特性,无法保证材料各动力学参数的完全一致。国内外专家有关热塑性材料燃烧特性和规律的理论与实验研究成果非常丰富。如Ohlemiller等人利用小尺寸实验对聚合物粘性对熔融流动与可燃性进行了研究,研究了点火源与材料的间距、点火源的高度和材料与底部距离对火灾过程的影响。青岛科技大学张军在早期研究工作的基础上,对常见的热塑性材料的燃烧行为进行了实验研究,初步分析了熔融流动对向上火蔓延规律的影响,并且提出了利用锥形量热仪确定热塑性材料导热系数的方法。但是小尺寸实验与实际火灾情况差距相去甚远,只能为理论研究提供实验条件下的数据,适用于特定条件下热塑性材料燃烧性能之间的对比,不能作为材料在实际火场中燃烧行为的评估标准。

2.2 大尺寸模拟实验

由于热塑性材料特殊的物理化学性质,燃烧过程中可能出现熔融、滴落、坍塌等现象,而小尺寸实验无法完全展现出来,不能反映真实火灾情况。因此专家学者也设计并开展了一系列大尺寸的模拟实验,深入了解和分析热塑性材料的火灾行为。如Sherratt等人搭建了 Sedan and Kebab实验装置对热塑性材料进行火灾研究,指出材料滴落形成的油池火极大的增大了热塑性材料燃烧过程中的热量释放,并阐述了油池火与本体材料燃烧的相互促进作用。徐亮、谢启源等人利

用ISO9705实验平台及其配套装置,对PP、PE、PS、PMMA等热塑性材料在敞开空间条件下的燃烧行为进行了初步的实验研究。程旭东等人基于ISO9705设计并搭建实验平台,分析研究了不同火灾工况条件下的受限空间内热塑性材料燃烧行为的变化规律,并考虑样品厚度、通风状况等影响因素,建立受限空间内热塑性材料特殊燃烧行为的特征参数预测模型,与真实火灾条件下的实验结果进行了比较。

火灾环境中热塑性材料燃烧行为比普通固体材料要复杂很多,它在受热时会经历熔融、热解、气化等过程,形成流动液体,导致壁面火和油池火两种燃烧形式同时存在且相互影响。其融流特性会增加火灾的危害程度,也可能通过流动行为减少火源附近可燃物的荷载从而限制火灾发展。因此热塑性材料的火灾行为是十分复杂多变的,受环境因素的影响比热固性材料大得多,而热塑性材料的燃烧模型研究工作尚处于起步阶段,目前的研究也仅局限于小尺寸的二维热解过程,尚未建立成熟的热塑性材料燃烧模型。

3 典型热塑性材料热解特性

热塑性材料的燃烧过程可以划分为五个阶段:加热溶融、热分解、着火、燃烧和火焰传播。热塑性材料受热后温度升高,发生软化并熔融,其升温速率和材料的比热容、热导率以及材料发生物理化学变化过程吸收或放出热量的大小有关系;当温度升高到热分解或降解温度时,材料内部化学键开始断裂,生成可燃挥发物;热分解生成的可燃的挥发性气体在氧气充分的条件下,就可能受热着火;着火后能否维持持续的燃烧则取决于燃烧净值,即材料单位质量的燃烧热与加热单位相邻区域材料到达燃烧状态所需要的热量之差;材料继续燃烧时,首先发生燃烧的表层材料的燃烧火焰会向周围扩散。在这五个阶段中,加热熔融及热分解阶段决定了材料在火灾中的滴落流淌性能[1]。

热塑性材料在氧和高温作用下化学键出现全面断裂,导致材料物理化学性质显著改变,此过程被称为热塑性材料的氧化热解。受热过程中,环境温度低于玻

璃态温度(T

g )时,材料一般呈现刚硬特征;温度在玻璃态温度和粘流温度(T

f

之间时材料呈现高弹态;温度若高于粘流温度,分子链作为一个整体可以相对滑

动,在外力作用下,热塑性材料会像液体一样粘性流动,此时形变不可逆,称为粘流态。由于出现化学键断裂,热塑性材料的高分子将断裂成不同组分的小分子片段,每种小分子片段各有其物化特征,对于整个材料的燃烧特性将有复杂的影响。热塑性材料在燃烧条件下的热解机理大致有以下五种:解聚或拉锁反应、随机断裂、消除反应、交联反应和环化反应,大多数热塑性材料(PP、PE、PET等)都属于随机断裂[3]。

4 典型热塑性材料火灾特性

全尺寸实验是研究材料火灾行为特性的重要方法之一,其结果相对与中小尺寸实验更加贴近于真实火灾情况。目前针对热塑性材料的大尺寸实验主要有

ISO9750墙角火实验、基于ISO9750搭建实验平台的敞开空间实验和基于ISO9750搭建实验平台的封闭空间实验三类。研究结果表明,热塑性装饰材料存在两种燃烧形式,一种是流动燃烧,即形成油池火;一种是固体表面燃烧。油池火的发展控制流动燃烧过程,壁面火蔓延控制固体表面燃烧过程。流动燃烧中油池火所需的燃料通过两种方式获得:一是热塑性材料在热的作用下形成熔融的液体通过流动方式进入油池;二是热塑性材料受热变形,跌落进入油池[4]。热塑性材料火灾发展的主要影响因素有材料性质、尺寸、样品与油盆之间的距离、点火源轻度、通风条件等。其中通风条件对受限空间火灾发展过程影响更为显著。初步分析表明,材料的燃烧形式可能与材料的热解机理有关,以无规断裂为主要热解机理的材料在火灾中会表现出流动燃烧的形式,以解聚反应或消除反应为主要热解机理的材料在火灾中会表现出固体表面燃烧的形式[5]。

5 结束语

热塑性装饰材料因其质轻、便宜、加工方便和防水、耐腐蚀等优点,在建筑中得到了广泛的应用。然而热塑性装饰材料因其物理化学特性,在燃烧过程中会出现熔融流淌行为,形成壁面火和油池火,为火灾向邻区发展提供通道,扩大火灾面积并强化室内火灾,加速室内火灾的发展过程。热塑性材料火灾的一个最重要的特征就是固体壁面火和液体油池火同时存在且相互影响,这也是实验研究的一个难点,但目前的燃烧模型还无法模拟这种复杂的火灾过程。由于热塑性材料

还没有统一的测试标准,目前的研究装置和方法都是学者自行设计,这给研究成果的可以移植性和通用性带来了很大的困难,因此确定合适的热塑性材料测试方法,制定统一的测试标准是十分必要的。

常用塑胶材料特性大全

常用塑胶材料的特性及使用范围 一、丙烯腈-丁二烯-苯乙烯(ABS)(乳白色半透明) 优点: 1.力学性能和热性能均好,乳白色半透明,硬度高,表面易镀金属 2.耐疲劳和抗应力开裂、冲击强度高 3.耐酸碱等化学性腐蚀 4.加工成型、修饰容易 缺点: 1.耐候性差 2.耐热性不够理想, 3.拉伸率底 主要应用范围:机器盖、罩,仪表壳、手电钻壳、风扇叶轮,收音机、电话和电视机等壳体,部分电器零件、汽车零件、机械及常规武器的零部件 改性的ABS共聚物: 将ABS加入PVC中,可提高其冲击韧性、耐燃性、抗老化和抗寒能力,并改善其加工性能; 将ABS与PC共混,可提高抗冲击强度和耐热性;以甲基丙烯酸甲酯替代ABS中丙烯腈组分,可制得MBS塑料,即通常所说的透明ABS。 ABS/NYLON 耐热及抗化学性、流动性佳、低温冲击性、低成本 主要用于汽车车身护板、引擎室零组件、连接器、动力工具外壳 ABS/PVC PVC增加防火性、降低成本 ABS提供耐冲击性 主要用于家电用品零组件、事务机器零组件 ABS/PC 增加ABS耐热尺寸安定性、改善PC低温、后壁耐冲性、降低成本 主要用于打字机外壳、文字处理器、计算机设备之外壳、医疗设备零组件、小家电零组件、电子模具设计 1.排气

为防止在充模时出现排气不良、灼伤、熔接缝等缺陷,要求开设深度不大于0.04mm 的排气槽。 壁厚 0.8 mm至3.2 mm之间,典型的壁厚约在2.5mm左右,3.8以上需要结构性发泡。 圆角 最小在厚度的25%,最适当半径在厚度的60%。 收缩率:0.4%-0.7%一般取0.5% 加强筋:高<3T 宽度0.5T 筋间距>2T 脱模角:0.5°-1.5° 支柱加强筋高度4T,可达支柱高度的90%,宽度0.5T,长度2T, 支柱:外经是内径2倍 二、聚乙烯(PE) 优点: 1、柔软、无毒、透明易染色. 2、耐冲击、耐药品,绝缘性佳。 缺点: 1、不易押出、不易贴合 2、热膨胀系数高 4、耐温性差 用途: HDPE主要用于具有一定硬度和韧性的场合,如水管、燃气管,工业用化学容器、重包装袋和购物袋、洗发水瓶等。 LDP E绝缘体、胶管、胶布、胶膜、农用薄膜 最小壁厚0.5mm(LDPE),0.9mm(HDPE)(0.5-7.6mm一般1.6mm) 收缩率:HDPE 1.5%-3.5%取2% LDPE 1.5%-3%取1.5% 三、聚丙烯(PP) 优点: 1.半透明、刚硬有韧性.抗弯强度高,抗疲劳、抗应力开裂 2.质轻,无毒、无味,耐高温、绝缘性佳。(0.9G/cm3) 缺点 1、在0℃以下易变脆,不易接合;

热塑性高分子材料火灾特性及扑救对策——热塑性高分子材料火灾特点(4)示范文本

文件编号:RHD-QB-K5205 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 热塑性高分子材料火灾特性及扑救对策——热塑性高分子材料火灾

热塑性高分子材料火灾特性及扑救对策——热塑性高分子材料火灾特 点(4)示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1.燃烧表面呈立体型 热塑性高分子材料的粘流温度和分解温度比较低,而且燃烧热值比较高,引燃后燃烧放出大量热量很快将燃烧附近表面区域熔融、分解,使热塑性高分子材料(无论是成品、半成品,还是材料、制品的堆垛等)变形并使燃烧蔓延,燃烧表面呈不规则曲面形状。因此,热塑性高分子材料火灾与普通固体(如主要由天然纤维素组成的物质)火灾相似,呈立体燃烧特性,有别于液体火灾的平面燃烧性。

2.燃烧表面疏水性 由于热塑性高分子材料燃烧时的温度远超过其粘流温度和分解温度,而且熔融态高分子物质和分解产生的在燃烧温度下不气化的低分子量粘性物质一般难溶于水,因此燃烧表面物质类似于石蜡或沥青,与水的亲和力非常小,具有较大的疏水性。 3.燃烧迅速、蔓延快、燃烧表层温度高 热塑性高分子材料的氧指数(OI)一般都比较低(大都低于21%),而且燃烧热值和火焰温度非常高(如聚乙烯热值46KJ/g、火焰温度2120℃),比煤和木材的热值高许多(煤和木材热值分别为23KJ/g、15KJ/g,木材火焰温度800℃),当被引燃后,短时间内就会放出大量热量,促使高分子物质不断分解、燃烧,而且随着燃烧的不断进行,放出的热量更多,热塑性高分子材料很

常用材料特性

下面是本人总结的一些常用材料: *AL6061:(以镁、硅为主要合金元素)55-65/KG,中等强度<270Mpa,抗腐蚀性和机加工性好, 1.镀镍; 2.阳极氧化HRC42-55(a:阳极本色氧化,厚度8-15u;b:阳极黑色氧化,厚度20-30u;c:硬质阳极氧化,厚度12-20u;d:硬质阳极氧化黑,厚度20-30u)。 *6063:(以镁、硅为主要合金元素)60/kg,强度<200Mpa。 *7075:(以锌为主要合金元素)65/kg,高强度,是6061的2倍,可淬火但脆性抵其余性能和表面处理和6061同。 *2A12:(以铜为主要合金元素)35/kg,老标准LY12,强度470Mpa,耐热,制作高负荷零件,是硬铝合金中最常用。 *5A02:(以镁为主要合金元素)35/kg,老标准LF2,日本A5052,典型防锈合金,耐腐蚀性高、焊接性好、塑性高,强度245Mpa,制作中等负荷和焊接构件。 *Q235A:老标准A3钢,碳素结构钢,7/kg,易生锈, 一般钣金件做烤漆处理,步骤:a:如果生锈,先除锈;b:作漆前经过“脱脂-磷化-钝化”处理;c:喷底漆晾干,喷表面漆;d:对喷涂的工件进行烘烤,形成漆膜保护工件。处理喷漆,还可以“喷粉”“喷塑”喷粉和烤漆差不多;但喷塑比烤漆厚,里硬外软,但金属表面的附着力小均匀性差。 脱脂:除油脂; 磷化:使金属与磷酸或磷酸盐化学反应,在表面形成一层稳定磷酸盐膜的处理方法,防腐蚀;钝化:化学清洗,为了材料的防腐蚀。 *SUS304:52/KG,做钝化处理、表面拉丝;不建议做机加件,因为切削性不好、粘刀;钝化处理:对不锈钢全面酸洗钝化处理,清除污垢,处理后表面变成均匀银白色,大大提高不锈钢抗腐蚀性能 *SUS303:45/kg,切削性好,耐腐蚀性好,强度为6061的2倍。 *SUS440C:160/kg,含碳量高,淬火HRC >55,加工后做退磁处理,耐磨、耐腐蚀。退磁:SUS440C冷加工后带有磁性,用大功率的退磁器退磁。 *S136(H):35/kg,(瑞典)淬火硬度HRC45-55,表面可加工成镜面,加工后做退磁,耐腐蚀性和硬度比440C低;S136H是预加硬了的,硬度HRC30-35)。 * SUS316:不锈钢塑性、韧性、冷变性、焊接工艺性能良好,316高温强度好,316L高温性能稍差,但耐蚀性好于316,由于含碳量低且含有2%-3%的钼,提高了对还原性盐和各种无机酸和有机酸、碱、盐类的耐腐蚀性能,同时高温性强度。 *45钢:碳素结构钢中的中碳钢,8-12/kg,强度:600Mpa,为防锈,做氧化处理,俗称:发蓝、发黑。轴类零件用,如要求淬硬更高可用50钢。 *SKD11:46/kg,模具钢,淬火硬度>58,高硬度、高耐磨。 *ASP-23:520/kg,高硬度、高耐磨性、高韧性粉末高速钢,硬度高达HRC60-66,用于精密冲模的冲头。 *POM:俗称“赛钢”,白色45元/kg,黑65/kg,棒55/kg,防静电338/kg,耐磨性好。*UR:30/kg,俗称“优力胶”。*有机玻璃:(PMMA)28/kg,有一定强度和耐温变性,质较脆,表面硬度不够易擦毛。 *电木:(环氧树脂层压板)32/kg,电气绝缘性良好,作电器地板; *也可采用镀锌钢板做电器地板。

常用塑胶材料特性大全世界通用版

常用塑胶材料特性 一、丙烯腈-丁二烯-苯乙烯(ABS)(乳白色半透明) 优点: 1.力学性能和热性能均好,乳白色半透明,硬度高,表面易镀金属 2.耐疲劳和抗应力开裂、冲击强度高 3.耐酸碱等化学性腐蚀 4.加工成型、修饰容易 缺点: 1.耐候性差 2.耐热性不够理想, 3.拉伸率底 主要应用范围:机器盖、罩,仪表壳、手电钻壳、风扇叶轮,收音机、电话和电视机等壳体,部分电器零件、汽车零件、机械及常规武器的零部件 改性的ABS共聚物: 将ABS加入PVC中,可提高其冲击韧性、耐燃性、抗老化和抗寒能力,并改善其加工性能; 将ABS与PC共混,可提高抗冲击强度和耐热性;以甲基丙烯酸甲酯替代ABS中丙烯腈组分,可制得MBS塑料,即通常所说的透明ABS。 ABS/NYLON 耐热及抗化学性、流动性佳、低温冲击性、低成本 主要用于汽车车身护板、引擎室零组件、连接器、动力工具外壳 ABS/PVC PVC增加防火性、降低成本ABS提供耐冲击性 主要用于家电用品零组件、事务机器零组件 ABS/PC 增加ABS耐热尺寸安定性、改善PC低温、后壁耐冲性、降低成本 主要用于打字机外壳、文字处理器、计算机设备之外壳、医疗设备零组件、小家电零组件、电子

器材零组件、汽车头灯框、尾灯外罩、食物餐盘 ABS/SMA 增加耐热性、流动性、涂装性佳 主要用于电子零组件、罩子、家电器材零组件 模具设计 1.排气 为防止在充模时出现排气不良、灼伤、熔接缝等缺陷,要求开设深度不大于0.04mm 的排气槽。 壁厚 0.8 mm至3.2 mm之间,典型的壁厚约在2.5mm左右,3.8以上需要结构性发泡。圆角 最小在厚度的25%,最适当半径在厚度的60%。 收缩率:0.4%-0.7%一般取0.5% 加强筋:高<3T 宽度0.5T 筋间距>2T 脱模角:0.5°-1.5° 支柱加强筋高度4T,可达支柱高度的90%,宽度0.5T,长度2T, 支柱:外经是内径2倍 具体公司和型号: 日本油墨化学工业公司 ABS\MBS TI-500A 透明级价格较高,主要用于要求流动性好、小而透明、性能和ABS一样的零件台达化学工业股份有限公司 ABS 8540T 阻燃级,耐冲击强度、射出成型用、高流动性、难燃性可达UL94 1/16“V-0 主要用于商用机器、信息产品、肉薄或形状复杂产品。 余姚四塑阻燃塑料厂

常用材料特性及主要用途

常用材料特性及主要用途 常用印刷材料有:BOPP、KOP、MATOPP、NY、PET、PVC(收缩膜及扭结膜)、VMPVC(扭结)、PCO、PL 一、BOPP:中名为双向拉伸聚丙烯,它是经过双向拉伸后形成的薄膜,没有热封性能, 常用作印刷材料,特性如下: 1.透明度很高,故单层胶水袋及R袋常用材料; 2.抗拉强度、冲击强度、挺度优异; 3.耐寒性、耐热性优良,一般的冷冻食品可用此材料,使用温度范围是-40℃—120℃; 耐高温比PET差,所以制袋时容易出现起皱、翘边的现象; 4..隔水蒸汽的性能比PET材料好,隔氧性比PET材料差; 5..常用厚度为:20—40um,密度是:0.92g/c㎡ 6.用途:因其有优越性的防湿性能,适用于易吸潮的饼干、凉果、膨化食品、瓜子等表 层印刷材料。 7..燃烧及气味:OPP燃烧时没有烟,灭后有白烟,并有酸味; 二、KOP:中文名为涂改层双向拉伸聚丙烯,客观存在是OPP表层涂了一层约1—2um的聚 偏二氯乙烯(PVDC,也叫k涂层),所以KOP既有OPP的性能,又有PVDC的优点; 1.外观呈微黄色,具有优异有隔水蒸汽及隔氧性能; 2.具有良好的耐药品性能; 3.阻止异味透过性能好; 4.常用厚度为21—22um,密度为0.99 g/c㎡ 5.用途:常用于月饼、香肠等含有油性及脂肪的食品。 6.注:MB777或MB21中在KOP基础上再涂上一层亚加力,其具有KOP的性能,同时又 比KOP更进一步。 7.KOP膜纵横都没有拉伸强度; 8.燃烧:KOP燃烧时有白烟; 9.KOP透水、透氧、保香性能都很好; 10.其他:K涂层量:4.5g/㎡—5g/㎡,属水性,水即可溶解其。 三、MATOPP:中文名为双向拉伸聚丙烯消光膜,它是以消光材料和聚丙烯,通过共挤出方 式,并经双向拉伸而生产的具有消光效果的薄膜;反光度小,呈半透明状,是一种 新型的包装材料。 1.具有很好的雅光效果; 2.隔水、隔氧的性能比OPP好; 3.没有热封性能,故不能作复合材料; 4.常用厚度为20um,密度为0.92 g/c㎡ 5.用途:常用于膨化食品、月饼、纸巾、化妆品的包装: 四、PET:中文名为聚酯膜,是由对苯二甲酸乙醇酯的薄膜材料,和OPP一样,是 在纵向拉伸后进横向拉伸的二级双向拉伸薄膜,或纵横同时拉伸,而后热固定的拉 伸膜。性能及用途如下: 1.抗张力:因是双向拉伸薄膜,故具有很强的抗张力,而在印刷、复合等加工过

各种塑胶材质的特性(精)

各种塑膠材质的特性~~申请加精 一.ABS:丙烯睛—丁二烯—苯聚合物- t0 t e+ }5 Y& \ 1.三种成份的作用 1 O" ]+ X2 w- [$ q6 Z/ `/ N 丙烯晴(A)——使制品较高硬度,提高耐磨性耐热性。 丁二烯(B)——加强柔顺性,保持材料韧性、弹性及耐冲击强度。 苯乙烯(S)——保持良好成型性(流动性着色性)及保持材料刚性(注根据组分不同派生 出多种规格牌号)。: C9 U\9 E! g# }7 Y 2.ABS具有良好的电镀性,是所有塑料中电镀性最好的。 3.ABS较GPPS抗冲击强度显著提高。- U4 b* x( C4 O- a3 @- B8 P; g: 4.ABS原料浅黄色不透明,制品表面光洁度好。 5.ABS收缩率小,尺寸稳定。6 P}, {7 t/ \ 6.不耐有机溶剂:如溶于酮、醛、酯、及氧化烃而形成乳浊流(ABS胶浆)。 7.材料共混性能:1 Y- U6 I- O. e4 h- j# U ABS+PVC~~~提高韧性,耐燃性,抗老化。' x1 p L: K( k8 F7 ^. [ ABS+PC~~~提高抗冲击强度,耐热性。 ABS 的成型工艺 1.成型加工前需充分干燥,使含水率< 0.1%,干燥条件温度 85℃,时间3HRS以上。 2.ABS流动性较好,易产生啤塑披锋,注射压力在70~~100MPa,不可太大。9 z* C( Y/ a0 b8 b7 h( u 3.料筒温度不易超过250℃ 前料筒 160~~~210℃、中料筒170~~~190℃、后料筒 160~~~180℃过高温会引起 塑胶成份分解、使流动性降低。 4.模温40~~80℃,外观要求高,模温也要高。$ W) T6 T* |5 N% s 5.注射速度取中、低速为主。注射力80~~130MPa。 6.ABS内应力检验:以制品浸入煤油中2分钟不出现裂纹为准。 二.MBS—透明ABS、聚甲基丙烯酸酯—丁二烯—苯乙烯共聚物。 主要性质:透明、韧性好、耐酸碱、流动性好、易于成型着色、尺寸稳定。 三.SBS—K料(透明)。丁二烯与本乙烯聚合物(KR01、KR03)。 主要性质:透明、较好弹性、方便成型。! N$ F6 R- @% Z$ 四.PS料:聚苯乙烯(GPPS硬胶、HIPS改性聚本乙烯 GPPS—硬 HIPS——不碎。$ V! n% u/ F8 M" ~0 m6 }6 } A)在GPPS中加于适量(5~~20%)丁二烯橡胶改性、从而改善了硬胶的抗冲击性。3 |" F6 `4 r5 Y! }7 u' D B)颜色:GPPS--透明度高性碎,HIPS--不透明之乳白色或略显黄色。 C)HIPS与GPPS根据需要可混合啤塑,GPPS成份越多制品表面光泽越好、流动性& `9 |8 d* e U* A+ A. y+ j7 u& m 越好。HIPS:GPPS=7:3或8:2可保持足够强度及表面质量。3 m$ O' T" h0 Z) K- O *聚本乙烯的成型工艺

热塑性高分子材料火灾特性及扑救对策热塑性高分子材料火灾扑救对策

热塑性高分子材料火灾特性及扑救对策——热塑性高分子材料火灾扑救对策(5)对于热塑性高分子材料火灾,实战上一般都按固体火灾对待,偶尔也按可燃液体火灾处理。笔者认为,虽然这类火灾基本上没有爆炸危险性,扑救对策与其它固体火灾也基本相似,但是,由于同时具有立体型和疏水性的特点,这类火灾既不同于普通固体火灾,也不同于可燃液体火灾,扑救这类火灾不能简单地使用适用于普通固体火灾和可燃液体火灾的灭火剂,必须具体情况具体分析。因此,这里对热塑性高分子材料火灾对策分析仅讨论发生这类火灾时应怎样正确使用灭火剂进行扑救。 1.用水灭火 对于普通固体火灾,比如主要由天然纤维素组成的物质火灾,不管是木材、家具、纸张、纸箱,还是衣服、布料及其堆垛等,由于天然纤维素分子结构中含有大量亲水性的羟基(-OH),以及物质表面和内部疏松、多孔,使这类物质具有较强的亲水性和吸水性,虽然这类火灾发展蔓延也比较快,燃烧也比较猛烈,只要战术方法得当,用水很快就能控制火势、达到灭火的目的。

但是,由于热塑性高分子材料火灾具有疏水性和立体型,水射 向燃烧部位后,很快就会因为与燃烧表面亲和力不强而流淌下来、 离开燃烧部位。这样,不仅不能将空气与燃烧表面隔离、起不到灭 火作用,而且由于在燃烧表面停留的时间太短,起到的冷却作用也 很有限。即使射向燃烧表面的水有少量被热量蒸发而有一定的将氧 气浓度降低的作用,但一方面由于热塑性高分子材料的OI值比较低、表面温度远离于自燃温度,另一方面产生的蒸汽很快会被热流冲走,燃烧仍能够维持进行。何况水枪射水,不管是点射、开花射,还是 喷水雾,都不能使水将整个燃烧表面覆盖、使所有燃烧表面同时与 空气隔离而窒息灭火,也不能及时将整个燃烧区域冷却。除非火场 是在封闭空间内,可以用水雾灭火。相反,如果一到火场就急于向 火焰根部盲目射水反而会因水流对火焰的冲击作用使高温火焰飘向 附近部位、使火势扩展蔓延更快。 2.用泡沫灭火 由于表面活性剂的作用,泡沫与热塑性高分子材料燃烧表面物 质有一定亲和力。但由于一方面燃烧表面呈不规则立体曲面状使泡 沫向低处流淌;另一方面温度非常高的高分子燃烧表面在使泡沫与 燃烧表面的摩擦阻力变小的同时,还使泡沫液很快汽化而将泡沫破坏、降低泡沫与燃烧表面的亲和力。这样,虽然热塑高分子材料发

常用光学塑料性能

常用光学塑料-聚甲基丙烯甲酯PMMA 密度(kg/m3):(1.17~1.20)×10E3 nD ν:1.49 57.2~57.8 透过率(%):90~92 吸水率(%):0.3~0.4 玻璃化温度:10E5 熔点(或粘流温度):160~200 马丁耐热:68 热变形温度:74~109(4.6 ×10Pa) 68~99(18.5×10Pa) 线膨胀系数:(5~9)×10E-5 计算收缩率(%):1.5~1.8 比热J/kgK:1465 导热系数W/m K:0.167~0.251 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:出强氧化酸外,对弱碱较稳定 耐碱性:对强碱有侵蚀对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响日光及耐气候性:紫外透过滤73.5%

常用光学塑料-苯乙烯甲基丙烯酸甲酯共聚物 密度(kg/m3):(1.12~1.16)×10E3 nD ν:1.533 42.4 透过率(%):90 吸水率(%):0.2 玻璃化温度: 熔点(或粘流温度): 马丁耐热:<60 热变形温度:85~99 (18.5×105Pa) 线膨胀系数:(6~8)×10E-5 计算收缩率(%): 比热J/kgK: 导热系数W/m K:0.125~0.167 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:除强氧化酸外,对酸盐水均稳定耐碱性:对强碱有侵蚀,对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响

日光及耐气候性:紫外透过滤73.5% 常用光学塑料-聚碳酸酯PC 密度(kg/m3):1.2 ×10E3 nD ν:1.586(25) 29.9 透过率(%):80~90 吸水率(%):23CRH50% 0.15 水中0.35 玻璃化温度:149 熔点(或粘流温度):225~250(267) 马丁耐热:116~129 热变形温度:132~141(4.6×105Pa) 132138(18.5×105Pa) 线膨胀系数:6×10-5 计算收缩率(%):0.5~0.7 比热J/kgK:1256 导热系数W/m K:0.193 燃烧性m/min:自熄 耐酸性及对盐溶液的稳定性:强氧化剂有破坏作用,在高于60水中水解,对稀酸,盐,水稳定耐碱性:强碱溶液,氨和胺类能腐蚀和分解,弱碱影响较轻 耐油性:对动物油和多数烃油及其酯类稳定

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

热塑性塑料

热塑性塑料 热塑性塑料品种极多,即使同一品种也由于树脂分子及附加物配比不同而使其使用及工艺特性也有所不同。另外,为了改变原有品种的特性,常用共聚、交链等各种化学聚合方法在原有的树脂结构中导入一定百分比量的异种单体或高分子相等树脂,以改变原有树脂的结构成为具有新的使用及工艺特性的改性品种。例如,ABS即为在聚苯乙烯分子中导入了丙烯腈、丁二烯等异种单体后成为改性共聚物,也可称为改性聚苯乙烯,具有比聚苯乙烯优越的使用,工艺特性。由于热塑性塑料品种多、性能复杂,即使同一类的塑料也有仅供注射用或挤出用之分,故本章节主要介绍各种注射用的热塑性塑料。 一、工艺特性 (一)收缩率 热塑性塑料成形收缩的形式及计算如前所述,影响热塑性塑料成形收缩的因素如下1、塑料品种热塑性塑料成形过程中由于还存在结晶化形起的体积变化,内应力强,冻结在塑件内的残余应力大,分子取向性强等因素,因此与热固性塑料相比则收缩率较大,收缩率范围宽、方向性明显,另外成形后的收缩、退火或调湿处理后的收缩一般也都比热固性塑料大。 2、塑件特性成形时融料与型腔表面接触外层立即冷却形成低密度的固态外壳。由于塑料的导热性差,使塑件内层缓慢冷却而形成收缩大的高密度固态层。所以壁厚、冷却慢、高密度层厚的则收缩大。另外,有无嵌件及嵌件布局,数量都直接影响料流方向,密度分布及收缩阻力大小等,所以塑件的特性对收缩大小,方向性影响较大 3、进料口形式、尺寸、分布这些因素直接影响料流方向、密度分布、保压补缩作用及

成形时间。直接进料口、进料口截面大(尤其截面较厚的)则收缩小但方向性大,进料口宽及长度短的则方向性小。距进料口近的或与料流方向平行的则收缩大。 4、成形条件模具温度高,融料冷却慢、密度高、收缩大,尤其对结晶料则因结晶度高,体积变化大,故收缩更大。模温分布与塑件内外冷却及密度均匀性也有关,直接影响到各部分收缩量大小及方向性。另外,保持压力及时间对收缩也影响较大,压力大、时间长的则收缩小但方向性大。注射压力高,融料粘度差小,层间剪切应力小,脱模后弹性回跳大,故收缩也可适量的减小,料温高、收缩大,但方向性小。因此在成形时调整模温、压力、注射速度及冷却时间等诸因素也可适当改变塑件收缩情况。模具设计时根据各种塑料的收缩范围,塑件壁厚、形状,进料口形式尺寸及分布情况,按经验确定塑件各部位的收缩率,再来计算型腔尺寸。对高精度塑件及难以掌握收缩率时,一般宜用如下方法设计模具:(1)对塑件外径取较小收缩率,内径取较大收缩率,以留有试模后修正的余地。(2)试模确定浇注系统形式、尺寸及成形条件。 (3)要后处理的塑件经后处理确定尺寸变化情况(测量时必须在脱模后24小时以后)。(4)按实际收缩情况修正模具。 (5)再试模并可适当地改变工艺条件略微修正收缩值以满足塑件要求。 (二)流动性 1、热塑性塑料流动性大小,一般可从分子量大小、熔融指数、阿基米德螺旋线长度、表现粘度及流动比(流程 长度/塑件壁厚)等一系列指数进行分析。分子量小,分子量分布宽,分子结构规整性差,熔融指数高、螺旋线长 度长、表现粘度小,流动比大的则流动性就好,对同一品名的塑料必须检查其说明书判断

热固性塑料与热塑性塑料

热固性塑料与热塑性塑料

塑料是以高分子量合成树脂为主要成分,在一定条件下(如温度、压力等)可塑制成一定形状且在常温下保持形状不变的材料。 塑料按受热后表面的性能,可分为热固性塑料与热塑性塑料两大类。前者的特点是在一定温度下,经一定时间加热、加压或加入硬化剂后,发生化学反应而硬化。硬化后的塑料化学结构发生变化、质地坚硬、不溶于溶剂、加热也不再软化,如果温度过高则就分解。后者的特点为受热后发生物态变化,由固体软化或熔化成粘流体状态,但冷却后又可变硬而成固体,且过程可多次反复,塑料本身的分子结构则不发生变化。 塑料都以合成树脂为基本原料,并加入填料、增塑剂、染料、稳定剂等各种辅助料而组成。因此,不同品种牌号的塑料,由于选用树脂及辅助料的性能、成分、配比及塑料生产工艺不同,则其使用及工艺特性也各不相同。为此模具设计时必须了解所用塑料的工艺特性。 第一节热固性塑料

常用热固性塑料有酚醛、氨基(三聚氰胺、脲醛)聚酯、聚邻苯二甲酸二丙烯酯等。主要用于压塑、挤塑、注射成形。硅酮、环氧树脂等塑料,目前主要作为低压挤塑封装电子元件及浇注成形等用。 一、工艺特性 (一)收缩率 塑件自模具中取出冷却到室温后,发生尺寸收缩这种性能称为收缩性。由于收缩不仅是树脂本身的热胀冷缩,而且还与各成形因素有关,所以成形后塑件的收缩应称为成形收缩。 1.成形收缩的形式成形收缩主要表现在下列几方面: (1)塑件的线尺寸收缩由于热胀冷缩,塑件脱模时的弹性恢复、塑性变形等原因导致塑件脱模冷却到室温后其尺寸缩小,为此型腔设计时

必须考虑予以补偿。 (2)收缩方向性成形时分子按方向排列,使塑件呈现各向异性,沿料流方向(即平行方向)则收缩大、强度高,与料流直角方向(即垂直方向)则收缩小、强度低。另外,成形时由于塑件各部位密度及填料分布不匀,故使收缩也不匀。产生收缩差使塑件易发生翘曲、变形、裂纹,尤其在挤塑及注射成形时则方向性更为明显。因此,模具设计时应考虑收缩方向性按塑件形状、流料方向选取收缩率为宜。 (3)后收缩塑件成形时,由于受成形压力、剪切应力、各向异性、密度不匀、填料分布不匀、模温不匀、硬化不匀、塑性变形等因素的影响,引起一系列应力的作用,在粘流态时不能全部消失,故塑件在应力状态下成形时存在残余应力。当脱模后由于应力趋向平衡及贮存条件的影响,使残余应力发生变化而使塑件发生再收缩称为后收缩。一般塑件在脱模后10小时内变化最大,24 小时后基本定型,但最后稳定要经30~60天。通常热塑性塑料的后收缩比热固性大,挤塑

各种塑料材料及特性 全(建议收藏)

1、什么是塑料 塑料是在一定条件下,一类具有可塑性的高分子材料的通称,一般按照它的热熔性把它们分成:热固性塑料和热塑性塑料。它是世界三大有机高分子材料之一(三大高分子材料是塑料,橡胶,纤维)。 塑料的英文名是plastic,俗称:塑胶。 a)热塑性塑料。热塑性塑料是指加热后会熔化,可流动至模具,冷却后成型,在加热后又会 熔化的塑料。即可运用加热及冷却,使其产生可逆变化(液态?固态),即物理变化。通用的热塑性其连续使用温度在100℃以下,PP除外。 b)热固性塑料。热固性塑料是指在受热或其他条件下固化后不溶于任何溶剂,且不会用加热的方法使其再次软化的塑料。热固性塑料加热温度过高就会分解。如酚醛塑料(俗称电木)、环氧塑料等。 1)为什么有人称塑料为树脂? 人类最早认识的高分子材料都是树皮割破后流出的液体的提取物,呈粘稠状,也就是说它是树中提取的脂。因此,目前仍然有很多人把这种高分子材料叫树脂。但随着现代化工工业的发展,现在所用的高分子材料都是石油化工产品或石油化工的副产品或石油合成产品。现代的塑料已经不是树中提取物了,而是石化产品。 2)塑料的本色和牌号 一般的塑料合成以后,从合成塔出来,都是面粉状的粉末,不能用来直接生产产品,这就是人们常说的从树汁中提取出脂的成份是一样的,也称为树脂,也叫粉料,这是一种纯净的塑料,它流动性差,热稳定性低,易老化分解,不耐环境老化;因此,人们为了改善以上缺陷,在树脂粉中加入热稳定剂,抗老化剂,抗紫外光剂,加入增塑剂增加它的流动性,生产出适应各种加工工艺的,有特殊性能的,不同牌号的塑料品种。所以,同一种塑料品种有很多牌号,如:ABS就有注塑级的,有挤出级的,有电镀级的,有高刚性的,有很大柔韧性的等,这才是目 前人们普遍所使用的塑料,它们都经过造粒,都是颗粒料。每一种牌号的塑料,适应每一种工艺,或注塑,或挤出,或压延,或吸塑等。 3)塑料的分子结构 一般塑料的分子结构,都是线性的高分子链或带支链的高分子链段,有结晶和非结晶两种,塑料材料的性能与其结晶性能有很大的关系,与其分子结构有很大的关系,也与其组成的元素有很大的关系,一般来说,塑料的结晶率越大,其透光性就越差; 带脂基的,带氨基的,带醇基的,比较易吸水,比较容易因水的作用分解,加工时,也比较难烘干;(PA(聚酰胺),PC(聚碳酸酯),PET(聚对苯二甲酸乙二醇酯),PBT(聚对苯二甲酸丁二醇酯),PMMA(聚甲基丙烯酸甲酯)) 带烯烃基的,塑料的柔性较好。(PE(聚乙烯),PP(聚丙烯)) 带苯环的,塑料比较刚硬。(PS(聚苯乙烯)) 由于塑料的分子结构千差万别,形成了不同品种的,性能差异很大,不同牌号的上万种产品。

典型热塑性材料燃烧特性概述

典型热塑性材料燃烧特性概述热塑性材料由于其具有加工方便、质量轻、防水、防腐蚀且价格低廉等优点,已被广泛用于家具、内装修及建筑外保温等领域。然而,由于热塑性材料特殊的物理化学性质,受热易软化熔融并产生滴落或流动,形成壁面火或油池火,从而加快火灾蔓延速度,扩大火灾面积,极大地提高了火灾危险性。 1 热塑性材料火灾危险性 热塑性材料在现代人类日常生产生活中扮演着十分重要的角色,以室内装饰材料为例有:用于顶棚装修的木龙骨、泡沫塑料板;用于墙面装修的可燃墙纸、墙布;用于地面装修的地毯;用于隔断装修的胶合板、纤维板;用于沙发、卧具的聚氨酯泡沫塑料等。由于含有C、H、O等助燃性元素,大部分热塑性材料都具有热解性和燃烧性,可见热塑性材料在给予人们方便美观的同时,也增加了建筑的火灾荷载,带来了巨大的火灾隐患。 近年来国内许多大型火灾事故都与热塑性材料密切相关。例如: 1、2000年12月25日晚,河南洛阳东都商厦发生特大火灾,309人死亡,直接经济损失275万元。火灾是因该商厦地下一层非法施工、施焊,人员违章作业,电焊火花溅落到地下二层家具商场的沙发和塑料泡沫等物品上造成的。 2、2009年2月9日晚,央视新大楼北配楼发生火灾,直接经济损失1。6亿元,造成了严重恶劣的社会影响,其主要原因是外立面保温材料(热塑性材料)被烟花引燃,可燃物熔融燃烧后向下流淌,形成了火势由上向下、由外向内蔓延的特殊燃烧现象。 热塑性材料火灾危害性表现在四个方面: 一是增加建筑物火灾荷载; 二是火焰可通过可燃物表面蔓延,热塑性材料还会形成流动的液体,扩大了火灾范围; 三是加速火灾到达轰燃时间; 四是热塑性材料燃烧产生的大量有毒性气体和烟雾。 2 研究现状

热塑性弹性(TPE)材料常见的四大类x

热塑性弹性(TPE)材料常见的四大类 热塑性弹性体即TPE,是一种兼具橡胶和塑料性能的材料,在常温下显示橡胶弹性,在高温下能够塑化成型的高分子材料。 热塑性弹性体高分子链的基本结构特点是它同时串联或接枝某些化学组成不同的塑料段(硬段)和橡胶段(软段)。硬段间的作用力足以凝集成微区(如玻璃化微区或结晶微区),形成分子间的物理“交联”。软段则是自有旋转能力较大的高端性链段。 热塑性弹性体是弹性体重要组成,常见的热塑性弹性体有以下几类:苯乙烯类热塑性弹性体、聚氨酯类热塑性弹性体、聚烯烃类热塑性弹性体、聚酰胺类热塑性弹性体。 一、乙烯类热塑性弹性体 苯乙烯类嵌段共聚物型热塑性弹性体是最早研究的热塑性弹性体,是目前世界上产量最大、发展最快的一种热塑性弹性体。主要包括SBS、氢化SBS(SEBS)、SIS 和氢化SIS 等。 苯乙烯类热塑性弹性体室温下的性能与硫化橡胶相似,弹性模量异常高,并且不随相对分子质量变化。其凭借强度高、柔软、具有橡胶弹性、永久变形小的特点,在制鞋业、塑料改性、沥青改性、防水涂料、液封材料、电线、电缆、汽车部件、医疗器械部件、家用电器、办公自动化和胶粘剂等方面具有广泛的应用。 二、聚氨酯类热塑性弹性体 聚氨酯类热塑性弹性体(TPU)一般是由平均相对分子质量为600~4000 的长链多元醇(聚醚或聚酯)和相对分子质量为61~400 的扩链剂及多异氰酸酯加成聚合的线性高分子材料。TPU 大分子主链中长链多元醇(聚醚或聚酯)构成软段,主要控制其低温性能、耐溶剂性和耐候性,而扩链剂及多异氰酸酯构成硬段。由于硬、软段的配比可以在很大范围内调整,因此所得到的热塑性聚氨酯既可以是柔软的弹性体,又可以是脆性的高模量塑料,也可制成薄膜、纤维,是TPE 中唯一能够做到的品种。 TPU 具有极好的耐磨性、耐油性和耐寒性,对氧、臭氧和辐射等都有足够的抵抗能力,同时作为弹性体具有很高的拉伸强度和断裂伸长率,还兼具压缩永久变形小、承载能力大等优良性能。 TPU已在国民经济的许多领域如制鞋行业、医疗卫生、服装面料和国防用品等行业得到了广泛的应用,但其缺点是耐老化性差、湿表面摩擦系数低、容易打滑。而且TPU 具有强极性,在加工过程中,当剪切作用强烈时,内部易发热,从而发生降解,其熔体粘度对温度依赖性强,较小的温度变化就能引起其粘度的急剧变化,因而加工温度范围窄,再加之成本较高,价格昂贵,进一步限制了TPU 的推广应用。 三、聚烯烃类热塑性弹性体 聚烯烃类热塑性弹性体(TPO)主要包括嵌段共聚物、接枝共聚物和共混物3 种类型,其中采用茂金属催化剂合成的聚烯烃热塑性弹性体乙烯—辛烯共聚物(POE)和动态硫化法制备的热塑性动态硫化胶是两种主要的聚烯烃类热塑性弹性体。 1、聚烯烃热塑性弹性体乙烯—辛烯共聚物(POE) 茂金属聚烯烃弹性体乙烯—辛烯共聚物茂金属催化剂与一般传统的Ziegler-Natta 催化剂相比,具有理想的单一活性中心,因而能精密控制相对分子质量分布、共聚单体含量及其在主链上的分布和结晶结构。合成的聚合物是高立构规整聚合物,相对分子质量分布很窄,从而能准确控制聚合物的物理机械性能和加工性能。 采用茂金属催化剂合成的聚烯烃热塑性弹性体乙烯—辛烯共聚物(POE)一方面有很窄的分子量和短支链分布,因而具有优异的物理机械性能(高弹性、高强度、高伸长率)和良好的低温性能,又由于其分子链是饱和的,所含叔碳原子相对较少,因而具有优异的耐热化和抗紫

热塑性材料特性

第一章热塑性塑料成型 热塑性塑料品种每繁多,即使同一品种也由于树脂分子及附加物配比不同而使其使用及工艺特性也有所不同。另外,为了改变原有品种的特性,常用共聚、交联等各种化学方法在原有的树脂结构中导入一定百分比量的其它单体或高分子等,以改变原有树脂的结构成为具有新的改进物性和加工性的改性产品。例如,ABS即为在聚苯乙烯分子中导入了丙烯腈、丁二烯等第二和第三单体后成为改性共聚物,可看作称改性聚苯乙烯,具有比聚苯乙烯优异综合性能,工艺特性。由于热塑性塑料品种多、性能复杂,即使同一类的塑料也有仅供注塑用和挤出用之分,故本章节主要介绍各种注塑用的热塑性塑料。 1、收缩率 热塑性塑料成型收缩的形式及计算如前所述,影响热塑性塑料成型收缩的因素如下: 1.1塑料品种热塑性塑料成型过程中由于还存在结晶化形起的体积变化,内应力强,冻结在塑件内的残余应力大,分子取向性强等因素,因此与热固性塑料相比则收缩率较大,收缩率范围宽、方向性明显,另外成型后的收缩、退火或调湿处理后的收缩率一般也都比热固性塑料大。 1.2塑件特性成型时熔融料与型腔表面接触外层立即冷却形成低密度的固态外壳。由于塑料的导热性差,使塑件内层缓慢冷却而形成收缩大的高密度固态层。所以壁厚、冷却慢、高密度层厚的则收缩大。另外,有无嵌件及嵌件布局、数量都直接影响料流方向,密度分布及收缩阻力大小等,所以塑件的特性对收缩大小、方向性影响较大。 1.3进料口形式、尺寸、分布这些因素直接影响料流方向、密度分布、保压补缩作用及成型时间。直接进料口、进料口截面大(尤其截面较厚的)则收缩小但方向性大,进料口宽及长度短的则方向性小。距进料口近的或与料流方向平行的则收缩大。 1.4成型条件模具温度高,熔融料冷却慢、密度高、收缩大,尤其对结晶料则因结晶度高,体积变化大,故收缩更大。模温分布与塑件内外冷却及密度均匀性也有关,直接影响到各部分收缩量大小及方向性。另外,保持压力及时间对收缩也影响较大,压力大、时间长的则收缩小但方向性大。注塑压力高,熔融料粘度差小,层间剪切应力小,脱模后弹性回跳大,故收缩也可适量的减小,料温高、收缩大,但方向性小。因此在成型时调整模温、压力、注塑速度及冷却时间等诸因素也可适当改变塑件收缩情况。 模具设计时根据各种塑料的收缩范围,塑件壁厚、形状,进料口形式尺寸及分布情况,按经验确定塑件各部位的收缩率,再来计算型腔尺寸。对高精度塑件及难以掌握收缩率时,一般宜用如下方法设计模具: ①对塑件外径取较小收缩率,内径取较大收缩率,以留有试模后修正的余地。 ②试模确定浇注系统形式、尺寸及成型条件。 ③要后处理的塑件经后处理确定尺寸变化情况(测量时必须在脱模后24小时以后)。 ④按实际收缩情况修正模具。 ⑤再试模并可适当地改变工艺条件略微修正收缩值以满足塑件要求。 2、流动性 2.1热塑性塑料流动性大小,一般可从分子量大小、熔融指数、阿基米德螺旋线流动长度、表现粘度及流动比(流程长度/塑件壁厚)等一系列指数进行分析。分子量小,分子量分布宽,分

常用塑料材料的特性简介

常用塑料材料的特性简介 一、聚乙烯类塑料 聚乙烯是指由乙烯单体自由基聚合而成的聚合物,英文名简称PE。PE的合成原料来自石油,自1965年以来一直高居世界塑料树脂产量第一位。目前,聚乙烯的主要品种有: 低密度聚乙烯(LDPE),高密度聚乙烯(HDPE),线性低密度聚乙烯(LLDPE),(超)高分子量聚乙烯(UHMWPE),茂金属聚乙烯(m-PE) 还有其改性品种: 乙烯—乙酸乙烯酯(EVA)氯化聚乙烯(CPE)。 1、聚乙烯类塑料的结构性能 PE为线性聚合物,属于高分子长链脂肪烃;分子对称无极性,分子间作用力小,力学性能不高、电绝缘性好、熔点低、印刷性缓谩 E的结构规整,线性度高,因而易于结晶。结晶度从高到低排序:HDPE,LLDPE,LDPE。随结晶度的提高,PE制品的密度、刚性、硬度和强度等性能提高,但冲击性能下降。 (1)一般性能 PE树脂为无味、无毒的白色粉末或颗粒,外观呈乳白色,有似腊的手感;吸水率低,小于0.01%。PE膜透明,透明度随结晶度提高而下降。PE 膜的透水率低但透气性较大,不适于保鲜包装而适于防潮包装。PE易燃,氧指数仅为17?4,燃烧时低烟,有少量熔融滴落,火焰上黄下蓝,有石蜡气味。PE的耐水性较好。制品表面无极性,难以粘合和印刷,须经表面处理才可改善。 (2)力学性能 PE的力学性能一般,其拉伸强度较低,抗蠕变性不好,耐冲击性能较好。PE的耐环境应力开裂性不好,但随分子量增大而改善。PE的耐穿刺性好,并以LLDPE最好。 (3)热学性能 PE的耐热性不高,随分子量和结晶度的提高而改善。PE的耐低温性好,脆化温度一般可达-50℃以下;随分子量的增大,最低可达-140℃。PE 的线膨胀系数大,在塑料中属较大者。PE的热导率属塑料中较高者。 (4)电学性能 PE无极性,因此电性能十分优异。介电损耗很低,且随温度和频率变化极小。PE是少数耐电晕性好的塑料品种,介电强度又高,因而可用做高压绝缘材料。 (5)环境性能 PE具有良好的化学稳定性。在常温下可耐酸、碱、盐类水溶液的腐蚀,具体有稀硫酸、稀硝酸、任何浓度的盐酸、氢氟酸、磷酸、甲酸及乙酸等,但不耐强氧化剂如发烟硫酸、、浓硫酸和铬酸等。PE在60℃以下不溶于一般溶剂,但与脂肪烃、芳香烃、卤代烃等长期接触会溶胀或龟裂。温度超过60℃后,可少量溶于甲苯、乙酸戊酯、三氯乙烯、松节油、矿物油及石蜡中;温度超过100℃后,可溶于四氢化萘。 PE耐候性不好,日晒、雨淋都会引起老化,需加入抗氧剂和光稳定剂改善。2、聚乙烯类塑料的应用范围 (1)薄膜类制品 薄膜类制品是PE的最主要用途。LDPE树脂用于膜类制品可占50%以上,可用于食品、日用品、蔬菜、收缩、自粘、垃圾袋等轻质包装膜及农业用地膜、棚膜等。HDPE树脂用于膜类制品可占10%以上。因其薄膜强度高,主要用于重包装膜、撕裂膜及背心

热塑性高分子材料火灾特性及扑救对策热塑性高分子材料的热转变特性与燃烧形式

热塑性高分子材料火灾特性及扑救对策热塑性高分子材料的热转变特性与燃烧形式 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

热塑性高分子材料火灾特性及扑救对策——热塑性高分子材料的热转变特性与燃烧形式(3)1.热塑高分子材料的热转变特性 热塑性高分子材料在较低温度下都为刚性固体,按照是否结晶可分为结晶和非结晶(无定性)热塑性高分子材料。随温度升高,非结晶热塑性高分子材料先是在达到玻璃化温度(Tg)后发生软化、进入高弹态(类似皮革状),然后温度继续升高,达到粘流温度(Tf)后处于粘流态。结晶度较低(小于40%)的热塑性高分子材料,随温度升高,先在达到Tg后发生软化、进高弹态,然后温度继续升高,达到熔点(Tm)后成为粘性流体。结晶度较高(大于40%)的热塑性高分子材料,温度升高到Tg后不软化,达到Tm后才熔化为粘性流体。如果结晶高分子材料的分子量足够大(如超高分子量聚乙烯),无定性部分的Tf会大于结晶部分的Tm,那么温度升高到Tm后,先是成为高弹态,只有在温度超过Tf后才成为粘性流体,此时如果温度继续升高、达到分解温度(Td),热塑性高分子材料将发生化学分解。 一般情况下,大多数热塑性高分子材料的Tg小于150℃,Tm小于200℃,Tf小于250℃,Td小于350℃。由于燃烧时温度一般超过500℃,因此,发生火灾后,热塑性高分子都会先被加热到粘流态,并发生化学分解(化学分解机理主要为链式解聚和无规分解),生成单体、

二聚体、多聚体、小分子无规分解物以及其它小分子量粘性物质(如焦化产物等)。这些分解物中,有许多小分子量物质在燃烧温度下呈气态。 2.热塑性高分子材料燃烧形式 鉴于热塑性高分子材料具有上述热转变特性,发生火灾时燃烧表面上方的燃烧物质实际上是热塑性高分子材料分解的分子量较小、在燃烧温度下呈气态的分解物。因此,热塑性高分子材料火灾的燃烧形式呈气相燃烧。另外,燃烧表面呈现粘流态,这些表面粘流物质主要是熔融的高分子量物质以及在燃烧温度不挥发的小分子量分解物等。

相关主题
文本预览
相关文档 最新文档