当前位置:文档之家› 基于模糊控制的无刷直流电机的建模及仿真

基于模糊控制的无刷直流电机的建模及仿真

基于模糊控制的无刷直流电机的建模及仿真
基于模糊控制的无刷直流电机的建模及仿真

直流电动机开环调速系统设计与仿真

东北大学秦皇岛分校控制工程学院自动控制系统课程设计 设计题目:直流电动机开环调速系统 设计与仿真 专业名称自动化 班级学号 学生姓名 指导教师 设计时间2015.7.13~2014.7.24 成绩

目录 1.设计任务书 (3) 2.概述 (4) 2.1前言 (4) 2.2 系统原理 (4) 2.3 simulink框图 (5) 3.元件参数设置 (7) 3.1三相交流电压源设置 (7) 3.2.同步六脉冲触发器 (7) 3.3.三相全控桥整流电路 (8) 3.4.直流电动机设计 (8) 4.仿真结果分析 (9) α=时 (12) 4.2 当30o α=时 (14) 4.3 当60o α=时 (17) 4.4 当90o 4.5励磁电流 (19) 5.结论 (20) 6.参考文献 (22) 7.结束语 (22)

东北大学秦皇岛分校控制工程学院 《自动控制系统》课程设计任务书 专业自动化班级姓名 设计题目:直流电动机开环调速系统设计与仿真 一、设计实验条件 地点:实验室 实验设备:PC机 二、设计任务 直流电动机的额定数据为220V,136A,1460r/min,4极, R=0.21 , a 22 GD=22.5N m;励磁电压为220V,励磁电流为1.5A。采用三相桥式全控整流电路。平波电抗器 L=200mH。 p 设计要求:设计并仿真该晶闸管-电动机(V-M)开环调速系统。观察电动机在全压起动和起动后加额定负载时电动机的转速、转矩和电流变化。 三、设计说明书的内容 1、设计题目与设计任务(设计任务书) 2、前言(绪论)(设计的目的、意义等) 3、主体设计部分 4、参考文献 5、结束语 四、设计时间与设计时间安排 1、设计时间:7月13日~7月24日 2、设计时间安排: 熟悉课题、收集资料:3天(7月13日~7月15日) 具体设计(含上机实验):6天(7月16日~7月21日) 编写课程设计说明书:2天(7月22日~7月23日) 答辩:1天(7月24日)

对转式永磁无刷直流电机的建模与仿真_李延升

第44卷 2011年 第4期 4月 M ICR OM OTOR S V ol 44.N o 4 A pr 2011 收稿日期:2010-04-07 基金项目:西北工业大学研究生创业种子基金项目 作者简介:李延升(1983),男,博士研究生,研究方向为电机与电器。E-m a i:l liyanchao mm@yahoo .co https://www.doczj.com/doc/354884202.html, 窦满峰(1967),男,教授,博导,研究方向为电机与电器。 对转式永磁无刷直流电机的建模与仿真 李延升,窦满峰,雷金莉 (西北工业大学,西安 710072) 摘 要:该文根据对转式与普通永磁无刷直流电机区别,建立了对转永磁无刷直流电机的数学模型,采用M atlab /S i m u li nk 仿真软件建立了电机的仿真模型,并对电机带螺旋桨负载进行仿真分析。仿真结果表明:仿真波形与理论分析基本一致,验证该模型的有效性,为对转式永磁无刷直流电机的控制算法研究提供了工具。关键词:对转式;无刷直流电机;建模;仿真 中图分类号:TM 36+1 文献标志码:A 文章编号:1001-6848(2011)04-0019-04 M odeli ng and Si m ul ati on of the Contra -rotati ng BLDC M otor Control Syste m LI Yansheng ,DOU M anfeng ,LE I Jinli (N ort h w estern P oly technical University ,X i an 710072,China ) Abst ract :Contra -rotati n g per m anentm agnet br ush less DC m otor uses per m anentm agnet as the ou ter rotor , the ar m ature w inding as the i n ner rotor ,both inner and outer rotor i n teracts on the reverse ro tation by m eans of t h e m agne tic force .Based on the ana l y sis of the m athe m atica lm odel o f contra -rotating BLCDM,the mode l of BLDC M w as estab lished by the m odu lar design in M atlab /S i m ulink ,and the si m ulati o n experi m ent w as acco m p li s hed w ith a pr ope ller loads .The si m ulati o n resu lts are consistentw ith t h e theory analysis ,and the m ethod is va li d .The para m eter of th ism ethod is suitable for verif y ing the reasonability o f other contr o l algo -rit h m s and provides a ne w w ay fo r further research o f the con tra -rotati n g BLDC M.K ey w ords :contra -rotati n g ;BLCDM;m odeli n g ;si m u lati o n 0 引 言 对转式无刷直流电机直接驱动对转螺旋桨,在水下航行器中广泛应用 [1] 。它与普通永磁无刷直流 电机比较,除永磁体部分可以旋转,电枢部分也相对静止部分旋转,即电磁转矩驱动两个转子朝相反的方向旋转。以电枢部分为参照系来观察永磁体部分的旋转行为,可以发现对转式永磁无刷直流电机与普通的永磁无刷直流电动机的电流方程、电压平衡方程一致,数学模型中仅仅多了一个运动方程 [2] 。 根据这一思路,本文根据对转永磁无刷直流电机的数学模型,在S i m u li n k 软件中建立仿真模型,并对其进行仿真分析。 1 对转式BLDC M 数学模型 无刷直流电机的基本物理量有电磁转矩、电枢电流、反电动势和转速等 [3] ,这些物理量的计算与 电机的气隙磁场分布、绕组形式有十分密切的关系。 对于稀土永磁无刷直流电动机,其气隙磁场波形可以为方波也可以为正弦波或梯形波,这与选用电机的磁路结构和永磁体的形状有关。本文研究的对转式永磁无刷直流电机,其气隙磁场波形为方波,绕组中感应电动势为梯形波,采用方波电流驱动。在分析和仿真控制系统时,可直接利用电机原有的相变量来建立数学模型,既方便,又能获得准确结果。 假定永磁无刷直流电机工作在二相导通星形三相六状态下,工作过程中磁路不饱和,不计涡流和磁滞损耗,三相绕组完全对称,那么三相绕组的电压平衡方程式为:U a U b U c =R 000R 000R i a i b i c +L -M 000L -M 00 L -M d i a d t d i b d t d i c d t +e a e b e c (1)

直流电机模糊控制系统的matlab/simulink仿真研究 毕业设计

XXXX届毕业设计说明书 直流电机模糊控制系统的MATLAB/Simulink仿真研究 院、部:电气与信息工程学院 学生姓名:XXX 指导教师:XXXX职称教授 职称 专业:XXXXXXXXXXXXX 班级:XXXXXXXXX 完成时间:20XX.X.X

摘要 在当今控制技术的发展当中,模糊控制技术的发展走在了前列,成为了当今世界上最先进的控制技术之一。模糊控制技术很好的将模糊数学理论应用于控制领域当中, 更加真切地模拟出了人脑的思维方式和判断能力, 以及对产品生产的过程进行筛选和对产品质量上的控制, 从而发展出了基于模糊控制技术的智能化的新技术,为当今控制技术的发展提供了广阔空间。 在本文当中,主要介绍了基于模糊控制理论的直流电机模糊控制系统的原理,以及直流电机模糊控制系统的优点和缺点,并通过使用MATLAB语言中SIMULINK 模块和模糊控制工具箱对直流电机模糊控制系统进行仿真,把控制直流电机调速的实际情况转换成模糊控制规则,再使用这些规则,对过程经过模糊推理和模糊决策所得到的控制量,从而实现在MATLAB语言中SIMULINK模块和模糊控制工具箱对直流电机模糊控制系统的建模与仿真。对仿真结果予以分析,对直流电机模糊控制系统的仿真进行总结。 关键词:MATLAB;SIMULINK;模糊控制;直流电机;电机调速

ABSTRACT Among today’s control technology development, one of the leading enterprises in the development of fuzzy control technology, fuzzy control technology has become one of the most advanced control technology in the world today, it will be a very good fuzzy control technology of fuzzy mathematics theory is applied in control field, the more realistically simulate the human brain’s way of thinking and judgment ability, as well as to the production process of screening and the control on the quality of product, which was developed based on fuzzy intelligent control technology of the new technology, for the development of modern control technology provides a broad expansion of space. in this article, mainly introduced the dc motor based on fuzzy control theory, the principle of fuzzy control system, as well as the advantages and disadvantages of the fuzzy control system for dc motor, and by using the SIMULINK module and the fuzzy control toolbox in MATLAB language for the calculation of the fuzzy control system of dc motor, the control of the actual situation of the dc motor speed control is converted into fuzzy control rules, and then use these rules, the process through fuzzy reasoning and fuzzy decision of control, thus to achieve the SIMULINK module and the fuzzy control toolbox in MATLAB language modeling and simulation of fuzzy control system of a dc motor. And the analysis to the results of simulation and simulation of fuzzy control system of dc motor. Keywordsmatlab;Simulink;fuzzy control;dc motor;motor speed control

无刷直流电机的建模与仿真

龙源期刊网 https://www.doczj.com/doc/354884202.html, 无刷直流电机的建模与仿真 作者:秦超龙 来源:《电脑知识与技术》2013年第05期 摘要:该文在分析无刷直流电机(BLDCM)数学模型和工作原理的基础上,利用Matlab 软件的Simulink和PSB模块,搭建无刷直流电机及整个控制系统的仿真模型。该BLDCM控制系统的构建采用双闭环控制方法,其中的电流环采用滞环电流跟踪PWM,速度环采用PI控制。仿真和试验分析结果证明了本文所采用方法的有效性,同时也证明了验证其他电机控制算法合理性的适用性,为实际电机控制系统的设计和调试提供了新的思路。 关键词:BLDCM控制系统;无刷直流电机;数学模型;MATLAB;电流滞环 中图分类号: TP391 文献标识码:A 文章编号:1009-3044(2013)05-1172-03 随着现代科技的不断发展,无刷直流电动机应用技术越发成熟,应用领域也越发广泛,用户对无刷直流电动机使用增多的同时,对其控制系统的设计要求也变得越来越高。包括低廉的设计和搭建成本、短的开发周期、合适的控制算法、优良的控制性能等。而科学合理的无刷直流电动机控制系统仿真模型的建立,对控制系统的直观分析、具体设计,快速检验控制算法,降低直流电机控制系统的设计成本,拥有十分重要的意义。 直流无刷电动机利用电子换向原理和高磁性材料,取代了传统的机械换相器和机械电刷,解决了有刷直流电动机换向器可维护性差和较差的可靠性的致命缺点,使得直流电动机的良好控制性能得到维持,直流电动机得到更好的应用。伴随着如今功率集成电路技术和微电子技术的发展,控制领域相继出现了大量无刷直流电动机专用驱动和控制芯片,解决高性能无刷电动机驱动控制问题所提出的解决方案也变得更加丰富和科学,无刷直流电机在控制领域显示出前所未有的广阔应用前景[1]。 通过无刷直流电动机控制系统的仿真模型来检验各种控制算法,优化整个控制系统的方法,可以在短时间内得到能够达到预期效果的控制系统。在对无刷直流电机电流滞环控制和数学模型等分析的基础之上,可以利用Simulink中所提供的各种模块,构建出BLDCM控制系统的仿真模型,从而实现只利用Simulink中的模块建立BLDCM控制系统仿真模型。通过对实例电机的仿真,可以得到各类仿真波形,从而验证了仿真模型的有效性和正确性,数学模型的有效性及控制系统的合理性也得到了验证。 1 无刷直流电机的数学模型 本文采用两相导通三相六状态的无刷直流电动机来分析无刷直流电动机的数学模型[2-3]。 无刷直流电动机的感应电动势为梯形波,电流为方波。考虑到分析的方便、无刷直流电动机的特点,该文直接利用电动机本身的相变量建立物理模型,假定:

直流电动机的MATLAB仿真..

第一章课程设计内容及要求 1. 直流电动机的机械特性仿真; 2. 直流电动机的直接起动仿真; 3. 直流电动机电枢串联电阻启动仿真; 4. 直流电动机能耗制动仿真; 5.直流电动机反接制动仿真; 6. 直流电动机改变电枢电压调速仿真; 7. 直流电动机改变励磁电流调速仿真。 要求:编写M文件,在Simulink环境画仿真模型原理图,用二维画图命令画仿真结果图或用示波器观察仿真结果,并加以分析

第二章直流电动机的电力拖动仿真绘制 1)直流电动机的机械特性仿真 clear; U_N=220;P_N=22;I_N=115; n_N=1500;R_a=;R_f=628; Ia_N=I_N-U_N/R_f; C_EPhi_N=(U_N-R_a*Ia_N)/n_N; C_TPhi_N=*C_EPhi_N; Ia=0;Ia_N; n=U_N/C_EPhi_N-R_a/(C_EPhi_N)*Ia; Te=C_TPhi_N*Ia; P1=U_N*Ia+U_N*U_N/R_f; T2_N=9550*P_N/n_N; figure(1); plot(Te,n,'.-'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); ylim([0,1800]); figure(2); plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm');

hold on; R_c=0; for coef=1:;; U=U_N*coef; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('U=',num2str(U),'V'); s_y=1650*coef; text(50,s_y,str); end figure(3); n=U_N/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); hold on; U=U_N;R_c=; for R_c=0::; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('R=',num2str(R_c+R_a),'\Omega'); s_y=400*(4-R_c*; text(120,s_y,str);

基于自抗扰控制(ADRC)的无刷直流电机控制与仿真

一、研究意义 1.研究意义 由于无刷直流电机在四旋翼飞行器控制中的关键作用以及在生产实践中日益广泛的应用,设计快速且平稳的控制系统成为首要任务。目前, 基于现代控制理论的高性能异步电机调速方法主要是依靠精确的数学模型加上传统的P ID控制。PID控制实际应用效果较好,但又无法避免对负载变化的适应能力差、抗干扰能力弱和受系统参数变化影响等弱点,而且交流调速系统具有非线性、强耦合、多变量及纯滞后等特性, 很难用精确的数学模型描述, 这就使得基于精确数学模型的传统控制方法面临严重的挑战。另外, 经典P ID控制需要根据运行工况的不同而调节控制器参数, 无刷直流电机又具有数学模型复杂,非线性等特点,这给现场调试增加了难度。 2.国内外研究状况及发展 (1)无刷直流电机基本控制方法 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。无刷电机是指无电刷和换向器(或集电环)的电机,又称无换向器电机。 直流无刷电动机的电机本身是机电能量转换部分,无刷电机的转子上装有永磁体,定子上是电枢,与有刷电机正好是相反的。它除了电机电枢、永磁励磁两部分外,还带有传感器。电机本身是直流无刷电机的核心,它不仅关系到性能指标、噪声振动、可靠性和使用寿命等,还涉及制造费用及产品成本。由于采用永磁磁场,使直流无刷电机摆脱一般直流电机的传统设计和结构,满足各种应用市场的要求,并向着省铜节材、制造简便的方向发展。 直流无刷驱动器包括电源部及控制部,电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(V1~V6)分为上臂(V1、V3、V5)/下臂(V2、V4、V6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。电机驱动电路如图?所示。 图1 无刷直流电机的控制电路

无刷直流电机仿真教程

基于MATLAB/SIMULINK的无刷直流电动机系统仿真 0引言 无刷直流电机(Brushless DC Motor,以下简称BLDCM),是随着电力电子技术和永磁材料的发展而逐渐成熟起来的一种新型电机。为了有效的减少控制系统的设计时间,验算各种控制算法,优化整个控制系统,有必要建立BLDCM 控制系统仿真模型。本文在BLDCM数学模型的基础上,利用MATLAB的SIMULINK和S-FUNCTION建立BLDCM的仿真模型,并通过仿真结果验证其有效性。 1无刷直流电机仿真模型 本文在MATLAB的SIMULINK的环境下,利用其丰富的模块库,在分析BLDCM数学模型的基础上,建立BLDCM控制系统仿真模型,系统结构框图如图1所示。

图1 无刷直流电机控制原理框图 以图1为基础,按照模块化建模的思想搭建的系统的仿真模型如图2所示。整个控制系统主要包括电动机本体模块、逆变器模块、电流滞环控制模块、速度控制模块等。 图2 无刷直流电机控制系统仿真模型框图 1.1电动机本体模块 在整个控制系统的仿真模型中,BLDCM本体模块是最重要的部分,该模块根据BLDCM电压方程求取BLDCM三相相电流,而要获得三相相电流信号i a,i b,

i c必须首先求得三相反电动势信号e a,e b,e c,整个电动机本体模块的结果如下图3所示。电机本体模块包括反动电势求取模块,中性点求取模块,转矩计算模块和位置检测模块。 图3 电机本体模块 1.反电势求取模块 本文直接采用了SIMULINK中的Lookup Table模块,运用分段线性化的思想,直观的实现了梯形波反电动势的模拟,具体实现如图4所示。

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

文献综述--无刷直流电机

文献综述 无刷直流电动机: 时间轴: 1955年—无刷电机诞生 1978年—无刷电机进入实用阶段 20世纪—无传感器无刷电机研制成功 无刷电动机的诞生标志是1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。 直流电动机以其优良的转矩特性在运动控制领域得到了广泛的应用,但普通的直流电动机由于需要机械换相和电刷,可靠性差,需要经常维护;换相时产生电磁干扰,噪声大,影响了直流电动机在控制系统中的进一步应用。为了克服机械换相带来的缺点,以电子换相取代机械换相的无刷电机应运而生。1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利,标志着现代无刷电动机的诞生。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。 无刷直流电动机不仅保持了传统直流电动机良好的动、静态调速特性,且结构简单、运行可靠、易于控制。其应用从最初的军事工业,向航空航天、医疗、信息、家电以及工业自动化领域迅速发展。 在结构上,与有刷直流电动机不同,无刷直流电动机的定子绕组作为电枢,励磁绕组由永磁材料所取代。按照流入电枢绕组的电流波形的不同,直流无刷电动机可分为方波直流电动机(BLDCM)和正弦波直流电动机(PMSM),BLDCM用电子换相取代了原直流电动机的机械换相,由永磁材料做转子,省去了电刷;而PMSM则是用永磁材料取代同步电动机转子中的励磁绕组,省去了励磁绕组、滑环和电刷。在相同的条件下,驱动电路要获得方波比较容易,且控制简单,因而BLDCM的应用较PMSM要广泛的多。 无刷直流电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。 由于位置传感器的使用有如下缺点: (1)增大电机尺寸; (2)传感器信号传输线太多,容易引起干扰;

直流伺服电机的模糊pid控制

基于模糊PID控制的直流电动机伺服 系统 课程:智能控制理论及其应用 姓名: 学号: 导师: 目录 第一章模糊PID控制简介....................................................................... 错误!未定义书签。 1.1传统PID ........................................................................................... 错误!未定义书签。 1.2模糊PID ........................................................................................... 错误!未定义书签。第二章直流伺服电机简介 ...................................................................... 错误!未定义书签。 2.1电动机调速控制原理 ...................................................................... 错误!未定义书签。 2.2三环控制原理 .................................................................................. 错误!未定义书签。 2.3电动机模型的建立 .......................................................................... 错误!未定义书签。第三章模糊控制器设计 .......................................................................... 错误!未定义书签。 3.1模糊算法.......................................................................................... 错误!未定义书签。 3.2输入/输出隶属度函数的设计......................................................... 错误!未定义书签。 3.3模糊规则选取 .................................................................................. 错误!未定义书签。第四章simulink仿真................................................................................ 错误!未定义书签。 4.1simulink中模糊PID控制图 ............................................................. 错误!未定义书签。 4.2模糊PID与传统PID仿真比较 ....................................................... 错误!未定义书签。第五章结论分析 ...................................................................................... 错误!未定义书签。 5.1结论分析.......................................................................................... 错误!未定义书签。 5.2 仿真过程中遇到的问题 ................................................................. 错误!未定义书签。

三相无刷直流电机系统结构及工作原理

三相无刷直流电机系统结构及工作原理

图2.3 直流无刷电动机的原理框图位置传感器在直流无刷电动机中起着测定转子磁极位置的作用,为逻辑开关电路提供正确的换相信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组换相。位置传感器种类较多,且各具特点。在直流无刷电动机中常见的位置传感器有以下几种:电磁式位置传感器、光电式位置传感器、磁敏式位置接近传感器【3】。 2.4基本工作原理 众所周知,一般的永磁式直流电动机的定子由永久磁钢组成,其主要的作用是在电动机气隙中产生磁场。其电枢绕组通电后产生反应磁场。其电枢绕组通电后产生反应磁场。由于电刷的换向作用,使得这两个磁场的方向在直流电动机运行的过程中始终保持相互垂直,从而产生最大转矩而驱动电动机不停地运转。直流无刷电动机为了实现无电刷换相,首先要求把一般直流电动机的电枢绕组放在定子上,把永磁磁钢放在转子上,这与传统直流永磁电动机的结构刚好相反。但仅这样做还是不行的,因为用一般直流电源给定子上各绕组供电,只能产生固定磁场,它不能与运动中转子磁钢所产生的永磁磁场相互作用,以产生单一方向的转矩来驱动转子转动。所以,直流无刷电动机除了由定子和转子组成电动机本体以外,还要由位置传感器、控制电路以及功率逻辑开关共同构成的换相装置,使得直流无刷电动机在运行过程中定子绕组所产生的的磁场和转动中的转子磁钢产生的永磁磁场,在空间始终保持在(π/2)rad左右的电角度。 2.5无刷直流电机参数 本系统采用的无刷电机参数 ·额定功率:100W ·额定电压:24V(DC) ·额定转速:3000r/min ·额定转矩:0.23N?m ·最大转矩:0.46N?m ·定位转矩:0.01N?m ·额定电流:4.0A

开题报告--无刷直流电机的控制系统

合肥师范学院本科生毕业论文(设计)开题报告 (学生用表) 装 订 线

第l章主要叙述了无刷直流电机的发展趋势、无刷直流电机的控制技术、研究背景及意义。 第2章首先介绍了无刷直流电机的基本结构和工作原理,然后给出了常见的无刷直流电机的数学模型及其推导过程,在此基础上对无刷直流电机的稳态特性进行了详细分析。 第3章对本控制系统的总体结构和设计进行介绍。主要包括控制系统的整体方案,控制芯片,控制技术以及控制策略的选择。 第4章对控制系统的硬件电路进行设计,包括DSP最小系统、功率驱动电路、采样检测电路、保护电路等的设计,并对各个部分进行了详细的分析。 第5章以TI公司的CCS开发环境为开发工具,对整个控制系统的软件部分进行了设计。 第6章总结与展望,总结了本文的主要工作,展望了以后工作的研究方向。 五、可行性分析 此次研究是在指导老师的指导下搜集,查阅相关资料,确定能够通过应用DSP 芯片进行控制是最优方案,采用TI公司的TMS320F2812作为控制器。根据现在无刷直流电机的控制技术的发展水平和未来的发展趋势及可操作性进行分析,该课题能够顺利进行。 六、设计方案 6.1无刷直流电机的基本结构 无刷直流电机的设计思想来源于利用电子开关电路代替有刷直流电机的机械换向器。普通有刷直流电机由于电刷的换向作用,使得电枢磁场和主磁场的方向在电机运行的过程中始终保持相互垂直,这样能够产生最大的转矩,从而驱动电机不停地运转下去。无刷直流电机取消电刷实现了无机械接触换相,做成“倒装式直流电机"的结构,将电枢绕组和永磁磁钢分别放在定子和转子侧。无刷直流电机必须具有由控制电路、功率逆变桥和转子位置传感器共同组成的换相装置以实现电机速度和方向的控制[5]。因此,可以认为无刷直流电机是典型的机电一体化器件,其基本结构由电动机本体、驱动控制电路及转子位置传感器三部分组成,如图所示。 无刷直流电机的构成 6.2无刷直流电机的工作原理 普通直流电机的电枢在转子上,而定子产生固定不变的磁场。为了使直流电机旋转,需要通过换相器和电刷不断地改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转[6]。 无刷直流电动机为了去掉电刷,将电枢放到定子上,而转子做成永磁体,这样的结构正好与普通直流电动机相反。然而即便是这样的改变仍然不够,因为直流电通入

无刷直流电机控制系统的Proteus仿真

无刷直流电机控制系统的Proteus仿真-机械制造论文 无刷直流电机控制系统的Proteus仿真 王家豪潘玉民 (华北科技学院电子信息工程学院,河北三河101601) 【摘要】基于Proteus软件仿真平台,提出了一种对无刷直流电机(BLDCM)控制系统实现了转速闭环控制的方案。该系统以AT89S52单片机为核心,采用IR2101芯片驱动及AD1674实现速度,并利用数码动态显示转速,通过增量式PID调节对无刷直流电机实现转速闭环稳定控制。仿真结果表明该系统具有可控调速、显示直观等特点。 关键词无刷直流电机(BLDCM);Proteus;增量式PID;闭环控制 0引言 无刷直流电机(BLDCM)既有直流有刷电机的特性,又有交流电机无刷的优点,在快速性、可控性、可靠性、输出转矩、结构、耐受环境和经济性等方面具有明显的优势,近年来得到迅速推广[1]。BLDCM是一种用电子换向取代机械换向的新一代电动机,与传统的直流电动机相比,它具有过载能力强,低电压特性好,启动电流小等优点。近年来在工业运用方面大有取代传统直流电动机的趋势,所以研究无刷直流电机的驱动控制技术具有重要的实际应用价值。 本设计采用增量式PID控制策略控制无刷电动机,并在Proteus平台上进行转速闭环系统仿真。搭建了无刷直流电动机转速控制系统的仿真模型,基于80C51控制核心,采用keil C51软件编写C程序。 1系统硬件组成 控制系统的硬件组成如图1所示。采用Atmel公司的AT89S52单片机为系统

控制核心、IR2101驱动的MOSFET三相桥式逆变器、无刷直流电机、A/D转换转速检测、闭环PID控制、按键检测、档位和转速显示等部分组成。 2控制系统核心及外围电路 系统核心AT89S52单片机最小系统及按键电路如图2所示。 AT89S52芯片是8位单片机,具有廉价、实用及运算快等优点,它有两个定时器,两个外部中断接口,24个I/O口,一个串行口。 单片机首先进行初始化,将显示部分(转速显示、档位显示)送显“0”然后通过中断对按键进行检测当检测到启动键按下时,系统启动,控制核心输出初始控制码,与此同时通过AD转换器读取当前的实时转速,一方面用于显示,另一方面将当前转速与设定转速送入PID控制环节然后输出下一时刻的控制码。 在本次设计中使用80C51的外部中断接口0(INT0)作按键检测(见图3),通过四个与门,当有任何一个按键按下去时tap端都会出现低电平引发中断。

直流电动机调速系统模糊控制仿真

云南大学学报(自然科学版),2005,27(5A):299~303CN 53-1045/N I SSN 0258-7971 Jour nal of Yunnan Univer sity X 直流电动机调速系统模糊控制仿真 李媛媛,赵俊杰 (上海工程技术大学电子电气工程学院,上海 200065) 摘要:分别采用模糊控制和模糊-PI D 控制对直流电动机调速系统进行设计.软件平台采用MATLAB/Simulinik 仿真模块及模糊控制工具箱,通过对输出波形的比较,可以明显地看出模糊-P ID 控制在进行直流电动机调速时优于简单模糊控制和传统PI D 控制方法. 关键词:直流电动机;模糊-PID 控制;仿真 中图分类号:TP 273 文献标识码:A 文章编号:0258-7971(2005)5A-0299-05 近年来,针对模糊控制的研究非常活跃.由于其最大的特点是不需要对象的数学模型,并且能适用于非线性、时变的复杂对象以及多变量系统,而且它在控制过程中能采用多个评价指标,控制原则的改变也比较容易,因而模糊控制在许多领域都能发挥其特长. 本文针对直流电机调速系统的非线性和结构参数易变化等特点,设计了模糊控制器,建立了转速环为模糊控制器的双闭环调速系统.将MAT 2LAB 的Fuzzy Toolbox 中的模糊推理系统工具箱与Simulink 有机地结合起来,充分利用它们各自的优势,方便地实现了模糊控制系统(FCS)的计算机仿真.同时还采用模糊PID 控制策略进行直流电机的调速系统设计,它克服了简单模糊控制和传 统PID 控制的一些缺点,从而得出模糊PID 对系统进行控制优于一般模糊控制器控制方法. 2 S imulink 下直流调速系统仿真模型的实现 直流电动机的动态结构图如图1所示.本文以某晶闸管供电的双闭环直流调速系统为被控对象,整流装置采用三相桥式电路,基本数据如下: 直流电动:220V,136A,1460r/min,C e =0.132V #min/r;晶闸管装置放大系数:K s =40; 电枢回路总电阻:R =0.58;时间常数:T l =0.03s,T m =0.18s;电流反馈系数:B =0.05V/A; 转速反馈系数:A =0.007V #min/r;三相桥式电路的平均失控时间:T s =0.0017 s. 图1 双闭环调速系统的动态结构图 F ig.1The dynamic str ucture of speed-controlling system 收稿日期:2005-07-29 基金项目:上海工程技术大学校青年基金资助项目(E542(2005Q05)). 作者简介:李媛媛(1979- ),女,硕士,助教,主要从事汽车电子及其自动化方面的研究.

直流无刷电机的模糊PI速度控制

微型调速气泵的模糊PI速度控制 摘要:本文探究配置直流无刷电机的可调速微型气泵的一种控制模式,在分析微型气泵电机数学模型的基础上,将模糊控制与传统的PID控制相结合,设计了模糊PI微型气泵无刷电机的速度控制器,并应用于调速伺服系统。通过对应用最广的“气海”品牌微型调速气泵VLK5005等多种型号的仿真实验表明,用模糊PI控制器代替普通的PI控制器,可以使调速气泵BLDC的整体性能得到显著改善,是高性能调速气泵BLDC调速系统开发的一个重要方向。 关键词:模糊PI控制,微型调速气泵,直流无刷电机,智能控制 引言 随着电力电子技术、微电子技术、控制理论以及永磁材料的快速发展,配置无刷直流电机(BLDC)的微型气泵(调速气泵)得以迅速推广,目前国内著名的气海品牌已经占据非常大的市场份额。当微型气泵BLDC调速系统用于要求调速性能、控制精度较高的场合时(如机器人、航天航空、精密电子仪器设备等),调速气泵BLDC的快速性、稳定性以及鲁棒性是衡量其性能优劣的

重要指标。而微型调速气泵BLDC是一个多变量、强耦合、非线性、时变的复杂系统,当系统负载或参数发生变化时,传统的PI控制将难以达到设计的预期效果。因此在这类高度非线性的系统中,采用智能控制方法则是极有前景的,它具有提高系统快速性、稳定性和鲁棒性的潜力。模糊控制是智能控制中最常用的方法之一,它不依赖于控制系统的数学模型。对系统参数的变化不敏感。具有快速性及鲁棒性强的特点,因此很适合微型调速气泵BLDC控制系统的要求。 本文采用基于模糊PI控制器的速度控制方法,对无刷直流微型调速气泵进行速度控制。它能发挥模糊控制鲁棒性能强、动态响应好、上升时间快、超调小的特点,又具有PI控制器的动态跟踪品质和稳态精度。对其进行仿真结果表明,该方法能取得良好的控制效果。 1、模糊控制器在微型调速气泵BLDC调速系统中的应用 常见的微型气泵BLDC控制系统采用双闭环控制,即速度环、电流环控制。传统上采用PI控制,结构简单、可靠、稳定,但它难以克服负载、模型参数等发生大范围变化时以及非线性因素的影响。因而无法满足高性能、高精度场合的要求。而自适应PI控制器则结构复杂、计算量大、实时性差,在快速运动控制中受到一定的限制。将模糊控制器直接用于微型调速气泵BLDC 速度控制,则可以充分发挥模糊控制器适应于非线性时变系统、滞后系统的优点。取得好的控制效果和强的鲁棒性,且因不需建

相关主题
文本预览
相关文档 最新文档