当前位置:文档之家› 3-大体积混凝土水化热分析

3-大体积混凝土水化热分析

3-大体积混凝土水化热分析
3-大体积混凝土水化热分析

例题大体积混凝土水化热分析

2 例题. 大体积混凝土水化热分析

概要

此例题将介绍利用MIDAS/Gen做大体积混凝土水化热分析的整个过程,以及查看分析

结果的方法。

此例题的步骤如下:

1.简要

2.设定操作环境及定义材料

3.定义材料时间依存特性

4.建立实体模型

5.组的定义

6.定义边界条件

7.输入水化热分析控制数据

8.输入环境温度

9.输入对流函数

10.定义单元对流边界

11.定义固定温度

12.输入热源函数及分配热源

13.输入管冷数据

14.定义施工阶段

15.运行分析

16.查看结果

例题大体积混凝土水化热分析

1.简要

本例题介绍使用MIDAS/Gen 的水化热模块来进行大体积混凝土水化热分析的方法。例题模型为板式基础结构,对于浇筑混凝土后的1000个小时进行了水化热分析,其中管冷作用于前100个小时。(该例题数据仅供参考)

基本数据如下:

地基:17.6 x 12.8 x 2.4 m

板式基础:11.2 x 8.0 x 1.8 m

水泥种类:低热硅酸盐水泥(Type IV)

板式基础

地基

1/4模型

图1 分析模型

3

例题大体积混凝土水化热分析

4 2.设定操作环境及定义材料

在建立模型之前先设定环境及定义材料

1.主菜单选择文件>新项目

2.主菜单选择文件>保存:输入文件名并保存

3.主菜单选择工具>单位体系:长度 m,力 kN

图2 定义单位体系

4.主菜单选择模型>材料和截面特性>材料:

添加:定义新材料

材料号:1 名称:基础规范:GB(RC)

混凝土:C30 材料类型:各向同性

材料号:2 名称:地基设计类型:用户定义材料类型:各向同性

弹性模量:1e6 泊松比:0.2 线膨胀系数:1e-5 容重:18

5.主菜单选择工具>单位体系:长度 m,力 kgf,热度 kcal

6.主菜单选择模型>材料和截面特性>材料:

注:也可以通过程序右下

随时更改单位。

例题 大体积混凝土水化热分析

5

编辑:修改材料热特性数据 基础 比热:0.25 热传导率:2.3 地基 比热:0.2 热传导率:1.7

图3 定义材料

3.定义材料时间依存特性

1. 主菜单选择 模型>材料和截面特性>时间依存性材料(抗压强度):

添加:定义基础的时间依存特性

名称:强度发展 类型:设计规范 规范:ACI

混凝土28天抗压强度:3e4 KN/m 2

混凝土抗压强度系数a 4.5 b 0.95 2. 主菜单选择 模型>材料和截面特性>时间依存性材料连接:

强度进展:强度发展 选择指定的材料:1.基础 添加

例题大体积混凝土水化热分析

6

图4 定义材料时间依存特性

图5 时间依存性材料连接

4.建立实体模型

1.主菜单选择模型>节点>建立:

坐标1(0 0 0) 2(8.8 0 0) 3(8.8 6.4 0) 4(0 6.4 0)

2.主菜单选择主菜单选择模型>单元>建立:

单元类型:板 4节点类型:厚板材料:1:基础厚度:1

节点连接:1 2 3 4

注:

材料的收缩徐

变特性在水化

热分析控制中

定义。

例题 大体积混凝土水化热分析

7

3. 主菜单选择 主菜单选择 模型>单元>扩展:选择板单元

扩展类型:平面单元—>实体单元 目标:删除 单元类型:实体单元 材料:1:基础 生成形式:复制和移动 复制和移动:等间距 dxdydz :0 0 4.2 复制次数:1

图6 生成节点和临时板单元

图7 生成实体模型

单元细分及部分单元删除: 1.

主菜单选择 模型>单元>分割:选择实体单元 单元类型:实体单元 等间距 x 11 y 8 z 7 2.

主菜单选择 模型>单元>删除:

选择Front view 中单元 类型:选择 包括自由节点

注:

此处无需定义真实板厚,只是用于扩展成实体单元。

例题大体积混凝土水化热分析

8

选择Left view中单元类型:选择包括自由节点

图8 单元细分及部分单元删除

单元进一步细分:

主菜单选择模型>单元>分割:选择Front view中实体单元

单元类型:实体单元等间距 x 2 y 1 z 1 选择Front view中实体单元单元类型:实体单元等间距 x 1 y 2 z 1 选择Left view中实体单元

Front view

Left view

例题 大体积混凝土水化热分析

9

单元类型:实体单元 等间距 x 1 y 1 z 2 选择Left view 中实体单元

图9 生成最终实体模型

修改地基材料:

主菜单选择 模型>单元>修改单元参数

参数类型:材料号 形式:分配 定义 2:地基 选中图中下部单元

Front view

Left view

Left view

注:

模型几何形状、边界、荷载均对称,所以此处取1/4模型来模拟。

例题大体积混凝土水化热分析

10

图10 修改地基材料特性

5.组的定义

主菜单选择模型>组>定义结构组:

名称:基础添加名称:地基添加

在模型窗口中利用拖放功能分配各个组的单元

图11 定义结构组及分配单元

1:主菜单选择模型>组>定义边界组:

名称:约束条件添加名称:对称条件添加名称:固定温度条件添加名称:对流边界添加

例题大体积混凝土水化热分析

6.定义边界条件

1.主菜单选择窗口>新窗口

2.主菜单选择窗口>水平排序

3.主菜单选择模型>边界条件>一般支承:

边界组名称:约束条件添加 D-all

注:

实体单元每个节点

只有三个平动自由

度。

Front view

Left view

图12 定义约束条件

主菜单选择模型>边界条件>一般支承:

边界组名称:对称条件添加 Dx 选择Front view中单元

边界组名称:对称条件添加 Dy 选择Left view中单元

11

例题大体积混凝土水化热分析

12

图13 定义对称条件

7.输入水化热分析控制数据

主菜单选择分析>水化热分析控制:

最终施工阶段:最后施工阶段积分系数:0.5 初始温度:20o c

单元应力输出位置:高斯点类型:徐变和收缩徐变计算方法:有效系数

phi1:0.73 t<3 phi1:1 t>5 使用等效材龄和温度自重系数:-1

图14 输入水化热分析控制数据

8.输入环境温度

注:

这里取1/4模型需

输入对称边界条

件。

Front view Left view

例题 大体积混凝土水化热分析

13 主菜单选择 荷载>水化热分析数据>环境温度函数: 函数名称:环境温度 函数类型:常量 温度:20o

c

图15 输入环境温度函数

9.输入对流函数

主菜单选择 荷载>水化热分析数据>对流系数函数:

函数名称:对流系数 函数类型:常量 对流系数:12 kcal/m 2

*hr*[C]

图16 输入对流系数函数

例题大体积混凝土水化热分析

14 10.定义单元对流边界

1.主菜单选择窗口>新窗口

2.主菜单选择窗口>水平排序

3.主菜单选择荷载>水化热分析数据>单元对流边界:

边界组名称:对流边界对流系数函数:对流系数环境温度函数:环境温度选择:根据选择的节点

图17 定义单元对流边界

11.定义固定温度

主菜单选择荷载>水化热分析数据>固定温度:

边界组名称:固定温度条件温度:20o c

例题 大体积混凝土水化热分析

15

图18 定义固定温度

12.输入热源函数及分配热源

1.

主菜单选择 荷载>水化热分析数据>热源函数:

函数名称:热源函数 函数类型:设计标准 最大绝热温升:41 导温系数:759 2.

主菜单选择 荷载>水化热分析数据>分配热源: 热源:热源函数

图19 定义热源函数

Front view

Left view

例题大体积混凝土水化热分析

16

图20 分配热源

13.输入管冷数据

这里假设把冷却管设置在距基础底部0.9m高的位置。为了输入数据的方便,将相应位置的节点选择后激活。

主菜单选择荷载>水化热分析数据>管冷:

名称:管冷比热:1 kcal*g/KN*[C] 容重:1000 KN/m3流入温度:15[C] 流量:1.2 m3/hr 流入时间:开始 CS1 0 hr 结束 CS1 100 hr

管径:0.027 m 对流系数:319.55 kcal/m2*hr*[C] 选择:两点

图21 激活管冷节点

例题 大体积混凝土水化热分析

17

图22 定义管冷

14.定义施工阶段

主菜单选择 荷载>水化热分析数据>定义水化热分析施工阶段:

名称:CS1 初始温度:20o

c 时间:10 20 30 45 60 80 100 130 170 250 350 500 700 1000 添加

单元:地基 基础 边界:约束条件 对称条件 固定温度条件 对流边界

图23 定义施工阶段

例题大体积混凝土水化热分析

18 15.运行分析

主菜单选择分析>运行分析

16.查看结果

主菜单选择结果>水化热分析>温度

图24 温度分布

主菜单选择结果>分析结果表格>水化热分析>管冷节点温度

图25 管冷冷却水的温度变化表格

例题 大体积混凝土水化热分析

19

主菜单选择 结果>水化热分析>应力

图26 应力分布

主菜单选择 结果>水化热分析>图表

图27 混凝土内部时程应力图表

大体积混凝土水化热计算

10.3 球磨机混凝土水化热温度计算 1、最大绝热温升 (1)Th=(mc+K·F)Q/c·ρ (2) Th=mc·Q/c·ρ(1-eˉ-mt) 式中 Th----混凝土最大绝热温升(℃) mc---混凝土中水泥用量(kg/m3) F----混凝土活性掺合料用量(kg/m3) K----掺合料折减系数.取0.25~0.30 Q----水泥28d水化热(kJ/kg)见下表 ρ—混凝土密度,取2400(kg/m3) e----为常数,取2.718 t-----混凝土的龄期(d) m----系数,随浇筑温度改变,见下表 T1(t)=Tj+ Th·ε(t) 式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃) ε(t)----t龄期降温系数,见下表

3、球磨机基础底板第一步混凝土浇筑厚度为1.6m,温度计算如下。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数0.49计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p) (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=0.362; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量;(430kg/m3) c:混凝土的比热,c=0.97kj/(kg*k); p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升: 代入(1)得;Tn=mc*Q/(c*p)=430*375/(0.9*2400)=69.3℃ 代入(2)得: T3=69.3*0.662=45.88℃; T4=69.3*0.765=53.01℃; T5=69.3*0.836=57.93℃; T7=69.3*0.92=63.76℃; 4、球磨机底板混凝土内部最高温度计算: Tmax=Tj+Tt*δ=20+63.76*0.44=48.05℃ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃; Tt:t龄期时的绝热温升;

水化热讲解

第一章设计说明

第二章大体积混凝土承台水化热有限元分析 2.1 概论 2.1.1 大体积混凝土定义 目前国际上对大体积混凝土仍无一个统一的定义。就如美国混凝土学会的定义:任何就地现浇的混凝土,其尺寸到达必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂的,称之为大体积混凝土。又如日本建筑学会对大体积混凝土的标准定义:结构断面最小尺寸在80cm以上;水热化引起混凝土内的最高温度与外界气温之差,预计超过25℃的混凝土。而我国《大体积混凝土施工规范》认为,混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土属于大体积混凝土。 由以上可见,大体积混凝土主要是依靠结构物的断面尺寸和水化热引起的温度变化来定性的。 2.1.2 大体积混凝土温度裂缝成因 施工期间水泥的水化热作用,在其浇筑后将经历升温期、降温期和稳定期三个阶段。大体积混凝土自身有一定的保温性能,因此在升温期其内部温升幅度较其表层的温升幅度要大得多,而在降温期内部降温速度又比其表层慢得多,在这些阶段中,混凝土各部分的温度变形及由于其相互约束及外界环境温度约束的作用,在混凝土内产生的温度应力是相当复杂的。由于混凝土的抗拉能力比较弱,一旦温度应力超过混凝土所能承受的拉力极限值时,混凝土就会出现裂缝。 因此必需掌握其水化热的变化规律,从而为混凝土配合比的修改及养护方案的制定提供依据。 2.1.3 本章研究的主要内容 (一)利用MADIS有限元软件建立大体积混凝土承台模型,并对其进行仿 真水化热计算。 (二)对其水化热进行参数分析。

大体积混凝土施工技术浅谈论文

大体积混凝土施工技术浅谈 摘要:现代建筑中时常涉及到大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等。它的表面系数比较小,水泥水化热释放比较集中,内部温升比较快。混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。所以必须从根本上分析它,来保证施工的质量。 关键字;大体积混凝土,施工,控制 中图分类号:tv544+.91文献标识码:a文章编号: abstract: the modern buildings often involves the mass concrete construction, such as high-rise building foundation, large equipment foundation, water conservancy dam, etc. its surface coefficient are small, cement hydration heat release more concentrated, internal temperature rise faster. concrete inside and outside when large temperature difference, can make concrete produce temperature crack, affecting the structure and normal use. so must fundamentally analysis it, to ensure the construction quality. key word: mass concrete, construction, control 一、大体积混凝土相关概念介绍 大体积混凝土指的是最小断面尺寸大于1m以上的混凝土结构,其尺寸已经大到必须采用相应的技术措施妥善处理温度差值,合理

土木毕业论文大体积混凝土

土木毕业论文大体积混凝 土 Prepared on 21 November 2021

中国石油大学(华东)现代远程教育毕业设计(论文) 题目:浅谈建筑工程大体积混凝土施工 技术的应用研究 学习中心: 年级专业: 学生姓名:学号: 指导教师:职称: 导师单位: 中国石油大学(华东)远程与继续教育学院 论文完成时间:2016年12月3日 中国石油大学(华东)现代远程教育 毕业设计(论文)任务书 发给学员: 1.设计(论文)题目:浅谈建筑工程大体积混凝土施工技术的应用研究 2.学生完成设计(论文)期限:2016年12月27日至2017年7月31日 3.设计(论文)课题要求:论文主体要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。论文应文字流畅,语言准确,层次清晰,论点清楚,论据准确,论证完整、严密,有独立的观点和见解。毕业设计(论文)内容要理论联系实际,涉及到他人的观点、统计数据或计算公式的要标明出处,涉及到的计算数据要求准确。如因保密做过技术处理的数据需做说明。 4.实验(上机、调研)部分要求内容: 论文开题前应充分调研,以掌握目前研究的状况等;参与工程实践,列举工程实例进行分析。

5.文献查阅要求:应仔细查阅相关研究论文、参考书等相关资料。要求查阅10篇以上相关中外文献。6.发出日期:2016年12月27日 7.学员完成日期:2017年5月20日 指导教师签名: 学生签名: 摘要 随着经济的发展和科学技术的进步,建筑物越来越高,规模越来越大,大体积混凝土应用越来越普遍。因而,采取有效措施来保证大体积混凝土的质量显得尤为重要。由于大体积混凝土具有截面大、水泥用量大、内外温差大、温度收缩应力等特点,容易导致钢筋混凝土产生裂缝,影响建筑工程质量。因此对大体积混凝土施工技术进行研究是十分必要的。本论文分别从混凝土温度控制、配合比设计、二次振捣、浇筑与养护、温度监测、后浇带留置与处理、冬期施工等方面,浅谈建筑工程大体积混凝土施工技术的应用研究。 关键词:大体积混凝土,裂缝,施工技术,应用 目录

大体积混凝土水化热计算和混凝土抗裂验算(泰康人寿)

大体积混凝土水化热计算和混凝土抗裂验算 工程名称:泰康人寿工程 施工单位:中建一局集团建设发展有限公司 砼供应单位:北京铁建永泰新型建材有限公司 混凝土水化热计算 1 热工计算 1.1混凝土入模温度控制计算 (1)混凝土拌合温度宜按下列公式计算: T0=[0.92(m ce T ce+m s T s+m sa T sa+m g T g)+4.2T w(m w-ωsa m sa-ωg m g)+C w(ωsa m sa T sa+ωg m g T g)-C i(ωsa m sa+ωg m g)] ÷[4.2m w+0.92(m ce+m sa+m s+m g)]…………(1.1)式中T0 —混凝土拌合物温度(℃); m w---水用量(Kg); m ce---水泥用量(Kg); m s---掺合料用量(Kg); m sa---砂子用量(Kg); m g---石子用量(Kg); T w---水的温度(℃); T ce---水泥的温度(℃); T s---掺合料的温度(℃); T sa---砂子的温度(℃); T g---石子的温度(℃); ωsa---砂子的含水率(%); ωg---石子的含水率(%); C w---水的比热容(Kj/Kg.K); C i---冰的溶解热(Kj/Kg); 当骨料温度大于0℃时, C w=4.2, C i =0; 当骨料温度小于或等于0℃时,C w=2.1, C i=335。

(2)C40P6混凝土配比如下: 根据我搅拌站的设备及生产、材料情况,取T w =16℃,T ce=40℃,T s=35℃,ωsa=5.0%,ωg=0%, T sa=10℃,T g=10℃,C1=4.2,C i =0 则T0=[0.92(280×40+175×35+723×10+1041×10)+4.2×16(165- 5.0%×723-0%×1041)+4.2(5.0%×723×10+0%×1041×0)-0 (ωsa m sa+ωg m g)]÷[4.2×165+0.92(280+175+723+1041)]=[0.92*(11200+6125+7230+10410)+67.2*(165-36.2-0)+4.2*(361.5+0)-0]/[693+ 0.92*2219] =[0.92*34965+67.2*128.8+4.2*361.5]/2734 =[32167.8+8655.4+1518.3]/2730=42341.5/2734=15.5℃ (3)混凝土拌合物出机温度宜按下列公式计算: T1=T0-0.16(T0-T i) 式中T1—混凝土拌合物出机温度(℃); T i—搅拌机棚内温度(℃)。 取T i =16℃,代入式1.2得 T1=15.5-0.16(15.5-16) =15.4℃ (4)混凝土拌合物经运输到浇筑时温度宜按下列公式计算: T2=T1-(αt1+0.032n)(T1-T a)(1.3) 式中T2—混凝土拌合物运输到浇筑时的温度(℃); t1—混凝土拌合物自运输到浇筑时的时间(h); n—混凝土拌合物运转次数; T a—混凝土拌合物运输时环境温度(℃); α—温度损失系数(h-1) 当用混凝土搅拌车输送时,α=0.25; 取t1=0.3h,n=1,α=0.25 ,T a =15℃,代入式1.3得: T2=15.4-(0.25×0.3+0.032×1)×(15.4-15) =15.4-0.107*(-0.4)≈15.4℃

大体积混凝土水化热温度检测方案

大体积混凝土水化热温度检测方案

大体积混凝土水化热温度 检 测 方 案 方案编制人: 方案批准人: XX工程质量检测有限责任公司 20 年月日

目录 封面 (1) 一、测温描述 (3) 二、工程概况 (4) 三、依据标准规范及温控指标 (5) 四、测温仪器及设备 (5) 五、测温点的布置 (5) 六、温度测试元件的安装及保护 (7) 七、测温时间 (7) 八、温控措施与建议 (8) 九、监测程序 (9) 十、安全、文明措施 (9) 十一、质量保证体系及服务承诺 (10) 十二、委托单位的配合工作 (11) 十三、测温点布置图………………………………………附图页

XX名都工程2#、3#楼筏板基础 大体积混凝土水化热温度和温差 监测方案 一、测温描述 因大体积混凝土的截面尺寸较大,由荷载引起裂缝的可能性较小,但由于温度产生的变形对大体积混凝土却极为不利。 在混凝土硬化初期,水泥水化释放出较多热量,而混凝土与周围环境的热交换较慢,故混凝土内部的热量不断增加,使其内部温度不断升高,混凝土的体积膨胀变大。随着混凝土水化速度减慢,释放的热量也越来越少,积聚在混凝土中的热量由于热交换的进行慢慢减少,混凝土的温度降低,混凝土产生收缩。当此收缩受到约束时,混凝土内部产生拉应力(此应力简称为温度应力),此时混凝土的强度较低,如不足抵抗拉应力时,混凝土内部就产生了裂缝。 此外,混凝土的导热系数较小。混凝土内部热量不易散失,而表面热量易与周边环境进行热交换而减少,从而温度降低,就形成了混凝土里表温差。如温差较大,则混凝土表里收缩不一致,也使混凝土开裂。 因此,在大体积混凝土中,必须考虑温度应力和温差引起的不均匀收缩应力(简称温差应力)的影响。而温度应力和温差应力大小,又涉及到结构的平面尺寸,结构厚度,约束条件,周边环境情况,含筋率,混凝土各种组成材料的特性和物理力学性能,施工工艺等许多因素影响。故为了保证大体积混凝土施工质量,

大体积混凝土水化热计算

球磨机混凝土水化热温度计算 1、最大绝热温升 (1)Th=(mc+K·F)Q/c·ρ (2) Th=mc·Q/c·ρ(1-eˉ-mt) 式中 Th----混凝土最大绝热温升(℃) mc---混凝土中水泥用量(kg/m3) F----混凝土活性掺合料用量(kg/m3) K----掺合料折减系数.取~ Q----水泥28d水化热(kJ/kg)见下表 C---混凝土比热,取(kJ/kg·K) ρ—混凝土密度,取2400(kg/m3) e----为常数,取 t-----混凝土的龄期(d) m----系数,随浇筑温度改变,见下表 2、混凝土中心温度计算 T1(t)=Tj+ Th·ε(t) 式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃) ε(t)----t龄期降温系数,见下表

3、球磨机基础底板第一步混凝土浇筑厚度为,温度计算如下。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p) (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量;(430kg/m3) c:混凝土的比热,c=(kg*k); p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升: 代入(1)得;Tn=mc*Q/(c*p)=430*375/(*2400)=℃ 代入(2)得: T3=*=℃; T4=*=℃; T5=*=℃; T7=*=℃; 4、球磨机底板混凝土内部最高温度计算: Tmax=Tj+Tt*δ=20+*=℃ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃; Tt:t龄期时的绝热温升;

大体积混泥土重点难点及对策

大体积混凝土施工难点及对策研究 摘要: 1整体性要求很高,大体积混凝土施工的难点主要是:○一般不允许预留施工缝,往往都要 2结构的体积较大,求进行连续浇筑;○浇筑后的混凝土产生的水化热量很大,表面的水化热 会快速扩散到空气中而较快速冷却,内部的水化热却不容易扩散,从而形成内外较大的温差, 1为保证结构的整体性根据从而形成温度裂缝。针对大体积混凝土的施工难度主要对策为:○ 2从混凝土的材质、结构特点的不同可使用全面分层、分段分层、斜面分层等浇筑方案;○施 工中的养护、环境条件、结构设计、施工管理上控制温度裂缝。 关键词: 整体性;温差;温度裂缝; 引言:研究对大体积混凝土施工难点及对策主要为了应对现实施工中必须面对的施工难题,有效的解决这一难题有利于提高结构的整体性和施工的效率。前人已经对这一施工难题进行了大量的研究,并产生了应对该难题的一些施工方法对目前的施工帮助非常大,本人在前人的基础上研究相关难题。 1、大体积混凝土施工难点 1.1、施工时整体性要求高

1.1.1、混凝土在浇筑时应该连续浇筑,要求每一处的混凝土在初凝前就被后一部分的混凝土覆盖并捣实成整体。 1.2、温差造成温度裂缝。 1.1.1、早期温度裂缝。 1.1.2、混凝土水化是造成内外温差大而形成温度裂缝。 2、大体积混凝土施工对策 2.1.、根据大体积混凝土整体性要求较高,可以按照大体积混凝土的结构特点不同,设定全面分层、分段分层、斜面分层,取样检查等浇筑方案。 2.1.1、全面分层,但结构的平面面积不大时,可以将整个结构分为若干层进行浇筑。施工时第一层全部浇筑完毕以后再浇筑第二层,为保证结构的整体性,要求次层混凝土在前层混凝土初凝前浇筑完毕,如此连续浇筑直至结束。 2.1.2、分段分层,当结构的平面面积较大时,应该采用分段分层。就是将结构分为若干 段,每段分为若干层,先浇筑第一段各层,为了保证整体性要求在前段完成初凝之前对次段 完成浇筑并捣实成整体。其他各段如此依次完成浇筑直至结束。 2.1.3斜面浇筑,当结构的长度超过厚度的3背时,应该采用斜面浇筑。它的振捣工作是从 斜面下端开始,逐渐上移,同时要振动器应该与斜面垂直。

大体积混凝土水化热计算公式

九、基础混凝土浇筑专项施工方案 江苏广兴建设集团有限公司 基础混凝土浇筑专项施工方案 工程名称:镇江新区平昌新城配套公建工程 编制: 审核: 批准:

江苏广兴建设集团有限公司 镇江新区平昌新城配套公建工程项目部 2012年3月14日 基础混凝土浇筑专项施工方案 第一节、工程概况 一、工程概况 【本方案针对重要施工技术措施节点的分部分项工程的特点及要求进行编写】镇江新区平昌新城配套公建工程;工程建设地点:镇江新区平昌新城平昌路;属于框剪结构;地上12层;地下1层;建筑高度:44.65m;标准层层高:3.6m ;总建筑面积:25000平方米;总工期:450天。 本工程由镇江瑞城房地产开发有限公司投资建设,常州市规划设计院设计,镇江市勘察设计院地质勘察,镇江兴华工程建设监理有限责任公司监理,江苏广兴集团有限公司组织施工;由胡金祥担任项目经理,周道良担任技术负责人。 本工程地下室基础为带人防核6防6、二级防水等级要求的人防地下室,地下室主体结构混凝土强度等级:基础底板为C35,地下室顶板、梁为C30,地下室墙、柱均为C40,地下车道底板混凝土为C35,侧壁为C40。地下室底板、外墙、地下车道底板及侧板、单层车库顶板、覆土顶板及水池围护结构均需采用P6抗渗混凝土,地下室底板、外墙、顶板采用补偿收缩混凝土,后浇带采用膨胀混凝土,地下室混凝土在混凝土中掺入抗裂纤维。本工程地下室底板厚度600mm/800mm (主楼位置),地下室板墙厚度分别为200mm/250mm/300mm/450mm(详见地下

结施13墙定位及配筋图),板墙浇筑高度3.8m/4.4m(详见顶板施工图)。 【本工程地下室基础混凝土标号众多,抗渗、膨胀、纤维等外加剂的参数以及使用位置,不同型号混凝土浇筑节点处的处理要严格参照图纸结构总说明中4.1.3要求进行施工】 二、施工要求 1、确保混凝土施工在浇筑时期内安全、质量、进度都达到优质工程标准。 2、本工程混凝土浇筑施工质量技术措施控制重点:(1)、大体积混凝土水化热的处理;(2)、地下室后浇带防水措施。 第二节、编制依据 《混凝土结构工程施工质量验收规范》GB50204-2002 《混凝土外加剂应用技术规范》GB50119-2003 《地下工程防水做法》苏J02-2003 及江苏广兴集团有限公司以往类似工程的施工方案和本工程相关施工设计图纸等。 第三节、施工计划 材料与设备计划 本工程基础混凝土按后浇带划分三个区域:(1)以3#楼为主,2-F轴以北后浇带划分;(2)以2#楼为主,2-A轴以北后浇带划分;(3)以1#楼为主,2-A轴以南后浇带划分。 1、混凝土浇筑以商品混凝土泵送浇捣,投入4台振动棒,2台平板振动器,1台混凝土收光机,水泵4台,自吸泵2台等其他小型工具。机修人员必须在机械使用前对所有机械进行检查养护,在浇筑混凝土过程中,安排人员进行定时检修。 2、养护混凝土使用的塑料薄膜以及覆盖用的草袋,水管等养护材料。 3、对预拌混凝土的要求 与预拌混凝土搅拌站签订供应合同,对原材、外加剂、混凝土坍落度、初凝时间、混凝土罐车在路上运输等作出严格要求。 A、对预拌混凝土坍落度的要求 混凝土搅拌站根据气温条件、运输时间、运输道路的距离、混凝土原材料(水泥品种、外加剂品种等)变化、混凝土坍落度损失等情况来适当地调整原配合比,确保混凝土浇筑时的坍落度能够满足施工生产需要,确保混凝土供应质量。 当气候变化时,要求混凝土预拌站提供不同温度下、单位时间内坍落度损失值,以便现场能够掌握混凝土罐车在现场的停置时间。并且可以根据混凝土浇筑情况随时调整混凝土罐车的频率。浇筑混凝土时,搅拌站派一名调度现场调配车辆。同时鉴于现场处的特殊地理位置,项目安排人员协调现场内外的交通问题。 对到场的混凝土实行每车必测坍落度,实验员负责对当天施工的混凝土坍落度实行抽测,混凝土工长组织人员对每车坍落度进行测试,负责检查每车的坍落度是否符合预定预拌混凝土坍落度的要求,并做好坍落度测试记录。如遇不符合要求的,退回搅拌站,严禁使用。 B、对预拌混凝土的添加剂的要求

水化热参数化分析

一.概要 1. 水化热分析 浇筑混凝土时,水泥在水化过程中产生大量热量会使混凝土的温度升高。虽然随时间的推移混凝土的温度会慢慢冷却,但结构各个位置的温度下降速度不均匀,结构不同位置将发生相对温差,此温差会使混凝土发生温度应力。 温度裂缝发生类型 混凝土浇筑初期,因内部温度升高将发生膨胀,但混凝土表面的温度下降较快,相对应变较小,从而使混凝土表面产生拉应力。 混凝土内部不同的温度分布引起的不同的体积变化而导致的应力称为内部约束应力。此类拉应力裂缝主要发生在构件尺寸比较大的结构。 混凝土在高温状态下温度下降会发生收缩,但受到与其接触的已浇筑混凝土或者地基等的约束而产生的拉力,像这样变形受外部边界约束的状态称为外部约束。此类应力主要发生在像墙这样约束度比较大的结构中。 利用温度裂缝指数预测温度裂缝 韩国混凝土规范中使用温度裂缝指数(抗拉强度与发生的温度应力之比)i 值预测是否发生裂缝。 一般采用下面的值。 FEA 程序的水化热分析 水化热分析主要分为热传导分析和热应力分析。. 热传导分析主要计算水泥的水化过程中发热、传导、对流等引起的随时间变化的节点温度。将得到的节点温度作为荷载加载后,计算随时间变化的应力称为热应力分析。 因此通过查看温度分布可以看出输入数据是否有误,如果温度分布没有问题可说明输出的应力结果也是正确的。 2. 水化热参数化分析 水化热分析必须进行反复计算 大体积混凝土的温度裂缝可以利用温度裂缝指数(Crack Ratio, Icr) 来验 算。温度裂缝指数要满足结构的重要 性、功能、环境条件等因素的要求。 温度裂缝指数受水泥的类型、浇筑温度、养生方法等多因素的影响,所以需要对多种条件进行反复分析以找出最佳的浇筑方法。 参数化分析功能 为比较多种条件的分析结果需要建立 多个模型进行分析,分析结束后需要整理大量的分析结果、还要进行结果保存、对比等工作。 通过FEA 的水化热参数化分析功能,可以实现一个模型多种条件分析。可以大大减少单纯繁琐的反复分析过程,从而提高工作效率。 参数化分析的使用方法 首先建立一个基本模型,在基本模型里使用替换变量的方式定义分析工况。下图是把材料作为变量条件的示例,“Case I ”为将混凝土C24变更为C30的工况,“Case II ”为将混凝土C35变更为C40的工况。 | 参数化分析的构成 | 参数化分析里可以考虑的变量 在水化热参数化分析的功能里可以调整的变量有五个,较常用的调整方法具体如下。 ? 施工阶段: 降低浇筑高度缩小各阶段的温度差。浇筑间距过小的话很难 达到分段浇筑的效果,但如果太大分界面会产生较大的温差。. ? 对流边界:对流系数较低时,热量不容易对外流失,可以减少内外温差。 ? 材料:使用弹性模量大的材料时,抗拉强度也较大,可增大裂缝指数。 ? 发热特性:是变量中最为敏感的因素, 定义水化过程中发生的热量。 ? 是否考虑自重:使混凝土产生压应力的荷载,在一定程度上可以减少拉应力,但效果不明显。 温度裂缝指数与裂缝发生几率 | 裂缝指数(i) = 混凝土抗拉强度 发生的温度应力 ? 防止裂缝发生时:1.5 以上 ? 限制裂缝发生时:1.2 ~ 1.5 ? 限制有害裂缝发生时:0.7 ~ 1.2 | 内部约束产生的裂缝(放热时)| | 外部约束产生的裂缝(冷却时)|

大体积混凝土知识

大体积混凝土 我国《大体积混凝土施工规范》GB50496里规定:混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土,称之为大体积混凝土。 中文名 大体积混凝土 应用领域 水工建筑物;建筑工程 考虑指标 水热化 特点 结构厚实,混凝土量大工程复杂 不宜使用 硅酸盐水泥 目录 1定义 2特点 3裂缝 4配制 5区别 ?大区别 ?有裂缝 ?浇筑温度 ?降温速率 6裂缝原因 7温度控制 8养护作用 9有关措施 10施工技术 1定义 现代建筑中时常涉及到大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等。它主要的特点就是体积大,一般实体最小尺寸大于或等于1m.它的表面系数比较小,水泥水化热释放比较集中,内部升温比较快。混凝土内外温差

较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。所以必须从根本上分析它,来保证施工的质量。 美国混凝土学会(ACI)规定:“任何就地浇筑的大体积混凝土,其尺寸之大,必须要求解决水化热及随之引起的体积变形问题,以最大限度减少开裂”。 大体积混凝土一般在水工建筑物里常见,类似混凝土重力坝等。 2特点 结构厚实,混凝土量大,工程条件复杂(一般都是地下现浇钢筋混凝土结构),施工技术要求高,水泥水化热较大(预计超过25度),易使结构物产生温度变形。大体积混凝土除了最小断面和内外温度有一定的规定外,对平面尺寸也有一定限制。因为平面尺寸过大,约束作用所产生的温度力也愈大,如采取控制温度措施不当,温度应力超过混凝土所能承受的拉力极限值时,则易产生裂缝。 在建筑施工中常碰到大体积砼,为帮助项目部施工技术人员学习了解大体积砼防裂和温度控制方面的问题,加强施工技术方面的交流,本人根据自己的认识所及,参考了一些相关书籍,文章以问答的形式,先提出问题,再用通俗的语言和科学道理解答,问题解答也侧重于技术要领和做法,主要从实际出发,以实用为主,所提出的问题都是实际施工中常碰到的,目的是使项目部施工技术人员既知道大体积应该如何控制质量,又懂得为什么要进行防裂和温度控制的道理。 遇到对大体积砼防裂和温度控制方面问题不懂的地方,大家可带着问题翻阅,从中找到答案,增长学识,相信对提高实际工作能力有所帮助。1、大体积砼的定义 大体积砼指的是最小断面尺寸大于1m以上的砼结构,其尺寸已经大到必须采用相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝开展的砼结构。(该定义摘录自建筑施工手册缩印版第二版建筑施工手册第三版编写组1999年1月第二版中国建筑工业出版社) 3裂缝 大体积混凝土内出现的裂缝按深度的不同,分为贯穿裂缝、深层裂缝及表面裂缝三种。贯穿裂缝是由混凝土表面裂缝发展为深层裂缝,最终形成贯穿裂缝。 它切断了结构的断面,可能破坏结构的整体性和稳定性,其危害性是较严重的; 而深层裂缝部分地切断了结构断面,也有一定危害性;表面裂缝一般危害性较小。 但出现裂缝并不是绝对地影响结构安全,它都有一个最大允许值。处于室内正常环境的一般构件最大裂缝宽度≤0.3mm;处于露天或室内高湿度环境的构件最大裂缝宽度≤0.2mm。 对于地下或半地下结构,混凝土的裂缝主要影响其防水性能。一般当裂缝宽度在0.1~0.2mm时,虽然早期有轻微渗水,但经过一段时间后,裂缝可以自愈。 如超过0.2~0.3mm,则渗漏水量将随着裂缝宽度的增加而迅速加大。所以,在地下工程中应尽量避免超过0.3mm贯穿全断面的裂缝。如出现这种裂缝,将大大影响结构的使用,必须进行化学灌浆加固处理。

混凝土水化热分析

例题大体积混凝土水化热分析 2 例题. 大体积混凝土水化热分析 概要 此例题将介绍利用MIDAS/Gen做大体积混凝土水化热分析的整个过程,以及查看分析 结果的方法。 此例题的步骤如下: 1.简要 2.设定操作环境及定义材料 3.定义材料时间依存特性 4.建立实体模型 5.组的定义 6.定义边界条件 7.输入水化热分析控制数据 8.输入环境温度 9.输入对流函数 10.定义单元对流边界 11.定义固定温度 12.输入热源函数及分配热源 13.输入管冷数据 14.定义施工阶段 15.运行分析 16.查看结果

例题大体积混凝土水化热分析 1.简要 本例题介绍使用MIDAS/Gen 的水化热模块来进行大体积混凝土水化热分析的方法。例题模型为板式基础结构,对于浇筑混凝土后的1000个小时进行了水化热分析,其中管冷作用于前100个小时。(该例题数据仅供参考) 基本数据如下: 地基:17.6 x 12.8 x 2.4 m 板式基础:11.2 x 8.0 x 1.8 m 水泥种类:低热硅酸盐水泥(Type IV) 板式基础 地基 1/4模型 图1 分析模型 3

例题大体积混凝土水化热分析 4 2.设定操作环境及定义材料 在建立模型之前先设定环境及定义材料 1.主菜单选择文件>新项目 2.主菜单选择文件>保存:输入文件名并保存 3.主菜单选择工具>单位体系:长度 m,力 kN 图2 定义单位体系 4.主菜单选择模型>材料和截面特性>材料: 添加:定义新材料 材料号:1 名称:基础规范:GB(RC) 混凝土:C30 材料类型:各向同性 材料号:2 名称:地基设计类型:用户定义材料类型:各向同性 弹性模量:1e6 泊松比:0.2 线膨胀系数:1e-5 容重:18 5.主菜单选择工具>单位体系:长度 m,力 kgf,热度 kcal 6.主菜单选择模型>材料和截面特性>材料: 注:也可以通过程序右下 角 随时更改单位。

大体积混凝土施工质量控制论文 毕 业 论 文

网络教育学院 本科生毕业论文(设计) 题目:大体积混凝土施工质量控制 学习中心: 层次:专科起点本科 专业:土木工程 年级: 学号: 学生: 指导教师: 完成日期:年月日

内容摘要 在当今社会上,混凝土已经成为了工程建设不可或缺的建筑材料,随着社会的发展,混凝土技术已进入高科技时代,品种不断增加,应用领域不断扩大,结构设计方法不断完善,相关规范标准不断健全施工工艺也在不断更新。 然而,混凝土工程,特别是大体积混凝土工程,其浇筑时的施工工艺,直接决定混凝土结构的强度,影响工程的整体质量,就施工工艺和施工方法而言,对混凝土质量产生影响的因素有很多。因此施工各个环节的质量管控对混凝土工程来说至关重要。 因为混凝土具有一次成型、不可恢复的特性,而大体积混凝土浇筑施工又必须确保连续施工,不得中断,所以大体积混凝土施工的质量控制,不能仅仅注重施工环节,应该从混凝土材料的质量、运输、浇筑施工、养护等方面全方位综合考虑,确保在施工过程中出现质量事故。 目前由于混凝土施工的一线施工人员综合素质不高,对相关的规范标准不够了解,缺乏全局观念,所以制定一套完整的质量控制体系,对大体积混凝土工程来说尤为重要。 关键词:大体积混凝土、质量控制、裂缝、质量通病、防治措施

目录 内容摘要 ........................................................................................................................... I 引言 . (1) 1大体积混凝土概述 (2) 1.1大体积混凝土的定义 (2) 1.2大体积混凝土的特点 (2) 1.3大体积混凝土的研究目的和意义 (3) 2 大体积混凝土的施工工艺 (4) 2.1 钢筋 (4) 2.1.1钢筋锈蚀与混凝土的冻融循环 (4) 2.1.2碳化作用 (4) 2.1.3氯化腐蚀 (5) 2.1.4碱骨料反应 (5) 2.1.5高铝水泥的晶体转变 (5) 2.1.6硫酸盐腐蚀 (5) 2.2 混凝土 (5) 2.2.1材料选用 (5) 2.2.2合适的配合比 (6) 2.2.3混凝土拌制 (7) 2.2.4混凝土浇筑 (7) 2.2.5混凝土振捣 (8) 2.2.6混凝土养护 (8) 2.3 模板 (9) 3 大体积混凝土施工质量通病的质量控制 (10) 3.1大体积混凝土施工质量通病的现象及产生原因 (10) 3.1.1大体积混凝土的裂缝现象 (10) 3.1.2大体积混凝土的麻面现象 (11) 3.1.3大体积混凝土的蜂窝现象 (12) 3.1.4大体积混凝土的孔洞现象 (12)

大体积混凝土结构的施工特点

大体积混凝土结构的施工特点: 混凝土施工具有结构厚、体形大、钢筋密、混凝土数量多。工程条件复杂和施工技术要求高。 混凝土的截面尺寸较大,在混凝土硬化期间水泥水化过程中温度增高,使混凝土内外温差过大,内外温差产生的温度应力大于混凝土的抗拉应力,是导致混凝土结构出现裂缝的主要因素。 在混凝土施工中必须考虑温度应力的影响,主要是采用相应的技术措施控制内外温差,减小混凝土内外由于温度差而产生的温度应力。 结构厚实,混凝土量大,工程条件复杂(一般都是地下现浇钢筋混凝土结构),施工技术要求高,水泥水化热较大(预计超过25度),易使结构物产生温度变形。大体积混凝土除了最小断面和内外温度有一定的规定外,对平面尺寸也有一定限制。因为平面尺寸过大,约束作用所产生的温度力也愈大,如采取控制温度措施不当,温度应力超过混凝土所能承受的拉力极限值时,则易产生裂缝。 在建筑施工中常碰到大体积砼,为帮助项目部施工技术人员学习了解大体积砼防裂和温度控制方面的问题,加强施工技术方面的交流,本人根据自己的认识所及,参考了一些相关书籍,文章以问答的形式,先提出问题,再用通俗的语言和科学道理解答,问题解答也侧重于技术要领和做法,主要从实际出发,以实用为主,所提出的问题都是实际施工中常碰到的,目的是使项目部施工技术人员既知道大体积应该如何控制质量,又懂得为什么要进行防裂和温度控制的道理。

: 一是分层浇筑,使用于较厚的混凝土浇筑;二是分段浇筑,适用于平面面积较大的;三是分层分段浇筑,适用于平面面积较大的以及较厚的混凝土浇筑。 大体积混凝土的施工工艺和技术要求 (1)大体积混凝土浇筑方案 大体积混凝土浇筑时,为保证结构的整体性和施工的连续性,采用分层浇筑时,应保证在下层混凝土初凝前将上层混凝土浇筑完毕。一般有三种浇筑方案。 1)全面分层 在整个模板内,将结构分成若干个厚度相等的浇筑层,浇筑区的面积即为基础平面面积。浇筑混凝土时从短边开始,沿长边方向进行浇筑,要求在逐层浇筑过程中,第二层混凝土要在第一层混凝土初凝前浇筑完毕。全面分层方案一般适于平面尺寸不大的结构。 2)分段分层 当采用全面分层方案时浇筑强度很大,现场混凝土搅拌机、运输和振捣设备均不能满足施工要求,可采用分段分层方案。浇筑混凝土时结构沿长边方向分成若干段,浇筑工作从底层开始,当第一层混凝土浇筑一段长度后,便回头浇筑第二层,当第二层浇筑一段长度后,回头浇筑第三层,如此向前呈阶梯形推进。分段分层方案适于结构厚度不大而面积或长度较大时采用。 3)斜面分层 采用斜面分层方案时,混凝土一次浇筑到顶,由于混凝土自然流淌而形成斜面。混凝土振捣工作从浇筑层下端开始逐渐上移。斜面分层方案多用于长度较大的结构。 (2)大体积混凝土的振捣 混凝土振捣应采用振捣棒振捣。振捣棒操作,要做到‘快插慢拔”。在振捣过程中,宜将振动棒上下略有抽动,以便上下均匀振动。分层连续浇筑时,振捣棒应插入下层50mm,以消除两层间的接缝。每点振捣时间一般以lO~30s为宜,还应视混凝土表面呈水平不再显著下沉、不再出现气泡、表面泛出灰浆为宜。 在振动界线以前对混凝土进行二次振捣,排除混凝土因泌水在粗集料、水平钢筋下部生成的水分和空隙,提高混凝土与钢筋的握裹力,防止因混凝土沉落而出现的裂缝,减少内部微裂,增加混凝土密实度,使混凝土的抗压强度提高,从而提高抗裂性。 (3)大体积混凝土的养护

大体积混凝土水化热计算及冷凝管布设方案

大体积混凝土水化热计算及冷凝管布设方案

附件七: 大体积混凝土水化热计算及冷凝管布设方案根据对往年同季节气温进行统计,本地区9月16日~10月15日每天高温一般不超过25℃,10月16日~11月15日每天高温一般不超过15℃。根据本工程施工进度计划,49#和54#两个机位处于9月16日~10月15日期间进行大体积混凝土承台施工,50#~53#机位处于10月16日~11月15日期间进行施工。因此,考虑混凝土水化热环境因素时,49#和54#两个机位按照25℃大气温度进行计算,50#~53#机位按照15℃大气温度进行计算。计算时,考虑海水对流,按照海水温度低于大气温度5℃进行计算。 1、单位系统 质量单位:kg;力的单位:kgf;能量单位:kcal,1kcal=4.186kcal,考虑使用海水降温,使用kcal作为能量单位更利于计算;长度单位:m;温度单位:℃;时间单位:h。 2、混凝土参数 比重:2500kg/m3;导热系数:2.02kcal/(m.h.K);对流系数:19.84kcal/(㎡.h.K);比热容:0.23kcal/(kg.K)。 根据以往施工经验,考虑自拌C45混凝土现场养护条件28天强度等级为 50Mpa,达到70%强度(31.5Ma)所需时间为25℃3天,15℃7天。考虑采用普通硅酸盐水泥,胶凝材料根据发热量全部折合成水泥掺量为450kg/m3。C45混凝土在25℃和15℃天气环境下的强度发展曲线如下图左图和右图所示。(备注:图中强度单位为kgf/㎡。)

3、温度要求 (1)混凝土表里温差不得超过25℃,表层温度取混凝土面以内5cm位置,内部温度取混凝土内部最高温度;混凝土表层温度和环境温度差不得超过20℃。降温速度不宜超过2℃/d。 使用midas软件建立模型计算模型。为更加直观的观察混凝土部的温度应力,建模时采用只建立1/2模型,但进行整体对称计算的方式。为简化计算,直接将承台模型简化成圆柱结构。建立的模型如下图所示。 使用软件进行计算,混凝土在25℃、15℃环境下内外温度发展曲线如下图所示。 25

大体积混凝土水化热及温度计算

大体积混凝土水化热及温度计算 水泥:334kg/m3; 水:190kg/m3;大气温度在30℃,水温在27℃ 粗骨料:1010 kg/m3; 细骨料:731kg/m3; 粉煤灰:78kg/m3; 缓凝型减水剂:1%。 3) 混凝土温度计算 a 搅拌温度计算和浇筑温度 混凝土拌和温度计算: T c=∑T i*W*c/∑W*c=89405.4/3426.1=26.1℃。 考虑到混凝土运输过程中受日晒等因素,入模温度比搅拌温度约高4℃。混凝土入模温度约T j =30.1℃。 b 混凝土中心最高温度 Tmax=T j+T h*ξ

T j=33.04℃(入模温度),ξ散热系数取0.70 混凝土最高绝热温升T h=W*Q/c/r=350*377/0.973/2321=50.43℃ 其中350 Kg为水泥用量;377KJ/Kg为单位水泥水化热;0.973KJ/Kg.℃为水泥比热;2321Kg/m3为混凝土密度。 则Tmax=T j+T h*ξ=33.04+50.43*0.70=70.94℃。 c 混凝土内外温差 混凝土表面温度(未考虑覆盖): T b=T q+4h’(H-h’)△T/H2。 H=h+2h’=3+2*0.07=3.14m, h’=k*λ/β=0.666*2.33/22=0.07m 式中T bmax--混凝土表面最高温度(℃); T q--大气的平均温度(℃); H-一混凝土的计算厚度; h’--混凝土的虚厚度; h--混凝土的实际厚度; ΔT--混凝土中心温度与外界气温之差的最大值; λ--混凝土的导热系数,此处可取2.33W/m·K; K--计算折减系数,根据试验资料可取0.666; β--混凝土模板及保温层的传热系数(W/m*m·K),取22 T q为大气环境温度,取30℃,△T= Tmax-T q=40.94℃ 故T b=33.73℃。 混凝土内表温度差:△T c=Tmax-T b=70.94-33.73=37.21℃>20℃ 2.温度应力计算 计算温度应力的假定: ①混凝土等级为C30,水泥用量较大311 kg/m3;

水化热公式

以厚度为1m的工程底板为例。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数0.36计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p)+mf/50 (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=0.318; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量; c:混凝土的比热,c=0.97kj/(kg*k); p:混凝土的密度,p=2400kg/m3; 代入(1)得混凝土最终绝热温升: Tn=57.5℃; 代入(2)得: T3=57.5*0.615=35.4℃; T4=57.5*0.72=41.4℃; T5=57.5*0.796=45.77℃; T7=57.5*0.892=51.3℃; 底板按1m厚度计算: Tmax=Tj+Tt*δ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为10℃; Tt:t龄期时的绝热温升; δ:降温系数,取0.36; 按照混凝土最终绝热温升57.5℃代入: Tmax=10+57.5*0.36=30.7℃ 4、实测混凝土表面温度Tb 混凝土的内部最高温度为30.7℃,根据现场实测表面温度Tb,计算内外温差,当温差超过25℃时,需进行表面覆盖保温材料,以提高混凝土的表面温度,降低内外温差。 5、混凝土表面保温层厚度计算 δi=K*0.5hλi(Tb-Tq)/ λ(Tmax-Tb)

关于大体积混凝土的认识

土木工程材料结课论文 大体积混凝土 题目:对大体积混凝土的认识 学院:江河建筑学院 专业:建筑学 姓名:*** 学号:20**56** 班级:建筑学1302 指导教师:** 时间:2015.06

对大体积混凝土的认识及了解 概要:此论文是土木工程材料的结课论文,主要是介绍一下我在老师的课堂上学习以及自己在网络上了解到的关于大体积混凝土相 关知识。 关键词:大体积混凝土裂缝温度修补 定义:混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有 害裂缝产生的混凝土,称之为大体积混凝土。 一、材料特点 大体积混凝土结构厚实,混凝土量大,工程条件复杂(一般都是地下现浇钢筋混凝土结构),施工技术要求高,水泥水化热较大(预计超过25度),易使结构物产生温度变形。大体积混凝土除了最小断面和内外温度有一定的规定外,对平面尺寸也有一定限制。因为平面尺寸过大,约束作用所产生的温度力也愈大,如采取控制温度措施不当,温度应力超过混凝土所能承受的拉力极限值时,则易产生裂缝。 二、产生裂缝的原因 1、水泥水化放热泥水化过程中放出大量的热,且主要集中在浇筑后的7 d左右,从而使混凝土内部升高。(可达70℃左右,甚至更高)。尤其对于大体积混凝土来讲,这种现象更加严重。因为混凝土内部和表面的散热条件不同,因此混凝土中心温度很高,这样就会形成温度梯度,使混凝土内部产生压应力,表面产生拉应力。当拉应力超过混凝土的极限抗拉强度时混凝土表面就会产生裂缝。

2、收缩裂缝。混凝土在空气中硬结时体积减小的现象称为混凝土收缩。混凝土在不受外力的情况下的这种自发变形,受到外部约束时(支承条件、钢筋等).将在混凝土中产生拉应力,使得混凝土开裂。引起混凝土的裂缝主要有塑性收缩、干燥收缩和温度收缩等三种。在硬化初期主要是水泥石在水化凝固结硬过程中产生的体积变化,后期主要是混凝土内部自由水分蒸发而引起的干缩变形。 3、外界气温变化引起的裂缝。体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温升和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温度梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。 三、防止裂缝产生的方法 1.优选原材料。首先,可以选用水化热较低的水泥。由于温差主要是由水化热产生的,所以为了减小温差就要尽量降低水化热,为了降低水化热,要尽量采取早期水化热低的水泥。由于水泥的水化热是矿物成分与细度的函数,要降低水泥的水化热,主要是选择适宜的矿物组成和调整水泥的细度模数。在施工中一般采用中热硅酸盐水泥和

相关主题
文本预览
相关文档 最新文档