当前位置:文档之家› 惯性组合测量方法

惯性组合测量方法

惯性组合测量方法
惯性组合测量方法

惯性组合测量方法

无陀螺惯性测量组合是指惯性测量组合中不使用陀螺测量角速度,而是利用线加速度计测量线加速度的同时,根据线加速度计的空间位置组合解算出角速度,从而得到惯性测量的全部参数,达到惯性导航的目的。

加速度计是无陀螺惯性测量组合的核心元件,然而加速度计在实际使用中不可避免的存在多种误差,其中有器件本身误差项刻度因子误差、偏置、噪声以及安装误差,包括位置误差和方位误差,仿真结果表明,它们是加速度计输出误差的主要来源。

本设计在12加速度计惯性测量组合实物模型及硬件采集电路的基础上,主要对加速度计的刻度因子,固定偏置,噪声以及加速度计的方位误差和安装误差进行分析并进行补偿。

该系统通过硬件采集电路将原始加速度计阵列输出的模拟信号转换成数字信号,并存储到FLASH存储器中,然后将数据通过USB接口传回计算机。通过软件进行数据的分析和处理。

实验系统采用4个三轴加速度计ADXL330构成的加速度计阵列来敏感加速度信号,按照上述配置方案进行配置。信号采集部分主要采用FPGA-XC2S30作为中心控制单元,运用高精度运算放大器OPA4340构建信号调理电路,以两片16位、六通道同步A/D转换器ADS8365完成十二路模拟信号的转换,最大同步转换速率可以达到250kSPS。整个系统由FPGA控制控制FLASH存储器将转换后数据进行存储,并完成包括电源管理、数据采集、存储及读数操作。另外,通过VC++6.0编制的上位机软件实现数据采集处理。

该方案中应用了四片三轴加速度计传感器ADXL330,其三个敏感轴互相垂直,分别安装在惯组质心、X轴、Y轴和Z轴正向,其位置和敏感方向如图所示。

在图中,A1~A12代表加速度计1~12的敏感方向。加速度计1~12的安装位置向量表达式分别为:[0;0;0]、[r;0;0]、[0;r;0]、[0;0;0]、[0;0;r]、[0;r;0]、[0;0;0]、[0;0;r]、[r;0;0]、[0;0;r]、[r;0;0]、[0;r;0],r为距离质心的距离,其值为0.041米。加速度计1~12的安装方

位向量表达式分别为:[0;0;1]、[0;0;1]、[0;0;1]、[1;0;0]、[1;0;0]、[1;0;0]、[0;1;0]、[0;1;0]、[0;1;0]、[0;0;1]、[1;0;0]、[0;1;0]。

由于每个加速度计只敏感一个方向的比力,加速度计在某个方向上的输出应乘以此方向的方向余弦,设此方向余弦为,可得任意一点的比力为:

根据该方案解算出的各项分别为:

(1)

由式(6)可得出刻度因子。

通过试验计算并对加速度计输出结果进行补偿。设三轴转台转动角度分别为:外框0,中框0,内框25°,则12加速度计输出理论值为:

下图为加速度计在静态环境下输出理论值,实际值和补偿后的实际值的对比效果图。

上图中给出了加速度计1,4,7的输出曲线,通过补偿,输出精度提高了将近一个数量级,因此说明该方法是有效的。

无陀螺惯性测量组合系统对加速度计的输出误差极为敏感,当加速度计的输出存在很小的误差,就会导致姿态解算的精度大大降低。加速度计的输出误差是不可避免的,因此,需要建立更加合适的误差输出数学模型,进一步减小输出误差,为下一步的姿态解算打下坚实的基础。

惯性矩的计算方法及常用截面惯性矩计算公式

在此输入你的公司名称 LOGO 惯性矩的计算方法及常用截 面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式 截面图形的几何性质 一.重点及难点: (一).截面静矩和形心 1.静矩的定义式 如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即 ydA dSx xdA dS y == 整个图形对y 、z 轴的静矩分别为 ??==A A y ydA Sx xdA S (I-1) 2.形心与静矩关系 图I-1 设平面图形形心C 的坐标为C C z y , 则 0 A S y x = , A S x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。 推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。 3.组合图形的静矩和形心 设截面图形由几个面积分别为n A A A A ??321,,的简单图形组成,且一直各族图形的形心坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为

∑∑∑∑========n i n i i i xi x n i i i n i yi y y A S S x A S 11 11 S (I-3) 截面图形的形心坐标为 ∑∑===n i i n i i i A x A x 11 , ∑∑===n i i n i i i A y A y 11 (I-4) 4.静矩的特征 (1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2) 静矩有的单位为3m 。 (3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 (4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。 (二).惯性矩 惯性积 惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为 ?=A p dA I 2ρ (I-5) 图形对y 轴和x 轴的光性矩分别定义为 ?=A y dA x I 2 , dA y I A x ?=2 (I-6) 惯性矩的特征 (1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐 标轴定义的。 (2) 极惯性矩和轴惯性矩的单位为4m 。

截面形心和惯性矩的计算

截面形心和惯性矩的计算

————————————————————————————————作者:————————————————————————————————日期:

工程构件典型截面几何性质的计算 2.1面积矩 1.面积矩的定义 图2-2.1任意截 面的几何图形 如图2-31所示为一任意截面的 几何图形(以下简称图形)。定义:积分和 分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1) (2—2.1)面积矩的数值可正、可负,也可为零。面积矩的量纲是长度的三次方,其常用单位为m3或mm3。 2.面积矩与形心 平面图形的形心坐标公式如式(2—2.2) (2—2.2) 或改写成,如式(2—2.3) (2—2.3) 面积矩的几何意义:图形的形心相对于指定的坐

标轴之间距离的远近程度。图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。 图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。 3.组合截面面积矩和形心的计算 组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。如式(2—2.4) (2—2.4)式中,A和y i、z i分别代表各简单图形的面积和形心坐标。组合平面图形的形心位置由式(2—2.5)确定。 (2—2.5) 2.2极惯性矩、惯性矩和惯性积 1.极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6) (2—2.6) 极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。极惯性矩恒为正,

惯性矩的计算方法

I等.I等是从不同角度反映了截 S,其数学表达式 (4 -1a ) (4-1b) (4 -2a )

(4-2b) 式中y、z 为截面图形形心的坐标值.若把式(4-2) 改写成 (4-3) 性质: ?若截面图形的静矩等于零,则此坐标轴必定通过截面的形心. ?若坐标轴通过截面形心,则截面对此轴的静矩必为零. ?由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。 4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形( 如矩形、圆形等) 组合 而成的.对于这样的组合截面图形,计算静矩(S) 与形心坐标(y、z ) 时,可用以下公式 (4-4) (4-5) 式中A,y ,z 分别表示第个简单图形的面积及其形心坐标值,n 为组成组合图形的简单图形个数. 即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的. 例4-1 已知T 形截面尺寸如图4-2 所示,试确定此截面的形心坐标值.

、两个矩形,则 设任一截面图形( 图4 — 3) ,其面积为A .选取直角坐标系yoz ,在坐标为(y 、z) 处取一微小面积dA ,定义此微面积dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩I.微面积dA 乘以到坐标轴y 的距离的平方,沿整个截面积分为截面图形对y 轴的惯性矩I.极惯性矩、惯性矩常简称极惯矩、惯矩. 数学表达式为

极惯性矩(4-6) 对y 轴惯性矩(4 -7a ) 同理,对z 轴惯性矩(4-7b) 由图4-3 看到所以有 即(4-8) 式(4 — 8) 说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。 在任一截面图形中( 图 4 — 3) ,取微面积dA 与它的坐标z 、y 值的乘积,沿整个截面积分,定义此积分为截面图形对y 、z 轴的惯性积,简称惯积.表达式为 (4-9) 惯性矩、极惯性矩与惯性积的量纲均为长度的四次方.I,I,I恒为正值.而惯性积I其值能为正,可能为负,也可能为零.若选取的坐标系中,有一轴是截面的对称轴,则截面图形对此轴的惯性积必等于零. 当截面图形对某一对正交坐标轴的惯性积等于零时,称此对坐标轴为截面图形的主惯性轴.对主惯性轴的惯性矩称为主惯性矩.而通过图形形心的主惯性轴称为形心主惯性轴( 或称主形心惯轴) .截面对形心主惯性轴的惯性矩称为形心主惯性矩( 或称主形心惯矩) .例如,图4-4 中若这对yz 轴通过截面形心,则它们就是形心主惯性轴.对这两个轴的惯性矩即为形心主惯性矩.

组合导航姿态解算学习笔记

2015-3-9 1.参考丁君《AHRS航姿解算中的两种滤波方法的比较研究》,发现使用加速度的数据可以解算横滚角(roll)和俯仰角(pitch). 2.因开发板上单片机无ADC,无法对购买模块进行处理,故仅仅参考附带的程序。希望可以将adxl335模块的示例程序转移到mpu6050中,陀螺仪的数据暂时不用,仅仅使用加速度计的数据进行两个角度的解算。 3.老师想让我研究载体做圆周运动时加速度的解算,但是我想先从静态的开始,我觉得静态下的测试是基础,上来就研究最难的我接受不了。所以我想先用三轴的加速度数据先把静态下的姿态解算出来。 4.我发现如果我仅仅可以解算静态下的姿态,无法解决载体做回转运动下的姿态我还是完不成本科生的任务。因为本科生的任务是汽车姿态测量,所以光静止是不够的。 2015-3-11 5.校正这一环节是我所没有考虑到的,因为有偏差还有灵敏度不匹配。但前提是我要先解算出来。 6.论文不应该是最后完成的,论文是边做边写的,最后应该是是复制粘贴修改格式和布局而已。 7. 8.可以尝试将adxl335的示例程序(淘宝模块)移植到MPU6050中去解算横滚角和俯仰角。2015-3-12 1.为什么示例程序产生的六轴数据跟我想象的不一样那呢?加速度计的数据不是9.8,没有小数点。但是我发现买的arm模块数据也不是9.8,而且我用手机里的磁铁去干扰磁强计时,

发现磁强计的数据发生了很大的变化,如果真的要使用磁强计一定要注意周围的磁场干扰。 看来加速度计的数据是可以用的,因为别人都可以做到。 为什么示例程序中减去偏移量,而我却不能减去偏移量,比如+x 的加速度最大值是16000,减去之后,在+x 该等于零时,又出现了-16000,这是我更不想看到的。 2.extern float atan2 (float y, float x);程序格式又搞错了,人家不是atan2 (float y/float x),否则很容易出现错误too many actual parameters. 3.现在的状态是不能进行全姿态解算,x 轴的显示范围是(90o~270o),和我想要的范围(-90o~+90o)正好差了180o,但是减去还不行,减去后串口上只显示一个负号。还好汽车达不到那个角度±90o,哪怕是在汽车测试中,但是飞机能达到啊。所以这个问题最终还是要解决的。我想先把一个角度解算出来,然后去推广。 我在主函数里改动pitch=(int)(((atan(ratio)*180)/3.1415926)+180);这一句不行,后来我改动void lcd_printf(char *s,int temp_data)函数里面,在第一句我加上了temp_data-=180;然后俯仰角就输出正常了,也不知道为什么。 4.uchar 是一个8位无符号数,表示范围0到255,而uint 是十六位无符号数,表示范围0到6553 5.但是要注意的是8位单片机。(摘自网络) 5.现在能解一个俯仰角,下一个是横滚角。我想这两个角的性质应该是比较接近的。但是论文不是这么写的。横滚角也解算出来了,但是航向角好像不能通过加速度计解算。 2015-3-13 1.因为航向角解算不出,所以找出MPU9150,希望采用其中的磁强计来解算磁航向角。接下来下载相关datasheet 并阅读。 2.现在的解算方法还不涉及迭代,所以现在还没出现那种随着时间的推移,误差累积越来越严重的情况。当前的解算与值与当前的采集数据有关。 2015年3月15日 1.为什么不直接搞DSP 直接跳过ARM 那一关,害怕,害怕就去学。 2.老师可能需要我做一个松耦合组合导航,先让我去研究一下算法。然后再去用硬件实现。该整理资料了,整理完给老师一份,然后再说设计硬件编程的事。等我把航向角结算出来后后立马去研究组合导航算法。方向错了,停止就是前进,否则以后都不能和老师交流了。这是很危险的。我是否应该听老师的,先搞算法,然后再去考虑接下来的实现。 3.网上的GPS 模块没见有遵守I2C 通信协议的,都是一个收一个发送,这样我还真得考虑数据同步的问题。 2015年3月16日 1.我终于知道为什么用示例程序在串口上显示的数据为什么和我想象的那么不一样了,因为你在初始化MPU6050的时候会对陀螺仪和加速度进行一些配置,其中包括一个叫做full scale range 的配置,就拿陀螺仪来说如果你将这个范围配置在s ?±2000,那么这个范围所对应的sensitivity scale factor 就是16.4()s LSB ?。感谢唐朔飞老师的《计算机组成原理》,感谢日本Asahi Kasei 的数据手册,让我在看补数、补码的过程中,让我在看到日本磁强计的测量数据与磁通密度的对比中让我想到了陀螺仪和加速度计也是这样的。谢谢你们。一个好的数据手册就应该让user 看明白。 2.怎样才能在陀螺仪的寄存器中的16bit 数据中看出那个表示小数点?都不表示小数点,只有通过sensitivity scale factor 之后才会产生小数点,这时的数据才是精确地。好了,这下可以全身心地投入到算法研究中去了,传感器输出的就是,加速度数据和角速度数据,接下来你要做的就是研究一个适合车辆检测的算法了。

截面惯性矩计算

截面的几何性质 15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。 解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得 截面对形心轴的惯性矩 所以 再次应用平行轴定理,得 返回 15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。 解:知半圆形截 面对其底边的惯性矩是,用 平行轴定理得截面对形心轴的惯性矩

再用平行轴定理,得截面对轴的惯性矩 返回 15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是 上面一个圆的圆心到轴的距离是。 利用平行轴定理,得组合截面对轴的惯性矩如下: 返回 15-4(I-11) 试求图示各组合截面对其对称轴的惯性矩。

解:(a)22a号工字钢对其对称轴的惯性矩是。 利用平行轴定理得组合截面对轴的惯性矩 (b)等边角钢的截面积是,其形心距外边缘的距离是28.4 mm,求得组合截面对轴的惯性矩如下: 返回 15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利用该题的结果。 解:形心轴位置及几何尺寸如图所示。惯性矩计算如下: 返回 15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所示, 试求截面对其水平形心轴和竖直形心轴的惯性矩和。 解:先求形心主轴的位置 即

15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴 的惯性矩和相等,则两槽钢的间距应为多少? 解:20a号槽钢截面对其自身的形心轴、的惯性矩是, ;横截面积为;槽钢背到其形心轴的距离 是。 根据惯性矩定义和平行轴定理,组合截面对,轴的惯性矩分别是 ; 若 即 等式两边同除以2,然后代入数据,得 于是 所以,两槽钢相距

惯性矩总结(含常用惯性矩公式)

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。惯性矩的国际单位为(m^4)。 工程构件典型截面几何性质的计算 2.1面积矩 1.面积矩的定义 图2-2.1任意截面的几何图形 如图2-31所示为一任意截面的几何图形(以下简称图形)。定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1) (2—2.1)面积矩的数值可正、可负,也可为零。面积矩的量纲是长度的三次方,其常用单位为m3或mm3。 2.面积矩与形心 平面图形的形心坐标公式如式(2—2.2) (2—2.2) 或改写成,如式(2—2.3) (2—2.3) 面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。

图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。 3.组合截面面积矩和形心的计算 组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。如式(2—2.4) (2—2.4) 式中,A和y i、z i分别代表各简单图形的面积和形心坐标。组合平面图形的形心位置由式(2—2.5)确定。 (2—2.5) 2.2极惯性矩、惯性矩和惯性积 1.极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6) (2—2.6) 极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。 (1)圆截面对其圆心的极惯性矩,如式(2—7) (2—2.7) (2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8) (2—2.8) 式中,d/D为空心圆截面内、外径的比值。

捷联式惯性导航积分算法设计-速度位置计算

捷联惯导积分算法设计 下篇:速度和位置算法 Paul G. Savage Strapdown Associates, Inc., Maple Plain, Minnesota 55359 摘要:本论文分上下两篇,用于给现代捷联惯导系统的主要软件算法设计提供一个严密 的综合方法:将角速率积分成姿态角,将加速度变换或积分成速度以及将速度积分成位置。该算法是用两速修正法构成的,而两速修正法是具有一定创新程度的新颖算法,是为姿态修正而开发出来的,在姿态修正中,以中速运用精密解析方程去校正积分参数(姿态、速度或位置),其输入是由在参数修正(姿态锥化修正、速度划桨修正以及高分辨率位置螺旋修正)时间间隔内计算运动角速度和加速度的高速算法提供的。该设计方法考虑了通过捷联系统惯性传感器对角速度或比力加速度所进行的测量以及用于姿态基准和矢量速度积分的导航系旋转问题。本论文上篇定义了捷联惯导积分函数的总体设计要求,并开发出了用于姿态修正算法的方向余弦法和四元数法;下篇着重讨论速度和位置积分算法的设计。尽管上下两篇讨论中常常涉及到基本的惯性导航概念,然而本论文提供的材料都假定是为那些熟悉惯性导航的人使用的。 专门用语: 12,,A A A =任意坐标系; SF a =定义为由施加的非重力产生的相对于非旋转惯性空间的加速度比力,用加速度 计测得; 1 2 A A C =将矢量从2A 坐标系投影到1A 坐标系的方向余弦矩阵; I =单位矩阵; A V =列向量,它的各项元素等于矢量V 在坐标系A 的各轴上的投影 A V ?() =向量A V 的反对称(或交叉积)形式,代表如下矩阵: 00ZA YA ZA XA YA XA V V V V V V -?? ??-????-?? 其中:XA V ,YA V ,ZA V 是A V 的分量,A V ?()与A 系矢量的矩阵乘积等于A V 与该矢量的叉积; 2 A ω1A =2A 坐标系相对于1A 坐标系的角速率,当1A 为惯性系(I 系)时,2 A ω1A 是由安装 在2A 坐标系上的角速率传感器所测到的角速率。 1 导论

惯性矩的计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式 截面图形的几何性质 一.重点及难点: (一).截面静矩和形心 1.静矩的定义式 如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即 ydA dSx xdA dS y ==整个图形对y 、z 轴的静矩分别为 ??==A A y ydA Sx xdA S (I-1)2.形心与静矩关系 图I-1 设平面图形形心C 的坐标为C C z y , 则 0 A S y x = , A S x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。 推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。 3.组合图形的静矩和形心 设截面图形由几个面积分别为n A A A A ??321,,的简单图形组成,且一直各族图形的形心坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为

∑∑∑∑========n i n i i i xi x n i i i n i yi y y A S S x A S 1 1 11S (I-3) 截面图形的形心坐标为 ∑∑=== n i i n i i i A x A x 1 1 , ∑∑=== n i i n i i i A y A y 1 1 (I-4) 4.静矩的特征 (1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2) 静矩有的单位为3m 。 (3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 (4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。 (二).惯性矩 惯性积 惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为 ?=A p dA I 2ρ (I-5) 图形对y 轴和x 轴的光性矩分别定义为 ?=A y dA x I 2 , dA y I A x ?=2 (I-6) 惯性矩的特征 (1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐

组合导航系统的计算程序代码

组合导航系统的计算程序代码 function yy=ukf_IMUgps() %function ukf_IMUgps() % UKF在IMU/GPS组合导航系统中应用 % % 以IMU中的位置、速度、姿态误差角、陀螺漂移常值为状态量; % 以GPS中的位置、速度为观测量。 % % 7,July 2008. clc % Initialise state global we RN RM g fl deta wg Tt wt d ww v u W Rbl Ta wa d=0; %验证循环次数 %地球自转角速度we(rad/s): we=7.292115e-5; g=9.81; %地球重力加速度(m/s^2) a=6.378137e+6; %地球长半轴 e2=0.; %地球第一偏心率的平方 %姿态角初始值(r,p,y) zitai=(pi/180).*[0 2.0282 196.9087]; %姿态误差角 fai=(pi/180).*[1/36 1/36 5/36]; %(100'',100'',500'') r=zitai(1)+fai(1); p=zitai(2)+fai(2); y=zitai(3)+fai(3); %当地坐标系(l)相对于载体坐标系(b)的转换矩阵:Rbl(在e,n,u坐标系下)Rbl=[cos(r)*cos(y)-sin(r)*sin(y)*sin(p) -sin(y)*cos(p) cos(y)*sin(r)+sin(y)*sin(p)*cos(r) cos(r)*sin(y)+sin(r)*cos(y)*sin(p) cos(y)*cos(p) sin(y)*sin(r)-cos(y)*sin(p)*cos(r) -cos(p)*sin(r) sin(p) cos(p)*cos(r)];

惯性矩总结含常用惯性矩公式

惯性矩总结含常用惯性矩 公式 The Standardization Office was revised on the afternoon of December 13, 2020

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。惯性矩的国际单位为(m^4)。 工程构件典型截面几何性质的计算 2.1面积矩 1.面积矩的定义 图2-2.1任意截面的几何图形 如图2-31所示为一任意截面的几何图形(以下简称图形)。定义:积分和 分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1) (2—2.1)面积矩的数值可正、可负,也可为零。面积矩的量纲是长度的三次方,其常用单位为m3或mm3。 2.面积矩与形心 平面图形的形心坐标公式如式(2—2.2) (2—2.2) 或改写成,如式(2—2.3)

(2—2.3) 面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。 图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。 3.组合截面面积矩和形心的计算 组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。如式(2—2.4) (2—2.4) 式中,A和y i、z i分别代表各简单图形的面积和形心坐标。组合平面图形的形心位置由式(2—2.5)确定。 (2—2.5) 2.2极惯性矩、惯性矩和惯性积 1.极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6) (2—2.6) 极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。

惯性矩的计算方法

I等. I等是从不同角度反映了截 S,其数学表达式 (4 -1a ) (4-1b) (4 -2a )

(4-2b) 式中 y、 z 为截面图形形心的坐标值.若把式 (4-2) 改写成 (4-3) 性质: ?若截面图形的静矩等于零,则此坐标轴必定通过截面的形心. ?若坐标轴通过截面形心,则截面对此轴的静矩必为零. ?由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。 4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形 ( 如矩形、圆形等 ) 组合而成的.对于这样的组合截面图形,计算静矩 (S) 与形心坐标 (y、 z ) 时,可用以下公式 (4-4) (4-5) 式中 A, y , z 分别表示第个简单图形的面积及其形心坐标值, n 为组成组合图形的简单图形个数. 即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的. 例 4-1 已知 T 形截面尺寸如图 4-2 所示,试确定此截面的形心坐标值.

、两个矩形,则 设任一截面图形 ( 图 4 — 3) ,其面积为 A .选取直角坐标系 yoz ,在坐标为 (y 、 z) 处取一微小面积 dA ,定义此微面积 dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩 I.微面积 dA 乘以到坐标轴 y 的距离的平方,沿整个截面积分为截面图形对 y 轴的惯性矩 I.极惯性矩、惯性矩常简称极惯矩、惯矩. 数学表达式为

组合导航算法设计

INS/GPS组合导航算法设计 1 引言 目前单一导航系统难以满足实际要求,把两种或多种导航系统组合起来,应用最优估计理论,形成最优组合导航系统,使组合后的导航系统在精度和可靠性都有所提高。本课题研究飞行器GPS/INS组合导航算法,通过对飞行器INS/GPS 组合导航算法设计,以VC++6.0为平台组建INS/GPS组合导航仿真系统,对组合导航算法进行实现。并对飞行器的飞行状态进行仿真,仿真前预先设定飞行器的飞行参数(包括平飞、加速、减速、上升、下降、转弯等飞行动作以及每个动作开始结束的时间),通过设计的组合导航仿真系统得到飞行器的位置、速度、姿态角信息。并通过MATLAB对INS/GPS组合导航解算出来的数据与预先设定的实际飞行数据进行比较分析。 惯性导航系统的优点是:(1)自主性强,它可以不依赖任何外界系统得支持,单独进行导航。(2)不受环境、载体运动和无线电干扰的影响,可连续输出包括基准在内的全部导航参数,实时导航数据更新率高。(3)具备很好的短期精度和稳定性。其主要缺点是导航定位误差随时间增长,难以长时间的独立工作。全球定位系统是一种高精度的全球三维实时导航的卫星导航系统,其导航定位的全球性、高精度、误差不随实践积累的优点,但是GPS系统也存在一些不足之处,主要是:GPS接收机的工作受飞行机动影响,当载体的机动超过GPS接收机的动态范围时,GPS接收机会失锁,从而不能工作,或者动态误差过大,超过允许值,不能使用。且GPS接收机的更新频率较低(1HZ),难以满足实时控制的要求。抗干扰能力差。此外GPS导航受制于人。因此GPS系统一般作为理想的辅助导航设备使用。 GPS/惯性组合导航,克服了各自的缺点,取长补短,可以构成一个比较理想的导航系统,GPS/惯性组合导航可以大大降低导航系统的成本。随着MEMS技术的发展,惯导成本的降低都是组合导航系统发展的优势所在。我们用组合导航算法将惯性导航单元的信息和GPS的信息进行综合,来补偿惯性元件的误差,修正速度、姿态信号,从而构成一个精度适中、结构紧凑、成本低廉的导航系统。可用于飞行器的导航。 2 INS/GPS组合系统主要功能和算法选择

惯性矩的计算方法与常用截面惯性矩计算公式

设平面图形形心 C 的坐标为y c ,z c (1-2) y 轴为图形对称轴,则图形形心必在此轴上 3.组合图形的静矩和形心 设截面图形由几个面积分别为 A 1,A 2,A3……A n 的简单图形组成 直各族图形的形心坐标分别为x.|, y 1 ; x 2, y 2; x 3,y 3"…:,则图形对y 惯性矩的计算方法及常用截面惯性矩计算公式 截面图形的几何性质 一 ?重点及难点: (一).截面静矩和形心 1?静矩的定义式 如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴 的一次矩为它对该轴的静矩,即 dS y = xdA dSx = ydA 整个图形对y 、z 轴的静矩分别为 S y 二 A xdA (1-1) X Sx 二 A ydA 2.形心与静矩关系 图1-1 推论1 如果y 轴通过形心(即X = ,则静矩Sy = 0 ;同理, 如果X 轴通过形心 (即y = 0),则静矩Sx= 0 ;反之也成立。 推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心 ;如果 ,且一 轴和x

轴的静矩分别为 n S y 二% S yi 二' A i X i i 2 i =1 S x = ' S xi = 、A i y i i 4 i 4 截面图形的形心坐标为 4.静矩的特征 (1)界面图形的静矩是对某一坐标轴所定义的 ,故静矩与坐标轴有 关。 ⑵静矩有的单位为m 3 。 (3)静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形 心。 ⑷ 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静 矩。若已 知图形对坐标轴的静矩,则可由式(1-2)求图形的形心坐 标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐 标系的静矩,然后由式(1-4)求出其形心坐标。 (二)?惯性矩惯性积惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为 A (图I-3),则图形对0点的 极惯性矩定义为 (1-3) ' A i X i ' A i y i (1-4) 、A i -1

组合导航matlab仿真

(1)对不含噪声的原始图像加高斯白噪。 (2)设计一个Kalman滤波算法,尽可能滤除这些噪声。 (3)Kalman滤波算法中,考虑用两种变量来作为状态变量: a.以每一个象素,每行从左至右,然后每行从上至下扫描。 b.以每一行象素,从上至下扫描。 (4)对除噪后的图像与带噪图像进行比较,算出信噪比。 clear all; q=imread('lena.bmp'); %读取给定图像。 show_size=size(q) %显示给定图像尺寸。 figure(1); imshow(q); %显示无噪图像。 d=imnoise(q,'gaussian',0,0.01); %对给定图像加高斯白色噪声。 figure(2); imshow(d); %显示加噪图像。 [r1,c1]=size(d); imwrite(d,'lena2.bmp','bmp') %写加噪图像。保存成图像文件lena2.bmp d=double(d)/255; %unit转换成double类型 p=3; %先验误差估计协方差初始值 Q=0.25; %过程白噪协方差 R=0.25; %观测白噪协方差 A=1; %系统矩阵。 H=1; %观测矩阵。 f=d(1,:); %读取加噪图像第1行。开始n=1 。 for n=2:r1 f=A*f'; %先验第(n+1)行。开始n+1=2 。 P=A*p*A'+Q; %先验误差估计协方差。 K=P*H'*inv(H*P*H'+R); %Kalman增益。 F=f+K*(d(n,:)'-H*f); P=(1-K*H)*p; p=P; f=F'; r(n,:)=f; %保存像素值 n end; r=im2uint8(r);

基于GPS和INS组合定位导航算法技术综述

基于GPS和INS组合定位导航算法技术综述导航是引导载体从出发点按照一定的路径或者轨迹行进到目标点的技术或方法,实现上述引导功能的硬件设备及相应的配套软件统称为导航系统。随着文明的发展、科技的进步,导航技术的发展也经历了由开始时的无线电导航、天文导航到如今的惯性导航、卫星导航以及多种导航技术有机结合而成的组合导航,其中惯性导航和卫星导航技术被广泛的应用在制导武器、战斗机、舰艇等国防武器装备上,在载人航天、深海潜行等高精尖技术领域,导航系统更是必不可少的重要设备,载体的即时位置、速度和姿态信息是导航所需的最基本信息[1][2]。 1.1 捷联惯性导航系统 依据牛顿经典力学中的惯性原理,惯性导航系统(INS,Inertial Navigation System)在20世纪50年代研制成功,它利用陀螺和加速度计这两个惯性敏感器件测量运动载体的角速度信息和加速度信息,然后通过积分计算得到载体的位置、速度和姿态角等导航参数[3]。在工作过程中,INS不与外界发生任何联系,依靠载体自身设备即可完成导航工作,具有很强的工作自主性和隐蔽性,在军事上得到了一种绝对保密且不受外界干扰的导航系统,广泛应用于航天、航空、航海等重点国防领域[4]。 按照惯性器件在载体上安装方式的不同,INS可分为平台惯导系统、捷联惯导系统两类。平台惯导系统因其工作精度高、体积大、成本高的特点主要应用于航海、大型运载火箭等军事领域。捷联惯导是随着计算机技术的发展而出现的新型导航系统,现代控制理论尤其是最优估计理论的发展为其提供了理论依据。捷联惯导系统去掉了平台惯导标志性的机电式平台,将陀螺和加速度计直接固连在载体上,随着载体的运动获得相应的惯性敏感信息,通过计算机软件建立一个“数学导航平台”,将陀螺和加速度计量测到的载体相对于惯性空间的三个转动角速度和三个线加速度投影在载体坐标系上的分 量传输给弹载计算机,通过坐标转换、积分等一系列的计算之后,得到载体相应的导航信息。相比于平台惯导,捷联惯导具有结构简单,安装、维护方便,体积小、重量轻、成本低、导航信息丰富、有较强的系统综合能力等特点,因此捷联惯导系统未来发展前景十分的广阔。 但是,惯性导航是一种推算式的导航,依据其原理,导航参数误差随着工作时间的增长也在逐渐增大,导航精度得不到保障,这对于需要长时间保持高精度导航输出的导航系统来说是个致命缺陷。综上所述,很多情况下特别是在军事领域惯性导航不能单独使用,必须在其他系统的辅助下进行工作[5][6][7][8]。 1.2 卫星定位导航系统 全球定位系统GPS(Global Positionning System)是天文导航和无线电导航的结合体,是继惯性导航后导航技术领域的又一重大进展,被称为“第四代导航系统’’,卫星星座、

AutoCAD计算截面面积、惯性矩

AUTOCAD计算功能简介及应用 用AUTOCAD求面积、几何质(形)心、质心惯性矩等部分计算功能,并举例说明 这些计算功能与EXCEL等软件相结合,能够快速而精确地完成水工建筑物稳定性 等的计算。 1前言 在水利水电工程设计中,时常要对水电站厂房、大坝的结构稳定性及其地基 面垂直应力等进行计算,然而计算时必须要知道结构自身的重心、重量,以及外力的作用点、基础接触面惯性矩等。如果截面为规则的几何图形,这些量的计算就比较容易;若为不规则,则计算比较烦琐,以前常用的方法是分块求和或积分,既不方便,又耗时。上述这些量值若在Auto cad中,用Auto cad的面积、几何质(形)心、质心惯性矩等计算功能计算是非常容易的。 2 Auto cad计算功能和操作技巧 2.1 计算功能介绍 对于规则的几何多边形,如图1(a)所示一个4m×2m的长方形,其面积A、形心O(X,Y)、形心轴惯性矩I,很容易算出,有的甚至口算也可算出,即面 积A=8m2,形心O(1,2),形心惯性矩I x1=10.67m4,I y1=2.67m4,但对如图1(b)所示的不规则多边形,就不可能套用现成的计算公式来计算。过去通常的 方法是,面积可分块求和,形心和形心轴惯性矩则分别按式(1)和式(2)[1]来求。 式中X、Y———分别为多边形形心O的x和y坐标; x、y———分别为多边形中某点距形心x1轴和y1轴的距离; A i———不规则多边形中第i个规则多边形的面积; n———组合成不规则多边形中规则多边形的总个数; i———某个规则多边形; I x1、I y1———分别是形心x1轴和y1轴的惯性矩。

图1(b)用Auto cad的计算功能可得面积A=18.28m2,形心o(3.2,2.0),惯性矩I x1=26.28m4、I y1=42.52m4。 虽然按式(1)和(2)能够计算出多边形的形心和形心惯性矩,但速度较慢。设计工程师皆知,现在每项设计周期都很短,尤其是在设计前期的优化阶段,建筑结构的几何尺寸前后变化较大,多次重复计算的工作量必然成倍增加。例如, 设计一座混凝土重力坝,在坝体体形优化过程中,不仅坝体自重、重心会发生变化,外力荷载也会跟随发生变化,如基础接触面变大或变小以及防渗措施的改变, 基础接触面扬压力的大小和合力的作用点都会发生变化,若每变化一次就用式 (1)计算一次,太费时间,如利用Auto cad的计算功能,即可轻松而快捷、准 确地得到。图2是某混凝土重力坝扬压力作用图。应用Auto cad面积和形心计算功能,即可得扬压力U=676t/m,作用点离坝踵12.572 8m。主要步骤如下:(1)打开Draw(画图)菜单,用Region(区域)命令把多边形abcde定义成一个Region,即形成一个Object; (2)打开Tools(工具)菜单,再打开Inquiry(查询)菜单,用Mass p roperties (块特性)命令,点击abcde这个物体,即出现如下一段文字:

材料力学--计算机计算惯性矩和抗弯截面系数方法(精)

材料力学—计算机计算惯性矩和抗弯截面系数方法 1 在AutoCAD中绘制需要计算的截面图形或导入图形,如图1所示。 图1 2 创建面域 面域创建的方式主要有两种: (1)reg命令。输入reg并回车或在菜单栏点选“绘图”→“面域”,按提示选择需要计算的截面图形线条;右键或Enter键确定。会建立两个面域(外围边框和内部边框); (2)bo命令。在命令行输入bo并回车或在菜单栏点选“绘图”→“边界”,弹出如图2所示“边界创建”对话框。选择创建“对象类型”为“面域”,勾选“孤岛检测”,点击“拾取点”返回绘图界面,用十字光标拾取截面图形内部任意一点,右键或Enter键确定。也会建立两个面域(外围边框和内部边框)。 图2 3 面域差集计算 将建立的两个面域进行差集计算。在命令行输入subtract并回车或在菜单栏点选“修改”→“实体编辑”→“差集”,按提示选择要从中减去的实体或面域(外围边框)并回车,再选择要减去的实体或面域(内部边框)并回车,会将两个面域合成一个整体面域。 4 查询计算 (1)在命令行输入massprop 并回车或在菜单中选择“工具”→“查询”→“面积/质量特性”; (2)选择刚创建的面域并回车,弹出如图3所示的文本对话框; 图

3 (3)得到截面面积=37.7mm2,截面形心坐标为(88.11,211.48)。截面惯性矩、惯性积、主力矩。 5 对截面形心坐标轴的惯性矩、惯性半径、抗弯截面系数查询计算 (1)从主力矩与质心的X-Y方向可以得出: Ix=188.5mm4, Iy=188.5mm4 (2)利用刚得到的截面形心坐标为(88.11,211.48),命令行输入ucs→(88.11,211.48),将用户ucs坐标原点移动到截面形心,如图4; 图4 (3)命令行输入massprop并回车,弹出如图5所示的文本对话框; 图5 (4)可得:截面对形心轴的惯性矩Ix=188.5mm4、Iy=188.5mm4,惯性积Ixy=0(由图5可知,形心轴y轴为截面图形的对称轴,所以截面图形对形心轴x、y轴的惯性积恒等于零)。 由图5可知,截面图形边界框值为x:-4—4、y:-4—4, 抗弯截面系数计算如下: Wx1=Ix/ymax=188.5/4=47.13mm3 Wx2= Ix/ymin=188.5/4=47.13mm3 Wy1= Iy/xmax=188.5/4=47.13mm3 Wy2= Iy/ymin=188.5/4=47.13mm3 6 相同的计算方法就可以计算各种复杂截面的零件的惯性矩和抗弯截面系数,只是在计算中要注意截面面域的选择要正确,截面差集要准确。

惯性矩总结(含常用惯性矩公式)

惯性矩就是一个物理量,通常被用作描述一个物体抵抗扭动,扭转得能力。惯性矩得国际单位为(m^4)。 工程构件典型截面几何性质得计算 2、1面积矩 1.面积矩得定义 图2-2、1任意截面得几何图形 如图2-31所示为一任意截面得几何图形(以下简称图形)。定义:积分与分别定义为该图形对z轴与y轴得面积矩或静矩,用符号S z与S y,来表示,如式(2—2、1) (2—2、1)面积矩得数值可正、可负,也可为零。面积矩得量纲就是长度得三次方,其常用单位为m3或mm3。 2.面积矩与形心 平面图形得形心坐标公式如式(2—2、2) (2—2、2) 或改写成,如式(2—2、3) (2—2、3) 面积矩得几何意义:图形得形心相对于指定得坐标轴之间距离得远近程度。图形形心相对于某一坐标距离愈远,对该轴得面积矩绝对值愈大。 图形对通过其形心得轴得面积矩等于零;反之,图形对某一轴得面积矩等于零,该 轴一定通过图形形心。 3.组合截面面积矩与形心得计算 组合截面对某一轴得面积矩等于其各简单图形对该轴面积矩得代数与。如式(2—2、4) (2—2、4) 式中,A与y i、z i分别代表各简单图形得面积与形心坐标。组合平面图形得形心位置由式(2—2、5)确定。 (2—2、5) 2、2极惯性矩、惯性矩与惯性积

1.极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分称为图形对O点得极惯性矩,用符号I P,表示,如式(2—2、6) (2—2、6) 极惯性矩就是相对于指定得点而言得,即同一图形对不同得点得极惯性矩一般就是不同得。极惯性矩恒为正,其量纲就是长度得4次方,常用单位为m4或mm4。 (1)圆截面对其圆心得极惯性矩,如式(2—7) (2—2、7) (2)对于外径为D、内径为d得空心圆截面对圆心得极惯性矩,如式(2—2、8) (2—2、8) 式中,d/D为空心圆截面内、外径得比值。 2.惯性矩 在如图6-1所示中,定义积分,如式(2—2、9) (2—2、9) 称为图形对z轴与y轴得惯性矩。惯性矩就是对一定得轴而言得,同一图形对不同得轴得惯性矩一般不同。惯性矩恒为正值,其量纲与单位与极惯性矩相同。 同一图形对一对正交轴得惯性矩与对坐标原点得极惯性矩存在着一定得关系。 如式2—2、10) I P=I z+I y (2—2、10) 上式表明,图形对任一点得极惯性矩,等于图形对通过此点且在其平面内得任一对正交轴惯性矩之与。 表6-1给出了一些常见截面图形得面积、形心与惯性矩计算公式,以便查用。工程中使用得型钢截面,如工字钢、槽钢、角钢等,这些截面得几何性质可从附录得型钢表中查取。 3.惯性积 如图2—32所示,积分定义为图形对y,、z轴得惯性积,用符号I yz表示,如式(2—11) 图2-2、2具有轴对称得图形 (2—11)

相关主题
文本预览
相关文档 最新文档