第3章 函数逼近与曲线拟合
- 格式:ppt
- 大小:7.22 MB
- 文档页数:69
第三章 函数逼近与曲线拟合1 函数的逼近与基本概念1.1问题的提出多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有解析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设()f x 是[1,1]-上的光滑函数,它的Taylor 级数0()k k k f x a x ∞==∑,()(0)!k k f a k =在[1,1]-上收敛。
当此级数收敛比较快时,11()()()n n n n e x f x s x a x ++=-≈。
这个误差分布是不均匀的。
当0x =时,(0)0n e =,而x 离开零点增加时,()n e x 单调增加,在1x =±误差最大。
为了使[1,1]-的所有x 满足()()n f x s x ε-<,必须选取足够大的n ,这显然是不经济的。
插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。
更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。
如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。
由于实验数据的误差太大,不能用过任意两点的直线逼近函数。
如果用过5个点的4次多项式逼近线性函数,显然误差会很大。
实验数据真函数插值多项式逼近精确的线性逼近图11.2范数与逼近一、线性空间及赋范线性空间要深入研究客观事物,不得不研究事物间的内在联系,给集合的元素之间赋予某种“确定关系”也正是这样的道理.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将这样的集合称为空间.最常用的给集合赋予一种“加法”和“数乘”运算,使其构成线性空间.例如将所有实n 维数对组成的集合,按照“加法”和“数乘”运算构成实数域上的线性空间,记作n R ,称为n 维向量空间.类似地,对次数不超过n 的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域R 上一个线性空间,用n H 表示,称为多项式空间.所有定义在[,]a b 上的连续函数集合,按函数加法和数与函数乘法构成数域R 上的线性空间,记作[,]C a b .类似地,记[,]p C a b 为具有p 阶连续导数的函数空间.在实数的计算问题中,对实数的大小、距离及误差界等是通过绝对值来度量的.实践中,我们常常会遇到对一般线性空间中的向量大小和向量之间的距离进行度量的问题,因此有必要在一般线性空间上,赋予“长度”结构,使线性空间成为赋范线性空间.定义1 设X 是数域K 上一个线性空间,在其上定义一个实值函数,即对于任意,x y X ∈及K α∈,有对应的实数x 和y ,满足下列条件(1) 正定性:0x ≥,而且0x =当且仅当0x =;(2) 齐次性:x x αα=;(3) 三角不等式:x y x y +≤+;称为X 上的范数,定义了范数的线性空间就称为赋范线性空间.以上三个条件刻划了“长度”、“大小”及“距离”的本质,因此称为范数公理.对n X 上的任一种范数,n X ∀∈x,y ,显然有±≥-x y x y .n R 上常用的几种范数有:(1) 向量的∞-范数:1max i i nx ∞≤≤=x(2) 向量的1-范数:11n i i x ==∑x(3) 向量的2-范数:12221()n i i x ==∑x (4) 向量的p -范数:11()n p pi p i x ==∑x其中[1,)p ∈∞,可以证明向量函数()p N x x ≡是nR 上向量的范数. 前三种范数是p -范数的特殊情况(lim p p ∞→∞=x x ).我们只需表明(1).事实上1111111max max max n n p pp p i i i i i n i n i n i i x x x x ≤≤≤≤≤≤==⎛⎫⎛⎫≤≤≤ ⎪ ⎪⎝⎭⎝⎭∑∑及max 1p →∞=,故由数学分析的夹逼定理有1l i m ma x i p p i nx ∞→∞≤≤==x x 。
第三章 曲线拟合与函数逼近一.曲线拟合 1.问题提出:已知多组数据(),,1,2,,i i x y i N =,由此预测函数()y f x =的表达式。
数据特点:(1)点数较多。
(2)所给数据存在误差。
解决方法:构造一条曲线反映所给数据点的变化总趋势,即所谓的“曲线拟合”。
2.直线拟合的概念 设直线方程为y=a+bx 。
则残差为:ˆi i i e y y =-,1,2,,i N =,其中ˆi i ya bx =+。
残差i e 是衡量拟合好坏的重要标志。
可以用MATLAB 软件绘制残差的概念。
x=1:6;y=[3,4.5,8,10,16,20];p=polyfit(x,y,1); xi=0:0.01:7; yi=polyval(p,xi); plot(xi,yi,x,y, 'o'); y1=polyval(p,x); hold on for i=1:6plot([i,i],[y(i),y1(i)], 'r');end可以绘制出如下图形:三个准则: (1)max i e 最小 (2)1ni i e =∑最小(3)21N i i e =∑最小3.最小二乘法的直线拟合问题:对于给定的数据点(),,1,2,,i i x y i N =,求一次多项式y=a+bx ,使得总误差Q 最小。
其中()2211NNi i i i i Q e y a bx ====-+⎡⎤⎣⎦∑∑。
根据0,0.Q Qa b∂∂==∂∂ 22221222Ni i i i i i i Q y a b x y a y x b x ab =⎡⎤=++--+⎣⎦∑[]()12222Ni i i i i Q a y x b Na y b x a =∂=-+=-+∂∑∑∑ ()2212222Ni i i i i i i i i Q bx y x x a b x x y a x b =∂⎡⎤=-+=-+⎣⎦∂∑∑∑∑ 故有以下方程组(正则方程):2i iii i i aN b x y a x b x x y ⎧+=⎪⎨+=⎪⎩∑∑∑∑∑ 例1.给定数据表,求最小二乘拟合一次多项式解:N=5,51i i x =∑=702,51i i y =∑=758,521i i x =∑=99864,51i i i x y =∑=108396。
实验三 函数逼近与曲线拟合实验3.1(曲线逼近方法的比较) 问题提出:曲线的拟合和插值,是逼近函数的基本方法,每种方法具有各自的特点和特定的适用范围,实际工作中合理选择方法是重要的。
实验内容:考虑实验2.1中的著名问题。
下面的MATLAB 程序给出了该函数的二次和三次拟合多项式。
x=-1:0.2:1;y=1/(1+25*x.*x); xx=-1:0.02:1; p2=polyfit(x,y,2); yy=polyval(p2,xx); plot(x,y,’o’,xx,yy); xlabel(‘x’); ylabel(‘y’); hold on;p3=polyfit(x,y,3); yy=polyval(p3,xx); plot(x,y,’o’,xx,yy); hold off;适当修改上述MATLAB 程序,也可以拟合其他你有兴趣的函数。
实验要求:(1)将拟合的结果与拉格朗日插值及样条插值的结果比较。
(2)归纳总结数值实验结果,试定性地说明函数逼近各种方法的适用范围,及实际应用中选择方法应注意的问题。
实验3.2:(最小二乘拟合的经验公式和模型)1.(已知经验公式):某类疾病发病率为y ‰和年龄段x (每五年为一段,例如0~5岁为第一段,6~10岁为第二段……)之间有形如bxae y =的经验关系,观测得(1)用最小二乘法确定模型bxae y =中的参数a 和b (提示函数:lsqcurvefit ,lsqnonlin )。
(2)利用MATLAB 画出离散数据及拟合函数bxae y =图形。
(3)利用MATLAB 画出离散点处的误差图,并计算相应的均方误差。
2.(最小二乘拟合模型未知) 某年美国轿车价格的调查资料如表,其中i x 表示轿车的使用年数,i y 表示相应的平均价格,实验要求:试分析用什么形式的曲线来拟合表中的数据,并预测实验3.3(研究最佳平方逼近多项式的收敛性质)实验内容和要求:取函数xe xf =)(,在[-1,1]上以勒让德多项式为基函数,对于10,,1,0 =n 构造最佳平方逼近多项式)(x p n ,令)()()(x p x f x n n -=ε,将x x n ~)(ε的曲线画在一个图上。
---------------------------------------------------------------最新资料推荐------------------------------------------------------第三章函数逼近与快速傅里叶变换曲线拟合与最小二乘法第三章函数逼近与快速傅里叶变换曲线拟合与最小二乘法线性最小二乘拟合多项式拟合超定方程组的最小二乘解3.1 曲线拟合与最小二乘法一、拟合问题设变量 x, y 通过观测得 m 对数据我们希望用 m 对数据构造一个近似函数)(xp. 由于观测数据都带有观测误差, 而且一般m 也比较大, 用插值方法要求)(xp严格经过数据点不可取. 于是, 我们希望寻找的近似函数)(xp在各个 xi的函数值)(ixp与观测值yi尽可能接近, 这就是所谓的数据拟合问题. 二、最小二乘法的基本原理从整体考虑近似函数)(xp与所给数据点()),, 2 , 误差的大小,常用的方法有以下三种:一是误差绝对值的最大值imir0max,即误差向量的范数;二是误差绝对值的和=miir0||,即误差向量 r 的 1-范数;三是误差平方和=miir02的算术平方根,即考虑误差向量 r 的 2范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2范数的平方,因此在曲线拟合中常采用误差平方和=miir02来度量误差的整体大小。
数据拟合的具体作法:1 / 11对给定数据,在取定的函数类中,求 )(xp, 使误差的平方和最小,即min])([0202==i=i=miimiyxpr 从几何意义上讲,就是寻求与给定点的距离平方和为最小的曲线)(xpy =。
函数)(xp称为拟合函数或最小二乘解,求拟合函数)(xp的方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类可有不同的选取方法. 多项式拟合形式比较规范,方法也比较简单,但在实际应用中,针对所讨论问题的特点,拟合函数可能为其他类型,如指数函数、有理函数、三角函数等,这就是一般最小二乘拟合问题。
数值分析实验三:函数逼近与曲线拟合1曲线逼近方法的比较1.1问题描述曲线的拟合和插值,是逼近函数的基本方法,每种方法具有各自的特点和特定的适用范围,实际工作中合理选择方法是重要的。
考虑实验2.1中的著名问题。
下面的MATLAB程序给出了该函数的二次和三次拟合多项式。
x=-1:0.2:1;y=1./(1+25*x.*x);xx=-1:0.02:1;p2=polyfit(x,y,2);yy=polyval(p2,xx);plot(x,y,’o’,xx,yy);xlabel(‘x’);ylabel(‘y’);hold on;p3=polyfit(x,y,3);yy=polyval(p3,xx);plot(x,y,’o’,xx,yy);hold off;实验要求:(1) 将拟合的结果与拉格朗日插值及样条插值的结果比较。
(2) 归纳总结数值实验结果,试定性地说明函数逼近各种方法的适用范围,及实际应用中选择方法应注意的问题。
1.2算法设计对于曲线拟合,这里主要使用了多项式拟合,使用Matlab的polyfit函数,可以根据需要选用不同的拟合次数。
然后将拟合的结果和插值法进行比较即可。
本实验的算法比较简单,此处不再详述,可以参见给出的Matlab脚本文件。
1.3实验结果1.3.1多项式拟合1.3.1.1多项式拟合函数polyfit和拟合次数N的关系1 / 13首先使用polyfit函数对f(x)进行拟合。
为了便于和实验2.1相比较,这里采取相同的参数,即将拟合区间[-1,1]等分为10段,使用每一段区间端点作为拟合的数据点。
分别画出拟合多项式的次数N=2、3、4、6、8、10时,f(x)和多项式函数的图像,如图1所示。
Matlab 脚本文件为Experiment3_1_1.m。
Figure 1 多项式拟合与拟合次数N的关系可以看出,拟合次数N=2和3时,拟合效果很差。
增大拟合次数,N=4、6、8时,拟合效果有明显提高,但是N太大时,在区间两端附近会出现和高次拉格朗日插值函数类似的龙格现象。