当前位置:文档之家› 计算方法第七章电子教案(32学时-欧阳洁)

计算方法第七章电子教案(32学时-欧阳洁)

数值计算方法比较

有限差分方法(FDM:Finite Difference Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。有限差分法主要集中在依赖于时间的问题(双曲型和抛物型方程)。有限差分法方面的经典文献有Richtmeyer & Morton的《Difference Methods for Initial-Value Problems》;R. LeVeque《Finite Difference Method for Differential Equations》;《Numerical Methods for C onservation Laws》。 注:差分格式: (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法: 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限差分法的不足:由于采用的是直交网格,因此较难适应区域形状的任意性,而且区分不出场函数在区域中的轻重缓急之差异,缺乏统一有效的处理自然边值条件和内边值条件的方法,难以构造高精度(指收敛阶)差分格式,除非允许差分方程联系更多的节点(这又进一步增加处理边值条件韵困难)。另外它还有编制不出通用程序的困难。 有限差分法的优点:该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念 直观,表达简单,精度可选而且在一个时间步内,对于一个给定点来说其相关的空间点只是 与该相邻的几点,而不是全部的空间点。是发展较早且比较成熟的数值方法 广义差分法(有限体积法)(GDM:Generalized Difference Method):1953年,Mac—Neal 利用积分插值法(也称积分均衡法)建立了三角网格上的差分格 式,这就是以后通称的不规划网格上的差分法.这种方法的几何误差小,特别是给出了处理自然边值条件(及内边值条件)的有效方法,堪称差分法的一大进步。1978年,李荣华利用有限元空间和对偶单元上特征函数的推广——局部Taylor展式的公项,将积分插值法改写成广义Galerkin法形式,从而将不规则网格差分法推广为广义差分法.其基本思路是,将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有

六年级数学简便计算专项练习题(附答案+计算方法汇总)

六年级数学简便计算专项练习题(附答案+计算方法汇总) 小学阶段(高年级)的简便运算,在一定程度上突破了算式原来的运算顺序,根据运算定律、性质重组运算顺序。如果学生没真正理解运算定律、性质,他只能照葫芦画瓢。在实际解题的过程当中,学生的思路不清晰,常出现这样或那样的错误。因此,培养学生思维的灵活性就显得尤为重要。 下面,为大家整理了8种简便运算的方法,希望同学们在理解的基础上灵活运用,不提倡死记硬背哟! 1.提取公因式 这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。 注意相同因数的提取。 例如: 0.92×1.41+0.92×8.59 =0.92×(1.41+8.59) 2.借来借去法 看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难。 考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。 例如: 9999+999+99+9 =9999+1+999+1+99+1+9+1-4 3.拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。 例如: 3.2×12.5×25 =8×0.4×12.5×25 =8×12.5×0.4×25 4.加法结合律 注意对加法结合律 (a+b)+c=a+(b+c) 的运用,通过改变加数的位置来获得更简便的运算。 例如: 5.76+13.67+4.24+ 6.33 =(5.76+4.24)+(13.67+6.33) 5.拆分法和乘法分配律结合 这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。 例如: 34×9.9 = 34×(10-0.1) 案例再现:57×101=? 6.利用基准数 在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。 例如: 2072+2052+2062+2042+2083

数值分析插值算法源程序

#include #include float f(float x) //计算ex的值 { return (exp(x)); } float g(float x) //计算根号x的值 { return (pow(x,0.5)); } void linerity () //线性插值 { float px,x; float x0,x1; printf("请输入x0,x1的值\n"); scanf("%f,%f",&x0,&x1); printf("请输入x的值: "); scanf("%f",&x); px=(x-x1)/(x0-x1)*f(x0)+(x-x0)/(x1-x0)*f(x1); printf("f(%f)=%f \n",x,px); } void second () //二次插值 { float x0,x1,x2,x,px; x0=0; x1=0.5; x2=2; printf("请输入x的值:"); scanf("%f",&x); px=((x-x1)*(x-x2))/((x0-x1)*(x0-x2))*f(x0)+((x-x0)*(x-x2))/((x1-x0)*(x1-x2))*f(x1)+((x-x0)* (x-x1))/((x2-x0)*(x2-x1))*f(x2);

printf("f(%f)=%f\n",x,px); } void Hermite () //Hermite插值 { int i,k,n=2; int flag1=0; printf("Hermite插值多项式H5(x)="); for(i=0;i<=n;i++) { int flag=0; flag1++; if(flag1==1) { printf("y%d[1-2(x-x%d)*(",i,i); } else { printf("+y%d[1-2(x-x%d)*(",i,i); } for(k=0;k<=n;k++) { if(k!=i) { flag++; if(flag==1) { printf("(1/x%d-x%d)",i,k); } else { printf("+(1/x%d-x%d)",i,k);

(完整word版)计算方法习题集及答案.doc

习题一 1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何? 数值方法是利用计算机求解数学问题近似解的方法 x max x i , x ( x 1 , x 2 , x n ) T R n 及 A n R n n . 2. 试证明 max a ij , A ( a ij ) 1 i n 1 i n 1 j 证明: ( 1)令 x r max x i 1 i n n p 1/ p n x i p 1/ p n x r p 1/ p 1/ p x lim( x i lim x r [ ( ] lim x r [ lim x r ) ) ( ) ] x r n p i 1 p i 1 x r p i 1 x r p 即 x x r n p 1/ p n p 1/ p 又 lim( lim( x r x i ) x r ) p i 1 p i 1 即 x x r x x r ⑵ 设 x (x 1,... x n ) 0 ,不妨设 A 0 , n n n n 令 max a ij Ax max a ij x j max a ij x j max x i max a ij x 1 i n j 1 1 i n j 1 1 i n j 1 1 i n 1 i n j 1 即对任意非零 x R n ,有 Ax x 下面证明存在向量 x 0 0 ,使得 Ax 0 , x 0 n ( x 1,... x n )T 。其中 x j 设 j a i 0 j ,取向量 x 0 sign(a i 0 j )( j 1,2,..., n) 。 1 n n 显然 x 0 1 且 Ax 0 任意分量为 a i 0 j x j a i 0 j , i 1 i 1 n n 故有 Ax 0 max a ij x j a i 0 j 即证。 i i 1 j 1 3. 古代数学家祖冲之曾以 355 作为圆周率的近似值,问此近似值具有多少位有效数字? 113 解: x 325 &0.314159292 101 133 x x 355 0.266 10 6 0.5 101 7 该近似值具有 7 为有效数字。

李庆扬-数值分析第五版第7章习题答案(0824)汇编

第7章复习与思考题

求f (X )= 0的零点就等价于求(x )的不动点,选择一个初始近似值X 0,将它代入X =「(X ) 的右端,可求得 X 1 h%X °),如此反复迭代有 X k 1 二(X k ), k =0,1,2,..., (X)称为迭代函数,如果对任何 X 。? [a,b],由x k 卜h%x k ),k =0,1,2,...得到的序列 〈X k 1有极限 则称迭代方程收敛,且X* =?(x*)为?(X )的不动点 故称 X k q 二(X k ), k =0,1,2,...为不动点迭代法。 5?什么是迭代法的收敛阶?如何衡量迭代法收敛的快慢?如何确定 X k 1 二「(X k )(k =0,1,2,...)的收敛阶 P219 设迭代过程X k 1'h%X k )收敛于 (X)的根X*,如果当k > 时,迭代误差 e k = x k - x *满足渐近关系式 —t C,C =const 式 0 e/ 则称该迭代过程是 p 阶收敛的,特别点,当 p=1时称为线性收敛,P>1时称为超线性收敛, p=2时称为平方收敛。 以收敛阶的大小衡量收敛速度的快慢。 6?什么是求解f(x)=0的牛顿法?它是否总是收敛的?若 f(X*) =0,X*是单根,f 是光 滑,证明牛顿法是局部二阶收敛的。 牛顿法: 当| f (X k )卜J 时收敛。 7?什么是弦截法?试从收敛阶及每步迭代计算量与牛顿法比较其差别。 在牛顿法的基础上使用 2点的的斜率代替一点的倒数求法。就是弦截法。 收敛阶弦截法1.618小于牛顿法2 计算量弦截法 <牛顿法(减少了倒数的计算量) 8?什么是解方程的抛物线法?在求多项式全部零点中是否优于牛顿法? P229 X - m X k 1 =X k f (X k ) f (X k )

计算方法实验报告 插值

实验名称:插值计算 1引言 在生产和科研中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值。用这张函数表来直接求出其他点的函数值是非常困难的,在有些情况下,虽然可以写出f(x)的解析表达式,但由于结构十分复杂,使用起来很不方便。面对这些情况,构造函数P(x)作为f(x)的近似,插值法是解决此类问题比较古老却目前常用的方法,不仅直接广泛地应用与生产实际和科学研究中,而且是进一步学习数值计算方法的基础。 设函数y=f(x)在区间[a,b]上连续,且在n+1个不同的点a≤x0,x1……,xn≤b上分别取值y0,y1……,yn. 插值的目的就是要在一个性质优良、便于计算的函数φ中,求一简单函数P(x),使P(xi)=yi(i=0,1…,n)而在其他点x≠xi上,作为f(x)的近似。 通常,称区间[a,b]为插值区间,称点x0,x1,…,xn为插值节点,上式为插值条件,称函数类φ为插值函数类,称P(x)为函数f(x)在节点x0,x1,…,xn处的插值函数,求插值函数P(x)的方法称为插值法。 2实验目的和要求 用matlab定义分段线性插值函数、分段二次插值函数、拉格朗日插值函数,输入所给函 数表,并利用计算机选择在插值计算中所需的节点,计算f(0.15),f(0.31),f(0.47)的近似值。

3算法描述 1.分段线性插值流程图

2.分段二次插值流程图

3.拉格朗日插值流程图

4程序代码及注释 1.分段线性插值

数值分析常用的插值方法

数值分析报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……x n处的值是f(x0),……f(x n),要求估算f(x)在[a,b〕中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0, C1,……C n的函数类Φ(C0,C1,……C n)中求出满足条件P(x i)=f(x i)(i=0,1,……n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x0,x1,……xn 称为插值结(节)点,Φ(C0,C1,……C n)称为插值函数类,上面等式称为插值条件,Φ(C0,……C n)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,,,n x x x L 上的函数值01,,,n y y y L ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =++++L ,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a L 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 20112111 2012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ? ?++++=?L L L L L 其系数矩阵的行列式D 为范德萌行列式: ()20 0021110 2111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏L L M M M M L

计算方法作业参考答案(不断更新)

: 第一次作业 1.下列各数都是经过四舍五入得到的近似数,指出他们有几位有效数字,并写出绝对误差限。 9800107480.566.385031.01021.1*65*5*4*3*2*1=?=====x x x x x x 解: 1* 11011021.01021.1?==x ,有5位有效数字,绝对误差限为4-5-1105.0105.0?=?; 1-* 2 1031.0031.0?==x ,有2位有效数字,绝对误差限为3-2-1-105.0105.0?=?; 3* 3103856.06.385?==x ;有4位有效数字,绝对误差限为-14-3105.0105.0?=?; 2* 41056480.0480.56?==x ;有5位有效数字,绝对误差限为3-5-2105.0105.0?=?; ; 65* 5 107.0107?=?=x ;有1位有效数字,绝对误差限为51-6105.0105.0?=?; 4* 6 109800.09800?==x ;有4位有效数字,绝对误差限为5.0105.04-4=?。 2.要使20的近似值的相对误差限小于%1.0,要取几位有效数字 解:由于110447213595.047213595.420??=?=,设要取n 位有效数字,则根据 定理,有()()%1.01081 1021111

计算方法-刘师少版课后习题答案

1.1 设3.14, 3.1415, 3.1416分别作为π的近似值时所具有的有效数字位数 解 近似值x =3.14=0.314×101,即m =1,它的绝对误差是 -0.001 592 6…,有 31105.06592001.0-*?≤=- x x . 即n =3,故x =3.14有3位有效数字. x =3.14准确到小数点后第2位. 又近似值x =3.1416,它的绝对误差是0.0000074…,有 5-1*10?50≤00000740=-.. x x 即m =1,n =5,x =3.1416有5位有效数字. 而近似值x =3.1415,它的绝对误差是0.0000926…,有 4-1*10?50≤00009260=-.. x x 即m =1,n =4,x =3.1415有4位有效数字. 这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字 1.2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限: 2.0004 -0.00200 9000 9000.00 解 (1)∵ 2.0004=0.20004×101, m=1 绝对误差限:4105.0000049.020004.0-*?≤≤-=-x x x m -n =-4,m =1则n =5,故x =2.0004有5位有效数字 1x =2,相对误差限000025.010******** 1)1(1 =??=??=---n r x ε (2)∵ -0.00200= -0.2×10-2, m =-2 5105.00000049.0)00200.0(-*?≤≤--=-x x x m -n =-5, m =-2则n =3,故x =-0.00200有3位有效数字 1x =2,相对误差限3 110221 -??=r ε=0.0025 (3) ∵ 9000=0.9000×104, m =4, 0105.049.09000?<≤-=-*x x x m -n =0, m =4则n =4,故x =9000有4位有效数字 4 110921-??=r ε=0.000056 (4) ∵9000.00=0.900000×104, m =4, 2105.00049.000.9000-*?<≤-=-x x x m -n =-2, m =4则n =6,故x =9000.00有6位有效数字 相对误差限为6 110921-??=r ε=0.000 00056 由(3)与(4)可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 1.3 ln2=0.69314718…,精确到310-的近似值是多少? 解 精确到310-=0.001,即绝对误差限是ε=0.0005, 故至少要保留小数点后三位才可以.ln2≈0.693 2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过 31021-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f +=,则32)(x x f -=',由于

(完整版)数值分析第7章答案

第七章非线性方程求根 一、重点内容提要 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为 函数()f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在 (a,b)内仅有一个根.令00,a a b b ==,计算0001 ()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若 00()()0 f a f x <,则令 10,10 a a b x ==,得新的有根区间 11[,]a b .0011[,][,]a b a b ?,11001()2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得 出新的有根区间22[,] a b ,如此反复进行,可得一有根区间套 1100...[,][,]...[,] n n n n a b a b a b --????

计算方法练习题与答案

练习题与答案练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–作为x的近似值一定具有6位有效数字,且其误差限 4 10 2 1 - ? 。 () 2.对两个不同数的近似数,误差越小,有效数位越多。 ( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。 ( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。 ( )

和作为π的近似值有效数字位数相同。 ( ) 二、填空题 1.为了使计算 ()()23 34912111y x x x =+ -+ ---的乘除法次数尽量少,应将该表 达式改写为 ; 2.* x =–是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3.误差的来源是 ; 4.截断误差为 ; 5.设计算法应遵循的原则 是 。 三、选择题 1.* x =–作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是 在时间t 内的实际距离,则s t s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。

数值计算方法第七章习题 2013

计算方法 第七章 习题 复习与思考题 1.设f ∈C [a , b ],写出三种常用范数2 1 f f 及∞ f 。 2.f , g ∈C [a , b ],它们的内积是什么?如何判断函数族{? 0, ? 1, …, ? n }∈C [a , b ]在[a ,b ]上线性无关? 3.什么是函数f ∈C [a , b ]在区[a , b ]上的n 次最佳一致逼近多项式? 4.什么是f 在[a , b ] 上的n 次最佳平方逼近多项式?什么是数据{}m i f 0的最小二乘曲 线拟合? 5.什么是[ a , b ]上带权ρ (x )的正交多项式?什么是[ -1, 1 ]上的勒让德多项式?它有什 么重要性质? 6.什么是切比雪夫多项式?它有什么重要性质? 7.用切比雪夫多项式零点做插值得到的插值多项式与拉格朗日插值有何不同? 8.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n 较大时为什么不直接求解法方程? 9.哪种类型函数用三角插值比用多项式插值或分段多项式插值更合适? 10.判断下列命题是否正确? (1)任何f (x ) ∈C [a , b ]都能找到n 次多项式P n (x ) ∈ H n ,使| f (x ) - P n (x ) | ≤ ε ( ε 为任给的误差限)。 (2)n n H x P ∈)(* 是f (x )在[ a , b ]上的最佳一致逼近多项式,则)()(lim * x f x P n n =∞ →对 ],[b a x ∈?成立。 (3)f (x ) ∈C [a , b ]在[a , b ]上的最佳平方逼近多项式P n (x ) ∈ H n 则)()(lim x f x P n n =∞ →。 (4))(P ~ x n 是首项系数为1的勒让德多项式,Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 ? ? --1 1 21 1 2d )(d )](P ~ [x x Q x x n n 。 (5))(T ~ x n 是[-1 , 1]上首项系数为1的切比雪夫多项式。Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 .)(max )(~ max 1 11 1x Q x T n x n x ≤≤-≤≤-≤ (6)当数据量很大时用最小二乘拟合比用插值好。

成本会计第七章 分步成本法

《成本会计》第七章分步成本法 一、分步成本法的含义 分步成本法是按照产品的生产步骤归集生产费用,计算各步骤半成品和最后完工产品成本的一种方法,简称分步法。它主要适用于大量大批的多步骤生产的企业或车间。如纺织、冶金、化工制品、肉类加工、造纸等制造企业。 二、分步法的特点 分步法是按照产品的生产步骤归集生产费用,计算产品成本的一种方法。分步法的特点主要表现在以下几个方面: 1.成本计算对象 在分步法下,成本计算对象是各个生产步骤的各种产品,因此,在进行成本计算时,需为每个生产步骤的每种产品设置产品成本计算单,用来归集生产费用,计算产品成本。对于生产过程中发生的费用,凡是直接计入费用,应直接记入各成本计算单中;间接计入费用则应先按生产步骤归集,然后按一定标准在该步骤的各种产品之间进行分配。必须注意,产品成本计算的分步与实际的生产步骤不一定完全一致,也就是分步法的步骤与产品的生产车间有时相同,有时并不完全相同。产品成本计算的分步是根据简化成本计算工作和管理上的要求来确定的,一般来说,分步计算成本也就是分车间计算成本,但根据成本管理的需要,有时可将几个车间合并为一个步骤,有时一个车间又分为几个步骤。因此,分步计算成本不一定就是分车间计算成本。 2.成本计算期 在采用分步法计算产品成本的企业里,成本计算期是定期的,即成本计算工作在每月末定期进行,因此,成本计算期与产品生产周期不一致,而与会计核算期一致。 3.生产费用在完工产品与在产品之间的分配 在大量大批多步骤生产的企业里,其产品往往跨月陆续完工,月末经常有一定数量的在产品,因此,归集在各生产步骤产品成本计算单中的生产费用,大多要采用适当的分配方法,在完工产品与月末在产品之间进行分配,计算出完工产品成本和月末在产品成本。如采用约当产量比例法,在产品又按先进先出法计价,在这种方法下,是假设生产的产品按投入生产的时间先后顺序完工,那么月初在产品应先于本月投产产品完工,在产品生产周期小于一个月的情况下,月初在产品将在本月全部完工,这样,月初在产品成本应全部计入本月完工产品成本,而本月发生的生产费用只需在本月完工产品与月末在产品之间进行分配。

数值计算方法复习题2

习题二 1. 已知 ,求的二次值多项式。 2. 令 解:; ,介于x和0,1决定的区 间内;,当时。 的数表,分别用线性插值与二次插值求 3. 给出函数 ,试利用拉格朗日余项定理写出以为节点的三次 4. 设 插值多项式。 ,求及的值。1,0 5. 已知 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算 , 的如下函数值表,解答下列问题(1)试列出相应 7. 已知函数 的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。 解:向前插值公式

向后插值公式 8. 下表为概率积分 的数据表,试问:1)时, 积分 在各点的数据(取五位有效数 9. 利用 字),求方程 在0.3和0.4之间的根的近似值。0.3376489 10. 依据表10中数据,求三次埃尔米特插值多项式。 11. 依据数表11 项式。 上给出的等距节点函数表,用分段线性插值求 12. 在 的近似值,要使截断误差不超过 取? 13. 将区间 分成n等分,求在上的分段三次埃尔米 特插值多项式,并估计截断误差。 14、给定的数值表

用线性插值与二次插值计算ln0.54的近似值并估计误差限 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计。线性插值时,用0.5及0.6两点,用Newton插值 误差限 ,因,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限, 故 15、在-4≤x≤4上给出的等距节点函数表,若用二次插值法 求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式, 令因 得

16、若,求和 解:由均差与导数关系 于是 17、若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 18、求证 解:只要按差分定义直接展开得 19、已知的函数表

计算方法第2章习题 - 参考答案

2.1 证明方程043 =-+x x 在区间[1,2]内有且仅有一个根。如果用二分法求它具有五 位有效数字的根,试问需对分多少次?(不必求根) 14 ,10log 4,10210211021212||2451*1 1=≥>?=?=<=---++K k a b k n m k k ε 2.2 用二分法求方程0134=+-x x 在[0.3, 0.4]内的一个根, 精度要求2102 1-?=ε。 k a b x f(x) 0 0.300 0.350 0.325 0.036 1 0.325 0.350 0.337 0.000 2 0.337 0.350 0.344 -0.017 3 0.337 0.34 4 0.341 -0.008 4 0.337 0.341 0.339 -0.004 x=0.339 2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求 210-=ε 2.3-1 x=0.645 2.3-2 x=1.78 2.3-3 x=1.13 2.3-4 x=0.918 2.4 考虑方程032=-x e x ,将其改写为3 x e x ±=,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附近的两个根(取精度要求3 10-=ε) (1) 910840.0,0.13 *0===x x e x x , k x g(x) 0 0.951890 0.929265 1 0.929265 0.918812 2 0.918812 0.914022 3 0.914022 0.911836 4 0.911836 0.910840 5 0.910840 0.910386 (2) 459075.0,5.03 -*0-=-==x x e x x , k x g(x) 0 -0.449641 -0.461106

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

计算方法第七章上机报告

实验报告名称求解常微分方程 班级:020991 学号:02099037 姓名:杜凡成绩: 1实验目的 1)熟悉求解常微分方程初值问题的有关方法和理论,主要是改进欧拉法、四阶龙格-库塔法与阿当姆斯方法。2)会变质上述方法的计算程序,包括求解常微分方程组的计算程序。 3)通过对各种求解方法的计算实习,体会各种解法的功能、优缺点及适用场合,会选取适当的求解方法。 2 实验内容 实习题7.1用改进欧拉法与四阶龙格-库塔公式求解所给微分方程初值问题; 7.2 用四阶龙格-库塔公式解下列微分方程初值问题; 7.3用阿当姆斯方法解微分方程初值问题; 3实验步骤 7.1 1)根据改进欧拉法的算法编写改进欧拉法求微分方程的函数 // 实验环境的配置,例如添加什么函数,库,头文件等,以及你的思路都可以写。 3 程序设计 // 程序流程图、代码。 以下均用matlab编写 1)改进欧拉法 function Heun2(f,a,b,y0,n) h=(b-a)/n; x=a:h:b; %ytrue=f1(-1*x); y=y0*ones(1,n+1); for j=2:n+1 yp=y(j-1)+h*f(x(j-1),y(j-1)); yc=y(j-1)+h*f(x(j),yp); y(j)=(yp+yc)/2; end for i=1:n+1 fprintf('x[%d]=%f\t y[%d]=%f\n',i-1,x(i),i-1,y(i)); %fprintf('x[%d]=%f\t y[%d]=%f\t ytrue[%d]=%f\n',i-1,x(i),i-1,y(i),i-1,%ytrue(i)); end 4实验结果及分析 // 程序运行的结果,可以添加截图以说明问题。 7.1 1)改进欧拉法

计算方法各章习题及答案

第二章 数值分析 2.1 已知多项式432()1p x x x x x =-+-+通过下列点: 试构造一多项式()q x 通过下列点: 答案:54313 ()()()3122 q x p x r x x x x x =-=- ++-+. 2.2 观测得到二次多项式2()p x 的值: 表中2()p x 的某一个函数值有错误,试找出并校正它. 答案:函数值表中2(1)p -错误,应有2(1)0p -=. 2.3 利用差分的性质证明22212(1)(21)/6n n n n +++=++. 2.4 当用等距节点的分段二次插值多项式在区间[1,1]-近似函数x e 时,使用多少个节点能够保证误差不超过 61 102 -?. 答案:需要143个插值节点. 2.5 设被插值函数4()[,]f x C a b ∈,() 3()h H x 是()f x 关于等距节点 01n a x x x b =<<<=的分段三次艾尔米特插值多项式,步长b a h n -= .试估计() 3||()()||h f x H x ∞-. 答案:() 4 43||()()||384 h M f x H x h ∞-≤. 第三章 函数逼近 3.1 求()sin ,[0,0.1]f x x x =∈在空间2 {1,,}span x x Φ=上最佳平方逼近多项式,并给 出平方误差. 答案:()sin f x x =的二次最佳平方逼近多项式为

-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-?+-, 二次最佳平方逼近的平方误差为 0.1 22-1220 (sin )())0.989 310 710x p x dx δ=-=??. 3.2 确定参数,a b c 和,使得积分 2 1 2 1 (,,)[I a b c ax bx c -=++-?取最小值. 答案:810, 0, 33a b c ππ =- == 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳一致逼近多项式 ()p x . 答案:()f x 的最佳一致逼近多项式为3 2 3 ()74 p x x x =++ . 3.4 用幂级数缩合方法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-. 答案: 236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤ 3.5 求() (11)x f x e x =-≤≤上的关于权函数 ()x ρ= 的三次最佳平方逼近 多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-. 答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++, 32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤. 第四章 数值积分与数值微分 4.1 用梯形公式、辛浦生公式和柯特斯公式分别计算积分1 (1,2,3,4)n x dx n =? ,并与 精确值比较. 答案:计算结果如下表所示

相关主题
文本预览
相关文档 最新文档