当前位置:文档之家› 微晶玻璃

微晶玻璃

微晶玻璃
微晶玻璃

微晶玻璃

摘要:本文介绍了微晶玻璃与普通玻璃和陶瓷的区别,通过分析组成将其分类。

同时描述了微晶玻璃的制备,性质,应用,浅析其发展趋势。

关键词:微晶玻璃组成制备性能应用

Abstract:This paper introduces the difference between microcrystalline glass and common glass and ceramics. Through the analysis of composition classified microcrystalline glass. At the same time, also describe microcrystalline glass’s preparation, property and application. Analysisthe trend of its development.

Keywords: Microcrystalline glass preparation property application trend

1 前言

微晶玻璃又称微晶玉石或陶瓷玻璃,是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。但晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的[1]。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。

2分类及其组成

目前,问世的微晶玻璃种类繁多,分类方法也有所不同。通常按微晶化原理分为光敏微晶玻璃和热敏微晶玻璃;按基础玻璃的组成分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸盐系统;按所用原料分为技术微晶玻璃(用一般的玻璃原料)和矿渣微晶玻璃(用工矿业废渣等为原料);按外观分为透明微晶玻璃和不透明微晶玻璃;按性能又可分为耐高温、耐腐蚀、耐热冲击、高强度、低膨胀、零膨胀、低介电损耗、易机械加工以及易化学蚀刻等微晶玻璃以及压电微晶玻璃、生物微晶玻璃等

晶玻璃的组成在很大程度上决定其结构和性能。按照化学组成微晶玻璃主要分为四类:硅酸盐微晶玻璃,铝硅酸盐微晶玻璃,氟硅酸盐微晶玻璃,磷酸盐微晶玻璃。

2.1 硅酸盐微晶玻璃

简单硅酸盐微晶玻璃主要由碱金属和碱土金属的硅酸盐晶相组成,这些晶相的性能也决定了微晶玻璃的性能。研究最早的光敏微晶玻璃和矿渣微晶玻璃属于

这类微晶玻璃。光敏微晶玻璃中析出的主要晶相为二硅酸锂(Li

2Si

2

O

5

),这种晶

体具有沿某些晶面或晶格方向生长而成的树枝状形貌,实质上是一种骨架结构。

二硅酸锂晶体比玻璃基体更容易被氢氟酸腐蚀,基于这种独特的性能,光敏微晶玻璃可以进行酸刻蚀加工成图案、尺寸精度高的电子器件,如磁头基板、射流元件等。矿渣微晶玻璃中析出的晶体主要为硅灰石(CaSiO

3

)和透辉石

[CaMg(SiO

3)

2

]。据研究,透辉石具有交织型结构,比硅灰石具有更高的强度、更

好的耐磨耐腐蚀性。2.2 铝硅酸盐微晶玻璃

它包括Li

2O-Al

2

O

3

-SiO

2

系统、MgO-Al

2

O

3

-SiO

2

系统、Na

2

O-Al

2

O

3

-SiO

2

系统、

ZnO-Al

2O

3

-SiO

2

系统。Li

2

O-Al

2

O

3

-SiO

2

系统是一个重要的系统,因为从这个系统可

以得到低膨胀系数的微晶玻璃。当引入4%(质量分数)(TiO

2+ZrO

2

)作晶核剂时,

玻璃中能够析出大量的钛酸锆晶核。在850℃左右热处理时,这些晶核上能够析出直径小于可见光(λ<0.4μm)的β-石英固熔体,这种超细晶粒结构使微晶

玻璃材料透明。MgO-Al

2O

3

-SiO

2

系统的微晶玻璃具有优良的高频电性能、较高的

机械强度(250~300MPa)、良好的抗热震性和热稳定性,已成为高性能雷达天线

保护罩材料。Na

2O-Al

2

O

3

-SiO

2

系统中引入一定量的TiO

2

,可以获得以霞石

(NaAlSiO

4

)为主晶相的微晶玻璃。由于这类微晶玻璃具有很高的热膨胀系数(100×10-7℃-1左右),可以在材料表面涂一层膨胀系数较低的釉以强化材料。

ZnO-Al

2O

3

-SiO

2

系统玻璃组成或热处理制度不一样,析出的晶体类型也不一样,

在850℃以下,只析出透锌长石(ZnO·Al

2O

3

·8SiO

2

),而在950~1000℃析出锌

尖晶石(ZnO·Al

2O

3

)和硅锌矿(2ZnO·SiO

2

)。

2.3 氟硅酸盐微晶玻璃

它包括片状氟金云母型和链状氟硅酸盐型。片状氟金云母晶体沿(001)面容易解理,而且晶体在材料内紊乱分布,使得断裂时裂纹得以绕曲或交叉,而不至于扩展,破裂仅发生于局部,从而可以用普通刀具对微晶玻璃进行各种加工。云母晶体的相互交织将玻璃基体分隔成许多封闭或半封闭的多面体,增加了碱金属离子的迁移阻力。同时,由于云母晶体本身是一种优良的电介质材料,因此云母型微晶玻璃具有优良的介电性能。链状氟硅酸盐微晶玻璃中可析出氟钾钠钙镁

闪石(KNaCaMg

5Si

8

O

22

F

2

)及氟硅碱钙石[Na

4

K

2

Ca

5

Si

12

O

30

(OH,F)

4

]。当主晶相为针状

的氟钾钠钙闪石晶体时,这种晶体在材料中致密紊乱分布,形成交织结构,分布在方石英、云母及残余玻璃相中,可使断裂时裂纹绕过针状晶体产生弯曲的路径,因而具有较高的断裂韧性(3.2MPa·m1/2)和抗弯强度(150 MPa)。由于其热膨胀系数高达115×10-7℃-1(0~100℃),可在材料表面施以低膨胀釉,使抗弯强度提高到200 MPa。

2.4 磷酸盐微晶玻璃

氟磷灰石微晶玻璃已经从含氟的钙铝磷酸盐玻璃以及碱镁钙铝硅酸盐玻璃中制备出来,它具有生物活性,现已成功地被植入生物体中。

3 性能

如前所述,玻璃是一种具有无规则结构的非晶态固体,或称玻璃态物质,从热力学观点出发,它是一种亚稳态,较之晶态具有较高的内能,在一定条件下可转变为结晶态(多晶体)。对玻璃控制晶化而制得的微晶玻璃具有突破的力学、热学及电学性能。

3.1力学性质

3.1.1强度:在室温下,微晶玻璃和普通陶瓷及玻璃一样,都是脆性材料,这意味着它们不具有可延性和可塑性,在荷重造成破坏之前,呈现完全弹性的状态。

和其他的脆性材料一样,它们具有较高的弹性,并以劈裂的形式断裂。

微晶玻璃之所以得到广泛应用,原因之一就是它的机械强度高,特别是抗弯强度高。但微晶玻璃存在有易碎的玻璃相的组成,其机械强度在很大程度上,受到以下几个因素的影响:①结晶相的颗粒大小和体积分数;②界面的结合强度;

③不同的弹性模量;④不同的热膨胀性能。

对于同一磨损条件下的微晶玻璃材料和基础玻璃来说,微晶玻璃的强度试验值要高于基础玻璃,这可以归纳为多因素的作用结果。建立在临界应力概念上的机械强度理论认为:微晶玻璃材料的强度很大程度上来源于它的弹性模量(8×104~15×104MPa)大于玻璃的弹性模量(约6×104MPa)。但是,实际上微晶玻璃与玻璃的强度比的倍数常常大于它们的弹性模量比的倍数,因此,另一合理的解释是微晶玻璃中的晶粒可以造成裂纹尖端的弯曲和可能的钝化,增加了破裂功,并且减缓甚至阻止了裂纹穿过晶相和玻璃相的界面,而在玻璃中则有一个不受阻碍的断裂路径。

微晶玻璃强度增加的原因主要是由于具有细晶、致密的微观结构。脆性材料中的裂纹通常带来缺陷,例如夹杂物(包裹体)、内部气孔或是微裂纹。机械强度将受到微晶玻璃的微观结构的影响

3.1.2弹性与弹性模量:微晶玻璃的弹性模量比普通玻璃和某些普通陶瓷都高。但是它比烧结纯氧化物陶瓷的弹性模量低。玻璃的弹性模量和它的化学组成具有近似加和的关系。多相陶瓷的弹性模量也是结晶相和玻璃相的各种性能的加和函数。微晶玻璃的弹性模量基本上取决于晶相的弹性常数。当然还必须考虑到,在

玻璃相中能够促进高弹性模量值的氧化物的存在,特别是CaO、MgO和Al

2O

3

对玻

璃的弹性模量有显著的影响。

3.2热学性质

3.2.1热膨胀系数和抗热冲击性能(抗热震性):微晶玻璃以能制得很大范围的热膨胀系数而著称。一方面可以制得具有负的热膨胀系数材料,而另一方面又可以制得很高的正热膨胀系数的材料。在这两者之间还有一些热膨胀系数几乎等于零的微晶玻璃材料。更有实际意义的是微晶玻璃的热膨胀系数可以调整到和普通玻璃或普通陶瓷或某种金属或合金的热膨胀系数近似相仿。

对材料随着温度的变化而产生尺寸变化的研究是非常重要的。例如,如果要求一种微晶玻璃具有高的抗热冲击能力,则要求其热膨胀系数必须尽可能的低,以便把材料中由温度应力造成的应变降至最低。又例如要把微晶玻璃焊接到或者刚性连接到另一种材料上,如一种金属上时,则需要它们的热膨胀系数近似匹配,以防止这个接合件在加热或冷却时产生高应力。在大型光学镜头应用中,随着温度的变化,微晶玻璃尺寸的稳定性是非常重要的,此时需要制备一种热膨胀系数接近零的微晶玻璃材料。

3.2.2抗热冲击性能(抗热震性):在低的热膨胀系数下,微晶玻璃具有良好的抗热冲击性能和较大的强度。另外,由于玻璃相含量较少时,在晶粒之间存在较多的微气孔,这样材料在受热时,有一定的空间进行结构调整,在宏观性能上表现为热膨胀系数较低,因而抗热冲击性能较好。

与普通玻璃及陶瓷相比,微晶玻璃具有更高的机械强度,因此,具有更好的抗热冲击性能。此外,微晶玻璃可以具有很低的热膨胀系数,使得其抗热冲击性能更为优异。以β-锂辉石、β-锂霞石或β-石英固溶体为主晶相,具有热膨胀系数为5×10-7~10×10-7℃-1的微晶玻璃可以从700℃左右的温度急冷到0℃的冰水中而不破裂。例如,规格为600mm×600mm×5mm的微晶玻璃盘,以β

-锂辉石为主晶相,热膨胀系数为3.3×10-7℃-1(25~700℃),就可以从700℃冷却到0℃而不破坏。高强度和第低的热膨胀系数以及较低的弹性模量使得微晶玻璃具有高的抗热冲击性,最大可高达1100℃。

3.3电学性质

3.3.1电阻率:微晶玻璃具有很高的电阻系数,因此一直可用作绝缘材料。一般来说,微晶玻璃与普通陶瓷和陶瓷相比,是良好的电绝缘材料。如即使在700℃

高温下,Li

2O-Al

2

O

3

-SiO

2

系统微晶玻璃的电阻率也很高。玻璃和陶瓷的电导率依

赖于自身所含的几种不同类型的可迁移的离子,其中主要是碱金属离子,随着碱金属离子含量的增加其电导率也跟着增加。对于微晶玻璃来说,碱金属离子也是其电阻率的主要影响因素。离子的迁移能力决定于离子所在的结构。

玻璃析晶时,在晶相中结合了碱金属氧化物,因此降低了微晶玻璃的电导率。

例如,在700℃温度下,Li

2O-ZnO-SiO

2

系统微晶玻璃材料单位面积内的表面电阻

率是107.3Ω·m,而原始玻璃的表面电阻率为102.4Ω·m。因此,一般情况下,微晶玻璃具有比原始玻璃高得多的电阻率。虽然有些玻璃、陶瓷以及微晶玻璃的导电涉及到电子或空穴的迁移过程,因而可被作为半导体材料,但是大多数微晶玻璃是离子导体。

3.3.2介电常数:许多微晶玻璃在室温下的介电常数处于5~6之间,且这些数量不太受测试时频率的影响。在低频下,介电常数随温度(150℃以前)的升高而缓慢加大;在高频下,温度升高到400~500℃,介电常数几乎没有受到影响。

对于大多数的微晶玻璃材料来说,晶相和残余玻璃相的介电常数值是非常接近的。所以玻璃相的体积分数对微晶玻璃材料的介电常数值影响很小。如果微晶玻璃所含的晶相具有高的介电常数,例如钛酸钡,那么玻璃相的体积分数将影响最终的介电常数值。因此,可以通过减少残余玻璃相的体积分数来获得具有高介电常数的微晶玻璃材料。

4 制备

由于微晶玻璃的品种非常繁多,每一种产品都对应一定的生产方法,所以就使得制备微晶玻璃工艺方法多样化。归纳起来微晶玻璃制备方法主要有整体析晶、烧结法和溶胶-凝胶法三大类[2]

4.1整体析晶法:最早的微晶玻璃是用整体析晶法制备的,至今整体析晶法仍然是制备微晶玻璃的主要方法。其工艺过程为:在原料中加入一定量的晶核剂并混合均匀,于1400~1500℃高温下熔制,均化后将玻璃熔体成形,经退火后在一定温度下进行核化和晶化,以获得晶粒细小且结构均匀的微晶玻璃制品。

整体析晶法的最大特点是可沿用任何一种玻璃的成形方法,如压延、压制、吹制、拉制、浇铸等;适合自动化操作和制备形状复杂、尺寸精确的制品。微晶玻璃是通过受控晶化的材料。在热处理过程中,玻璃经过晶核形成、晶体生长,最后转变为异于原始玻璃的微晶玻璃。因此,热处理是微晶玻璃生产的技术关键。热处理过程一般分两阶段进行,即将退火后的玻璃加热至晶核形成温度T

并保

温一定时间,在玻璃中出现大量稳定的晶核后,再升温到晶体生长温度T

使玻璃转变为具有亚微米甚至纳米晶粒尺寸的微晶玻璃。对于以氟化物为晶核剂的微晶玻璃,由于氟化物在退火冷却过程中从熔体里分相出来,起着晶核的作用,因此,可以不需核化保温而直接进入晶体生长阶段,使玻璃在晶化上限温度适当时间,制出的微晶玻璃可达到几乎全部晶化,剩下的玻璃相很少。

整体析晶法可采用技术成熟的玻璃成形工艺来制备复杂形状的制品,便于机械化

生产。由玻璃坯体制备的微晶玻璃在尺寸上变化不大,组成均匀,不存在气孔等常见的缺陷,因而微晶玻璃不仅性能优良且具有比陶瓷更高的可靠性

4.2烧结法:烧结法制备微晶玻璃材料的基本工艺为将一定组分的配合料,投入到玻璃熔窑当中,在高温下使配合料熔化、澄清、均化、冷却,然后,将合格的玻璃液导入冷水中,使其水淬成一定颗粒大小的玻璃颗粒。水淬后的玻璃颗粒的粒度范围,可根据微晶玻璃的成形方法的不同进行不同的处理。烧结法制备微晶玻璃材料的优点在于:

⑴晶相和玻璃相的比例可以任意调节;

⑵基础玻璃的熔融温度比整体析晶法低,熔融时间短,能耗较低;

⑶微晶玻璃材料的晶粒尺寸很容易控制,从而可以很好地控制玻璃的结构与性能;

⑷由于玻璃颗粒或粉末具有较高的比表面积,因此即使基础玻璃的整体析晶能力很差,利用玻璃的表面析晶现象,同样可以制得晶相比例很高的微晶玻璃材料4.3溶胶-凝胶法:溶胶-凝胶法技术是低温合成材料的一种新工艺,其远离是将金属有机或无机化合物作为先驱体,经过水解形成凝胶,再在较低温度下烧结,得到微晶玻璃。同整体析晶法和烧结法不同,溶胶-凝胶法在材料制备的初期就进行控制,材料的均匀性可以达到纳米甚至分子级水平。利用溶胶-凝胶法技术还可以制备高温难熔的玻璃体系或高温存在分相区的玻璃体系。由于制备温度低,避免了玻璃配料中某些组分在高温时挥发,能够制备出成分严格符合设计要求的微晶玻璃。微晶相的含量可以在很大的范围内调节。溶胶-凝胶法放入缺点是生产周期长,成本高,环境污染大。另外,凝胶在烧结过程中有较大的收缩制品容易变形。

5 应用

微晶玻璃具有性能优良、制备工艺易于控制、原材料丰富和制造成本低廉等特性,是一种高性能、低价位、应用广泛的新型材料。近年来对微晶玻璃的研究开发和应用十分活跃。微晶玻璃还可以通过组成的设计来获取特殊的光学、电学、磁学、热学和生物等功能,从而可作为各种技术材料、结构材料或其他特殊材料而获得广泛的应用。微晶玻璃具有的优异的性能使这类材料除了广泛地应用在建筑装饰材料、家用电器、机械工程等传统领域外,在军事国防、航空航天、光学器件、电子工业、生物医药等现代高新技术领域也具有重要的应用价值,面临着极佳的发展机遇[3]。因此,具有一系列优异性能的微晶玻璃其应用前景无比广阔。

5.1在建筑上的应用

5.1.1 微晶玻璃装饰板材:建筑装饰用微晶玻璃制品又称人造花岗岩、玉晶石、微晶石或云石等,是集玻璃、陶瓷生产技术发展起来的一种新型建筑装饰材料。其结构致密、晶体均匀、纹理清晰、具有玉质般的观感;外观平滑光亮、色泽柔和典雅、无色差、不褪色;具有坚硬、耐磨的力学特性、优良的耐酸、耐碱性能;并且具有不吸水、抗冻以及较低的热膨胀系数和独特的耐污染性能;绿色、环保、无放射性污染;并可根据需要设计制造出众多类型、不同色泽花样、规格的平板及异型板材。其理化性能和装饰效果远优于天然石材的理想代替产品,被认为是21世纪理想的高级内、外墙及地面装饰材料[]。目前,各种建筑装饰用微晶玻璃板材已广泛应用于各种公共场馆、会议中心、商业大厦及地铁工程等,其市场发展前景广阔,经济效益及社会效益显著。

5.1.2新型透明防火微晶玻璃:新型透明防火微晶玻璃是近年来国外研制开发的

一类新型β-石英透明微晶玻璃,具有良好的抗热炸裂和耐火性能,遇到火灾时在一定的耐火时间内不会炸裂,从而可以隔断火焰和烟气,有效地解决了玻璃透明性、强度及耐火性能关键技术难题,将高强、防火等特性集中于单片玻璃上,从而获得性能优异的新型多功能玻璃材料。

与常用的普通钠钙硅酸盐玻璃相比,该产品具有很低的热膨胀系数(接近于零),很高的耐热冲击性能,能抵抗800℃的高温而不软化,因而耐热性能很好,可作为单片防火玻璃或耐热玻璃使用。随着现代社会的发展和人民生活水平的提高,对建筑玻璃的耐热防火性能有了更高的要求,在高层、高档及特殊建筑物使用安全玻璃产品的条件已基本具备。当作为单片玻璃使用时,主要作为高强防火玻璃大量应用于幕墙、防火隔断、防火门窗等建筑部位。

5.2在电子工业中的应用

5.2.1液晶显示器:Li

2O-Al

2

O

3

-SiO

2

系透明微晶玻璃常用于生产液晶显示器,尤

其是在笔记本电脑上用作多晶硅薄膜晶体管的彩色过滤器。日本Nippon Electric Glass公司生产了该用途的微晶玻璃,其产品名为Neoceram TM N-0,其主晶相为β-石英固溶体,晶粒大小约为0.1μm。该微晶玻璃晶粒的直径比可见光波长小,而且晶体颗粒是圆形的。如下图中扫描电镜所示。此外,晶体的折射率和母体玻璃十分接近,因此该微晶玻璃具有较好的透明性。而NeoceramN-11的主晶相为β-锂辉石,其晶粒大小为微米级。关于N-0和N-11的微观结构如图6-7所示。

Neoceram TM N-0系列微晶玻璃采用两步法制备,首先,通过压延、拉制或压制法将熔制后的母体玻璃制成小的板材。随后将其进行退火冷却,当玻璃板冷却到室温时,将其重新加热,在这一晶化过程中有β-锂辉石固溶体开始析出,晶化完毕后再将微晶玻璃重新退火、冷却到室温。最后得到的微晶玻璃尺寸为(320±0.2)mm(长)、(350±0.2)mm(宽)、(1.1±0.05)mm(厚)。以下是该微晶玻璃其他性能。平行度:最大允许0.02μm;垂直度:最大为0.17mm/100mm;表面粗糙度:Ra=10nm。

5.2.2集成电路基板:目前,作为多层布线基板,一般以氧化铝基板为主。但存在着多层化的可靠性低,介电常数和烧成温度高等问题。采用微晶玻璃制造的低温烧成电路基板很好地解决氧化铝基板所存在的问题。目前,以微晶玻璃制成的低温烧成基板主要有两种。

一种是经改性的堇青石微晶玻璃基板,其工艺方法是先制备堇青石母体玻璃,经粉碎后,按陶瓷够工艺进行成形,烧成,其烧成温度为900~1000℃。

另一种方法是用低熔点玻璃和氧化铝粉混合,经成形烧结,在基体中析出α-堇青石或β-锂辉石,且相对介电常数低(5~9),在900℃左右就可烧成,用坯片法可提高高密度多层化的可靠性。

随着大规模、超大规模集成电路的迅速发展,多层布线的微晶玻璃基板必将得到广泛使用。目前,在制备复合电路基板时主要采用的低温共烧陶瓷(LTCC,即Low Temperature Co-fired Ceramics)技术。LTCC是一种多层陶瓷制备工艺,通过添加微晶玻璃材料能在低于1000℃时烧成,但是传统的氧化铝陶瓷的烧成温度超过1500℃。由于这个低温共烧特性,它能选用对温度耐久性较差的导电材料作为内部集成电路,例如Ag或Cu。

5.2.3 电容器:有一种含铁电晶相并具有高电容率的特殊微晶玻璃。虽然用普通的生产工艺就可以制出高电容率的陶瓷,但是使用微晶玻璃工艺有一定的优点。一个主要的优点是微晶玻璃组成还是呈玻璃态时,可连续拉制成很薄的薄膜,但

是要把通常的陶瓷制成很薄的板是极端困难的。因此,用微晶玻璃制成单位体积具有高电容的介电层要比普通陶瓷实现。

制造微晶玻璃电容器的方法是把薄的玻璃片和一个导电金属片叠合起来,把这个组合件加热使玻璃软化,并把玻璃片的边棱熔合为一体,然后把这个组合件热处理,使铁电化合物析晶。这类合适的微晶玻璃具有比较低的介电损耗、高介电击穿强度以及良好的绝缘性能。

5.3在生物医学领域中的应用

在新型生物医学材料的研制中,除了金属、陶瓷和有机高分子材料以外,由于生物微晶玻璃具有良好的生物相容性、生物活性和可加工性,已引起了各国学者的极大兴趣,研究工作显得十分活跃。近十多年来生物微晶玻璃的研究无论是在材料的制备,还是在基础理论研究、临床试验和应用方面都取得了重大的进展。当前人们关注的是那些能同时满足外科手术中对生物学和力学性能的要求的“新型生物活性材料”。

在骨科等置换手术中,传统的替代材料为钛合金、不锈钢和高分子材料,这些材料与人体组织亲和性差。如果长期植入人体内,会从金属材料中溶出金属离子,而从高分子材料中溶出制造时残留的未反应单体,对人体组织有一定的危害性。对此,烧结刚玉在一定程度上有所改善,它不溶出毒性元素,也具有相当的机械强度,但是,由于氧化铝不易与骨骼产生化学键合,因而仍然难以满足手术材料应具备高度生物活性的要求。自20世纪70年代末出现具有生物活性的羟基磷灰石生物陶瓷材料(HAP)后,生物陶瓷越来越受到人们的青睐,但羟基磷灰石材料本身的机械强度第,不适于用在人体受力很大的部位,因而人们致力于改善材料性能的研究。

随着研究的深化和应用范围的扩大,对生物微晶玻璃的要求越来越高,为获得长期满意的生物效应,各国学者进行了广泛而深入的研究,目前国内外正致力于活性,特异性的生物微晶玻璃材料的研究,可望在近期内取得更大的进展。

结束语

现代科学技术的发展,对材料的性能要求越来越高。微晶玻璃在现代高新技术领域具有重要的应用价值,也同样面临着发展的机遇。借鉴结构陶瓷的发展历程,微晶玻璃的研究成了近年来功能材料研究领域内新的发展方向。

微晶玻璃的研制正处在从经验积累向科学控制材料组成和结构的阶段转变。因此,应按照使用要求,在不同层次上对材料的组成、结构进行科学设计与调控。玻璃的组成应包括化学组成和晶相组成,而且要注意微晶玻璃的功能“稀释”效应。即当具有特殊功能的晶相含量不足时,晶相被残余的玻璃相或其他杂质相所包围,导致材料显示的功能效应大大减少,甚至不具备实用价值。因此,应尽量提高功能主晶相的含量,减少杂质相和玻璃相。另外,晶粒尺寸和结晶形状、晶相与玻璃相的界面组成及其结合强度对功能微晶玻璃的性能也是至关重要的。

微晶玻璃的应用开发和产业化是值得关注的另一重要问题,应引起研究者的足够重视。目前我国虽已取得不少微晶玻璃方面的研究成果,对某些系统的研究已接近发达国家水平。但是在产业化和应用方面与国外先进水平相比,差距还很大[4]。其原因是多方面的,其中应用目标不明确、研究经费不足和中试环节不畅是三个重要的原因。国家用于基础研究的经费无法完成中试,而企业又很少原意承担中试和市场培育的巨大风险。因此,如何根据市场的需要来开发新型功能微晶玻璃材料,如何把实验室的研究成果转化为规模化生产、性能可靠、经济的技

术产品,是微晶玻璃发展的必然趋势。

参考文献:

[1] 王承遇,陶英.玻璃材料手册[M].化学工工业出版社,2005年1O月。

[2] 肖汉宁,彭文琴,邓春明.微晶玻璃的制备技术,性能及用途[J].中国玻璃.2000,36(5):31

[3]卢安贤,柯尊斌,刘树江.可机械加工微晶玻璃应用研究新进展IJ1.硅酸盐通报.2006,25(1):49.

[4] 张常建,肖卓豪,卢安贤.透明微晶玻璃的研究现状与展望.[N].材料导报.2009,23(7):38—43.

微晶玻璃板材的主要缺陷

。微晶玻璃板材的主要缺陷有气泡、变形、色脏、坑洞、缺棱、缺角等。其中以气泡和变形较为常见。 气泡的形成是:该板材在晶化、烧成时表面会生成1—2mm厚的玉脂层。玉脂层下即隐藏有大量直径为1mm左右的气泡,气泡是装料堆积空隙内的气体,在表面熔融封闭前未能全部选出而滞留在板内的。如对板材的磨削深度超出该玉脂层时,就会使气泡外露成为开口气孔。 变形的形成是: 一、熔块料化学成分不均匀。熔块料化学成分偏差过大时易导致板材热膨胀系数不一致,产生局部内应力出现翘曲变形,这种现象并不常见。熔块料化学成分不均匀的因素有:(1)配合料未经过筛选,部分单一原料吸湿或受压结成团块入窑; (2)混料时间过短导致原料混合不均匀; (3)原料在熔窑内熔制时间过短,使得高温混熔不完全; (4)熔窑内隔墙侧塌,熔液表面浮渣随熔液料流出。 二、冷却阶段的过大温差会使板材的收缩不一致而产生翘曲变形。即便是出窑后鼓风强制冷却也会产生翘曲变形。在冷却的各个阶段应采用不同的合理的降温速率,缓慢、均匀地冷却方式最为合理 另外还有一、耐磨性较差,由于微晶石的表面是玻璃质的东西居多,容易磨花,所以在人流大的场合不适合铺地面(家庭装修由于保养好,容易克服这个缺点。工程地面应用则比较麻烦),因此微晶石的使用范围受到了限制,不主张用于地面铺贴。 二、第二次抛光难度大。再加上由于部分厂家在微晶石的烧制过程中偷工减料,致使产品根本无法进行第二次抛光,这些在一定程度上也使一些用户在选择微晶石做装修时慎之又慎。 三、花色呆板,缺乏变化,少有天然石材自然之美。和天然石材相比,微晶石人为的控制了色差,使色差变得极小,这是其优点。但是任何事物都有两面性,微晶石在追求整齐划一的同时却无法营造天然石材那种清秀、灵动、飘逸和装饰氛围,更无法达到那种天人合一、返朴归真、回归自然的至高境界,这不能不说是一大遗憾。 四、由高温烧制,大规格板容易变形,平整度差于抛光砖,应配备专门的铺贴工,有平整度问题可以通过有效的施工克服。 五、清洁后难以干燥,加之表面光洁,所以容易打滑,安全隐患大。

浅谈微晶玻璃

浅谈微晶玻璃 摘要微晶玻璃是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。微晶玻璃具有很多优异的性能,这些特性一般都超过了普通的金属材料、有机材料及无机非金属材料。这些优异的性能使微晶玻璃受到了极大的欢迎。 关键词微晶玻璃组成结构制备工艺应用发展 1引言 微晶玻璃(Glass-ceramic)又名玻璃陶瓷,它是指将加有形核剂(个别可不加)的特定组成的基础玻璃,通过控制结晶变成具有一种或多种微晶体和残余玻璃相的复合材料,即在非晶态的玻璃内均匀分布着大量(体积百分比约占95%~98%)的随机取向的微小陶瓷晶体(通常小于10μm)。同原始玻璃相比,微晶玻璃的特点是无脆性、强度高、化学稳定性好、热稳定性和硬度比较高,并具有一些特殊的性能;与大理石、花岗岩相比,由于其组成是均匀细小晶体,因此其机械性能、耐化学腐蚀、硬度等主要物化性能均优于大理石、花岗岩,因此具有广泛的发展前途和应用价值,用它来代替天然和人造大理石已逐步成为时代的趋势[1]。我国对微晶玻璃的研究起步于上世纪的八十年代初,经过二十多年的开发,微晶材料的生产工艺基本上已趋于成熟,进人了实用阶段。它主要用做建筑装饰材料、飞机、火箭、卫星等结构材料,医疗、化工等防腐材料以及军事上,如激光制导材料等。 2 微晶玻璃的组成与结构 2.1 组成 与一般玻璃不同,微晶玻璃的组成应分解为: (1)玻璃的总体化学组成,它应未微晶化的玻璃的化学组成一致; (2)各相的化学组成,它包括析出的各晶相和残余玻璃组的化学组成。首先应指出,仅有一定范围的组成能符合制备微晶玻璃的要求。一般都应含有一定量的玻璃形成剂。SiO2 ,B2O8等。其作用在于使玻璃易于晶化而易于引起分,以间接促进核化与晶化。虽然对分相的作用见解分岐,但一般认为,选择亚稳分相附近的组成有益于微晶化。此外,许多种添加剂的引入,会起到晶核剂的作用,促进玻璃的整体晶化。晶核剂及其作用机理的研究是微晶玻璃组成研究的一个重要问题。而在网络外体中往往需引入具有小离子半径、大场强的Li+,Mg2+和Zn2+等。其作用在于使玻璃易于晶化或易于引起分相,以间接促进核化与晶化,同时选择亚稳分相附近的组成有益于微晶化。此外,许多种添加剂的引入,如TiO2、ZrO2、Cr2O3等,会起到晶核剂的作用,促进玻璃的整体晶化。为了保证重新热处理过程中易于整体晶化,在组成设计时必须使玻璃具有适合的粘度—温度曲线[2]。 2.2 结构 材料的外观性能取决于它的内在结构。微晶玻璃的结构包括晶相和玻璃相的组成、数量和它们的相对比例,因此其性能既取决于玻璃的组成又取决于它的晶化工艺,因为晶体的种类

装饰材料调查报告

装饰材料调查报告 9月30日姚老师带我们去材料市场学习材料,通过这次的学习我收获了不少,总结如下: (一)天然石材: 目前市场上常见的用于居室装修的天然石材品种繁多。但按建材市场上的俗称,只分为两大类:大理石和花岗石。各种灰岩、白云岩和大理岩等统称为大理石;花岗岩、闪长岩、辉绿岩、片麻岩等统称为花岗石(个别商家将砂岩也称为花岗石)。然后再根据颜色和花纹的差异命名不同的品种,如印度红、黑金砂、珍珠黄、蓝麻、白麻等。普通消费者从名称上根本不能了解石材的性能。 花岗岩 是一种岩浆在地表以下凝却形成的火成岩,主要成分是长石和石英。花岗岩的语源是拉丁文的granum,意思是谷粒或颗粒。因为花岗岩是深成岩,常能形成发育良好、肉眼可辨的矿物颗粒,因而得名。花岗岩不易风化,颜色美观,外观色泽可保持百年以上,由于其硬度高、耐磨损,除了用作高级建筑装饰工程、大厅地面外,还是露天雕刻的首选之材。花岗岩为粒状结晶质岩石,主要的成分矿石为碱性长石及石英。花岗岩得天独厚的物理特性加上它美丽的花纹使他成为建筑的上好材料,素有“岩石之王”之称,还有人用一观、二量、三听、四试来评价好坏。在建筑中花岗岩从屋顶到地板都能使用,人行道的路缘也是,若是把它压碎还能制成水泥或岩石填充坝。许多需要耐风吹雨打或需要长存的地方或物品都是由花岗岩制成的。 大理石 又称云石,是重结晶的石灰岩,主要成分是CaCO3。石灰岩在高温高压下变软,并在所含矿物质发生变化时重新结晶形成大理石。主要成分是钙和白云石,颜色很多,通常有明显的花纹,矿物颗粒很多。大理石有美丽的颜色、花纹,有较高的抗压强度和良好的物理化学性能,资源分布广泛,易于加工,随着经济的发展,大理石应用范围不断扩大,用量越来越大,在人们生活中起着重要作用。特别是近10几年来大理石的大规模开采、工业化加工、国际性贸易,使大理石装饰板材大批量地进入建筑装饰装修业,不仅用于豪华的公共建筑物,也进入了家庭的装饰。大理石还大量用于制造精美的用具,如家具、灯具、烟具及艺术雕刻等。有些大理石(包括石灰岩、白云

微晶玻璃的制备方法与应用

X X X X 大学 材料制备原理课程论文 题目微晶玻璃的制备方法与应用 学院材料科学与工程学院 专业班级无机072 学生姓名 2010 年 6 月11 日

微晶玻璃的制备方法与应用 摘要:微晶玻璃是一种由基础玻璃严格控制晶化行为而制成的微晶体和玻璃相均匀分布的材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。本文来主要介绍微晶玻璃的制备方法及其应用。 关键词:微晶玻璃;制备;应用 1.引言 微晶玻璃是将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料。微晶玻璃由玻璃相与结晶相组成。两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间。这种结构也决定了其机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 2.制备方法 微晶玻璃的制备方法根据其所用原材料的种类、特性、对材料的性能要求而变化,主要的有熔融法、烧结法、溶胶—凝胶法、二次成型工艺、强韧化技术等。 2.1 熔融法 熔融后急冷,退火后在经一定的热处理制度进行成核和晶化以获得晶粒细小、含量多、结构均匀的微晶玻璃制品。热处理制度的确定是微晶玻璃生产的关键技术。作为初步的近似估计,最佳成核温度介于Tg 和比它高50℃的温度之间。晶化温度上限应低于主晶相在一个适当的时间内重熔的温度。通常是25℃~50℃。微晶玻璃的理想热处理制度见图1。 图1 微晶玻璃的理想热处理制度 常用的晶核剂有TiO2,P2O5,ZrO2,CaO,CaF2,Cr2O3、硫化物、氟化物。晶核剂的选择与基础玻璃化学组成有关,也与期望析出的晶相种类有关。Stooky指出,良好的晶核剂应具备如下性能:(1)在玻璃熔融成形温度下,应具有良好的溶解性,在热处理时应具有较小的溶解性,并能降低成核的活化能。(2) 晶核剂质点扩散的活化能要尽量小,使之在玻

微晶玻璃花岗岩石材装饰板介绍

微晶玻璃花岗岩石材装饰板介绍 微晶玻璃花岗岩装饰板是目前际上开始流行的高级建筑装饰材料,较天然花岗岩石材更能进行灵活设计,而且装饰效果更佳。是21世纪的绿色建材,是内、外墙及地面的理想装饰材料。 微晶玻璃花岗岩是应用受控晶化新技术生产的新型装饰材料,其结构致密、高强、耐磨、耐蚀,在外观上纹理清晰、色彩鲜艳、无色差、不褪色。是天然花岗岩石材最理想的替代产品,与天然花岗岩比,具有以下优点。 (1)色泽可根据要求生产各种色彩、色调和混合色的各种装饰材料,颜色有白、绿、灰、黄、红、蓝、黑等,而且装饰效果更佳。 (2)材质微晶玻璃花岗岩装饰板的成分与天然花岗岩相同,均属硅酸盐质,在材料内部结构中,生长有硅灰石的主晶相,所以耐磨、耐蚀、强度上均优于天然花岗岩石材。 (3)环保微晶玻璃花岗岩板材无任何类型的放射性物质,符合环保要求,有益人体。 (4)规格可生产各种厚度、尺寸的平板,,弧形板。另外还可生产30多种混合色和多种规格异型微晶玻璃花岗岩装饰板。是机场、银行、地铁、宾馆、酒楼、别墅及居室的首选理想装饰材料。 一、绪言

优质花岗岩饰面材料具有优异的硬度和耐磨性、并具优美的外观花纹,一直是人们首选的建筑饰面材料。然而,天然花岗岩因:(1)含有一定量地放射性元素---氡,长期接触会对人身体造成一定伤害,国外一些发达国家及国内很多大城市都已明令禁止有放射性地天然石材用于室内装饰。(2)内部组成与结构的原因,机械强度和化学稳定性较差,造成抗风化能力和耐久性较差。(3)一些优质石材蕴藏量有限,价格昂贵。(4)天然石材的颜色花纹变化较大,整体装饰效果较差等本身固有的原因。市场迫切需要开发天然石材代用品。特别是近几年人们环境保护意识的增强,人们更加迫切地需要不含放射性物质的天然石材替代品。近二十年来,各科研单位及生产企业纷纷研制开发了许多种仿大理石、花岗岩产品,如:无机胶凝和有机胶结的“仿大理石”,陶瓷仿大理石釉面砖和渗花砖,等等。所有这些虽然有一些具有大理石或花岗岩的花纹,但质感和性能却远远不及天然石材。 本世纪六十年代后期,微晶玻璃的研究取得突破性进展,各种具优异性能的微晶玻璃制品开始工业化生产,一些国家的科学家开始研究开发微晶玻璃饰面材料,如前苏联开发成功地“矿渣微晶玻璃”、捷克斯洛伐克以玄武岩作原料生产地“人造玄武岩”和美国开发成功地“人造蛋白石”等等。所有这些制品其理化性能都远优于天然石材,但没有天然石材那漂亮的外观花纹。很难作为天然石材的理想替代品。 到了七十年代,日本电器硝子株式会社的科学家率先突破技术难关,研制出了具天然大理石外观、且性能远优于天然石材的“结晶化玻璃大理石”,并于 1974年开始工业化生产,商品名为“新型玻璃大理石(Neoparies)”。 我们于1982年开始研究“结晶化玻璃大理石”,次年就研究成功了具花岗岩外观的“微晶玻璃花岗岩”,但在进行工业化试生产过程中,因气泡和变形缺陷无法解决,成品率极低,技术推广和产品商品化就此搁浅了。 直到1994年南方某厂投资近亿元人民币建成了年产40万平米的生产线,他们经过近半年试生产,也同样遇到了气泡问题无法解决而造成成品率极低,委托我们帮助解决;为此我们对过去的技术资料进行了认真分析讨论,认为气泡的来源主要有以下三点: 1.玻璃融化不完全,残存有未排除之气泡,在二次烧结过程中膨胀形成。 2.玻璃料水淬及淬碎料处理过程中混入的吸附水及杂质所为。 3.由于热传递温度梯度的存在,烧结过程中板材表面先受热熔融,将气体封 接在板材中,随着温度地升高,玻璃料黏度的降低,气泡浮向表面造成 缺陷。 在后来我们借助高温显微镜证实气泡也确实是由上述第二、三点原因造成地,遂产生了这样一个设想:如果我们研究这样一种添加剂即或者具有吸收气体的作用或者具较小黏度和表面张力能在烧结过程中使气泡顺利排出。问题不就解决了吗? 1994年我们成立专门地技术开发课题小组,集中对以下技术课题深入地研究开发并取得了突破性进展: 1.研制出了微晶玻璃花岗岩消泡剂,基本彻底地解决了气泡问题。

关于编制微晶玻璃面板项目可行性研究报告编制说明

微晶玻璃面板项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.doczj.com/doc/353636185.html, 高级工程师:高建

关于编制微晶玻璃面板项目可行性研究报 告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国微晶玻璃面板产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5微晶玻璃面板项目发展概况 (12)

透明微晶玻璃、黑色微晶玻璃、耐高温微晶玻璃

透明微晶玻璃、黑色微晶玻璃、耐高温微晶玻璃 耐高温玻璃——透明微晶玻璃、黑色微晶玻璃(英文名Glass Ceramic,也称玻璃陶瓷) 材料提供:国产微晶玻璃,常规最大尺寸350*450*4mm,也可以选择进口微晶玻璃,常规最大尺寸1954*1100,2100*1266,厚度4\5。 透明微晶玻璃介绍: 由于其极低的热膨胀度,透明微晶玻璃不会受高温(760℃)的影响,也不受显著温度变化或温度差异的影响,且十分优越的耐热冲击性能。另外,透明微晶玻璃具有良好的热辐射,特别是短波红外辐射透过性。而正是在为火炉燃烧过程中释放的强烈热辐射为我们带了舒适暖意。 因此,微晶玻璃特别知合应用在既有高热能又需要良好透光性的场合,作为室内加热装置(如壁炉和火炉)的观察窗。 图 1 透明微晶玻璃 150 999 63668

产品应用: ?室内加热/取暖器的视窗面板(燃油/燃气室内取暖器/炉、传 统燃料的室内取暖器/炉) ?红外辐射加热/取暖器的面板 ?加热电暖炉的盖板玻璃 ?反光杯和高性能泛光照明灯的盖板 ?红外烘干器的盖板 ?投影仪的保护盖片 ?隔紫外线护罩 ?烤肉/烧烤设备的面板 ?大功率泛光灯和反射器上耐高温的面板 加工:①切割、②倒角、③钻孔、④丝印、⑤镀膜 黑色微晶玻璃面板说明: 由特殊微晶玻璃制成,该材料的最大特点是:可耐高达750℃的急剧升温。微晶玻璃面板非常环保,不含砷、锑等有毒重金属。它的主要原料是石英,这种原料在自然界取之不尽、用之不竭。 黑色微晶玻璃灶具面板非常坚固、耐受冲击,经久耐用。灶具面板横向热传导低,靠近烹调区的地方温度相对较低,热量会直接传导至烹饪锅具。 图 2 黑色微晶玻璃 150 999 63668

微晶玻璃

二硅酸锂微晶玻璃材料综述 何志龙-3112007045 (金属材料强度国家重点实验室, 西安交通大学材料科学与工程学院,西安710049) 摘要:微晶玻璃以其优异的力学、化学、生物等性能,在国防、航空、建筑、电子、光学、化工、机械及医疗等领域作为结构材料、技术材料、光学材料、电绝缘材料等而获得广泛应用,吸引了许多研究者的关注。本文在参考学习了诸多相关文献的基础上,对微晶玻璃材料的制备、性能、应用及研究进展进行了论述,列举了人们在该领域取得的重要研究进展,以及微晶玻璃材料领域存在的研究难题。 关键词:晶化,微晶玻璃,综述,非均匀成核 1 研究背景与意义 自从1957年,美国康宁公司著名玻璃化学家S.D.Stookey研制出第一种微晶玻璃以来,微晶玻璃就凭借其组分广泛、性能优异、品种繁多而著称。由于析出的晶粒尺寸可控,与界面结合强度高,抗弯强度可以达到200MPa以上,大量微晶玻璃体系涌现出来,它们的形成机制也得到大量深入研究。 微晶玻璃又称玻璃陶瓷,它是将某些特定组成的基础玻璃,在一定温度下进行控制晶化,制得的一种同时含有微晶相和玻璃相的多晶固体材料。在热处理过程中,基础玻璃内部产生晶核及晶体长大,因为析出的晶体非常小,被称作微晶玻璃。 微晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或易产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1-0.5μm)和残余玻璃组成的复相;而玻璃则是非晶态或无定形体。微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2 微晶玻璃分类 按照基础玻璃的组成,微晶玻璃主要有以下四大类: (1)硅酸盐类微晶玻璃 由碱金属、碱土金属的硅酸盐晶相组成,主晶相有:透辉石、顽辉石、硅灰石、二硅酸锂等,这些晶相的种类影响微晶玻璃的性能。其中,最早研究的矿渣微晶玻璃和光敏微晶玻璃属此类。

关于编制微晶玻璃陶瓷复合板项目可行性研究报告编制说明

微晶玻璃陶瓷复合板项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.doczj.com/doc/353636185.html, 高级工程师:高建

关于编制微晶玻璃陶瓷复合板项目可行性 研究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国微晶玻璃陶瓷复合板产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (12) 2.5微晶玻璃陶瓷复合板项目发展概况 (12)

微晶玻璃

微晶玻璃 摘要:本文介绍了微晶玻璃与普通玻璃和陶瓷的区别,通过分析组成将其分类。 同时描述了微晶玻璃的制备,性质,应用,浅析其发展趋势。 关键词:微晶玻璃组成制备性能应用 Abstract:This paper introduces the difference between microcrystalline glass and common glass and ceramics. Through the analysis of composition classified microcrystalline glass. At the same time, also describe microcrystalline glass’s preparation, property and application. Analysisthe trend of its development. Keywords: Microcrystalline glass preparation property application trend 1 前言 微晶玻璃又称微晶玉石或陶瓷玻璃,是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。但晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的[1]。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2分类及其组成 目前,问世的微晶玻璃种类繁多,分类方法也有所不同。通常按微晶化原理分为光敏微晶玻璃和热敏微晶玻璃;按基础玻璃的组成分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸盐系统;按所用原料分为技术微晶玻璃(用一般的玻璃原料)和矿渣微晶玻璃(用工矿业废渣等为原料);按外观分为透明微晶玻璃和不透明微晶玻璃;按性能又可分为耐高温、耐腐蚀、耐热冲击、高强度、低膨胀、零膨胀、低介电损耗、易机械加工以及易化学蚀刻等微晶玻璃以及压电微晶玻璃、生物微晶玻璃等 晶玻璃的组成在很大程度上决定其结构和性能。按照化学组成微晶玻璃主要分为四类:硅酸盐微晶玻璃,铝硅酸盐微晶玻璃,氟硅酸盐微晶玻璃,磷酸盐微晶玻璃。 2.1 硅酸盐微晶玻璃 简单硅酸盐微晶玻璃主要由碱金属和碱土金属的硅酸盐晶相组成,这些晶相的性能也决定了微晶玻璃的性能。研究最早的光敏微晶玻璃和矿渣微晶玻璃属于 这类微晶玻璃。光敏微晶玻璃中析出的主要晶相为二硅酸锂(Li 2Si 2 O 5 ),这种晶 体具有沿某些晶面或晶格方向生长而成的树枝状形貌,实质上是一种骨架结构。

微晶玻璃

微晶玻璃(CRYSTOE and NEOPARIES)又称微晶玉石或陶瓷玻璃。是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。 现在,我们做一个微晶玻璃与天然石材的对比实验。我们把墨水分别倒在大理石和微晶玻璃上,稍等片刻,微晶玻璃上的墨汁可以轻易的擦掉,而大理石上的墨迹却留了下来。这是为什么呢?大理石、花岗岩等天然石材表面粗糙,可以藏污纳垢,微晶玻璃就没有这种问题。大家都知道,大理石的主要成分是碳酸钙,用它做成建筑物,很容易与空气中的水和二氧化碳发生化学反应,这就是大理石建筑物日久变色的原因,而微晶玻璃几乎不与空气发生反应,所以可以历久长新。专家介 微晶玻璃陶瓷复合板材[1] 绍说,这项发明的突破点主要有两个,分别是原料的配比和工艺的设计。其中,工艺的设计是技术的关键。置备微晶玻璃首先要把原材料按照比例配好,放到窑炉里烧熔,等全部融化之后,把熔液倒在冰冷的铁板上,这叫做淬火,淬火之后,原料已经变成了一块晶莹的玻璃,这一步是烧结的过程。现在,我们把玻璃捣碎,装入模具,抹平,再次放入窑炉,这次煅烧使它的原子排列规则化,是从普通玻璃到微晶玻璃的过程。 一般的废渣土中都含有制作微晶玻璃的大多数成分,我们通过电脑检测,确定现有原料的化学组成,添加所缺部分,大大降低了成本。微晶玻璃利用废渣、废土做原材料,有利于环境治理,可以变废为宝,与各地环保工作同步进行。 低膨胀系数的微晶玻璃可用于激光导航陀螺、光学望远镜等重要科技领域,我国目前生产激光导航陀螺所用微晶玻璃基本依赖进口,日前,厦门航空工业有限公司称已研制出可适用激光导航陀螺的微晶玻璃,质量可与德国等进口玻璃相媲美。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 目前建筑用微晶玻璃均采用烧结法,而且不加入晶核剂。它的基本原理是,玻璃是一种非晶态固体,从热力学观点看,它处于一种亚稳状态,较之晶体有较高的内能,所以在一定条件下,可以转化为结晶态。从动力学观点来看,玻璃熔体在

微晶玻璃板项目可行性研究报告

微晶玻璃板项目 可行性研究报告 xxx有限责任公司

微晶玻璃板项目可行性研究报告目录 第一章项目总论 第二章建设背景及必要性分析第三章市场分析预测 第四章建设规划 第五章项目建设地分析 第六章项目工程设计说明 第七章工艺可行性 第八章项目环保分析 第九章安全管理 第十章建设及运营风险分析 第十一章项目节能说明 第十二章项目进度方案 第十三章投资计划方案 第十四章盈利能力分析 第十五章招标方案 第十六章总结评价

第一章项目总论 一、项目承办单位基本情况 (一)公司名称 xxx有限责任公司 (二)公司简介 公司致力于一个符合现代企业制度要求,具有全球化、市场化竞争力 的新型一流企业。公司是跨文化的组织,尊重不同文化和信仰,将诚信、 平等、公平、和谐理念普及于企业并延伸至价值链;公司致力于制造和采 购在技术、质量和按时交货上均能满足客户高标准要求的产品,并使用现 代仓储和物流技术为客户提供配送及售后服务。 公司已拥有ISO/TS16949质量管理体系以及ISO14001环境管理体系, 以及ERP生产管理系统,并具有国际先进的自动化生产线及实验测试设备。 公司将继续坚持以客户需求为导向,以产品开发与服务创新为根本, 以持续研发投入为保障,以规范管理为基础,继续在细分领域内稳步发展,做大做强,不断推出符合客户需求的产品和服务,保持企业行业领先地位 和较快速发展势头。 (三)公司经济效益分析

上一年度,xxx投资公司实现营业收入4396.82万元,同比增长25.73%(899.92万元)。其中,主营业业务微晶玻璃板生产及销售收入为 3896.78万元,占营业总收入的88.63%。 根据初步统计测算,公司实现利润总额1207.71万元,较去年同期相 比增长120.65万元,增长率11.10%;实现净利润905.78万元,较去年同期相比增长184.63万元,增长率25.60%。 上年度主要经济指标

微晶玻璃成分

微晶玻璃的化学组成 微晶玻璃的化学组成包括基础玻璃成分和成核剂两部分.为了满足玻璃的形成和工艺要求,基础玻璃成分一般都含有一定量的SiO2、B2O3、P2O5和以【AlO4】形式存在的Al2O3等玻璃网络形成体,以【AlO6】形式存在的Al2O3和ZnO等玻璃网络中间体及包括碱金属与碱土金属氧化物在内的玻璃网络调整体。而为了获得无气泡的基础玻璃,通常在基础玻璃组分中引入一定量的澄清剂(如Na2SO4/C、Sb2O3、Na2SiF6等)。此外,为了诱导或促进基础玻璃在热处理过程中的晶核形成,促进玻璃的整体晶化,通常需要引入成核剂。根据基础玻璃成分,可将微晶玻璃分为硅酸盐、铝硅酸盐、硼硅酸盐、硼酸盐和磷酸五大系统。成核剂可以分成三大类:一类是Au、Ag、Cu、Pt、Ru等贵金属盐类物质,当这里物质与玻璃配合料一起熔融时,贵金属元素在高温时以离子状态存在,而在低温下则分解还原成贵金属原子,这些原子经过一定的热处理将在玻璃结构中形成高度分散的金属晶体颗粒,从而实现诱导析晶。另一类是阳离子电荷高、场强大、积聚作用强的氧化物,如ZrO2、TiO2、P2O5等,这三种物质对玻璃的成核作用有所不同。一般认为,ZrO2的成核作用是先从母体玻璃中析出富含锆氧的微不均匀区,进而诱导母体玻璃成核;TiO2的成核作用是先从母体玻璃中析出富含钛酸盐相(无定形态),在一定条件下,这种液相将转变成结晶相,进而使母体玻璃形成晶核;P2O5与前两种成核剂的作用机制不同,由于P5+的场强比Si4+大,有加速硅酸盐玻璃分相的作用,从而促使玻璃核化。ZrO2、TiO2与P2O5是制备微晶玻璃最常用的三种成核剂,除此之外,Cr2O3、Fe2O3等也可作为成核剂使用,但由于它们能使玻璃着色,故很少采用。还有一类成核剂是氟化钙(CaF2)、冰晶石(Na2AlF6)、氟硅酸钠(Na2SiF-6)和氟化镁(MgF2)等氧化物。一般认为氟的加入起减弱玻璃结构的作用,用F-取代O2-造成硅氧网络结构的断裂,这是氟化物诱导玻璃成核的主要原因。另外,当氟含量大于2%~4%时,氟化物就会在冷却(或热处理)过程中从熔体中分离出来,形成细结晶状的沉淀物而引起玻璃乳浊(分相),从而促使玻璃成核。

微晶玻璃

海南大学2012-2013学年度第2学期《功能材料学》论文 题目:微晶玻璃的光学应用 姓名: 学号: 20100607310014 学院:材料与化工学院 专业班级: 10理科实验班

微晶玻璃的光学应用 刘涛 20100607310014 摘要:微晶玻璃也叫做玻璃陶瓷,是玻璃经过晶化处理得到的部分结晶态的物质,它兼具玻璃和陶瓷的优良性质,比陶瓷的亮度高,比玻璃韧性强,因而广泛用于建筑、航天等各个领域。中国稀土资源丰富,由于稀土离子特殊的4f电子层结构使其具有许多优越的性能,目前稀土发光材料引起了全世界的广泛关注。微晶玻璃的高透过性和优越的机械性能使其能够做为稀土元素的良好基质,制成的稀土掺杂发光微晶玻璃广泛应用于荧光设备、激光、波导激光、上转换材料等领域,具有重要的现实意义。 关键词:微晶玻璃稀土元素光学应用 一、固体发光过程 发光是物体不经过热阶段而将其内部以某种方式吸收的能量直接转换为非平衡辐射的现象。当物质受到外界能量(如光照、外加电场或电子束轰击等)的激发后,吸收外界能量而处于激发态,它在跃迁返回基态的过程中,吸收的能量会通过光或热的形式释放出来,如果这部分能量以光的电磁波形式辐射出来,即为发光。图1所示即为发光的过程[1]: 图1:发光的过程示意图 激活剂A吸收激发光的能量被激发(EXC),由基态A变为激发态A*,然后又回到基态(R),并发出光(EM)[2]。 二、发光材料的应用及稀土掺杂微晶玻璃的优点

发光材料在人们日常生活中有着重要的应用,从照明、显像到医学、放射学等领域,无不存在着发光材料的身影。在发光材料的发展中,稀土掺杂的发光材料格外引人注目,由于稀土离子特殊的4f电子层结构,决定其具有许多优越的性能:物理化学性质稳定、耐高温、可承受大功率电子束、高能辐射和强紫外光的作用;荧光寿命宽泛,可以跨越纳秒到毫秒6个数量级;发光颜色度纯、转换效率高、发射波长分布区域宽等。这些优异的性能使得稀土发光材料广泛应用于荧光设备、激光、波导激光、上转换材料等领域[3]。 稀土掺杂的基质材料一般为晶体,也可以是非晶态玻璃材料,晶体和玻璃作为稀土掺杂发光材料的基质各有优缺点,发光玻璃保证了发光光材料的稳定性,但是与同组成的晶体材料相比,发光玻璃的发光强度弱,转换效率也比较低[4],而微晶玻璃作为一种晶态和非晶态共存的材料,兼具了晶体发光材料优异的发光性能及玻璃材料的优异特性,其内部晶相能够保持发光晶体材料原有的发光性能,其熔制时的液体状态亦能够保证其均匀性,微晶玻璃亦具有良好的稳定性及可加工性,具有重要的研究价值。 三、微晶玻璃的分类、制备及显微结构 1、微晶玻璃的分类 按照玻璃陶瓷的化学组成来讲,玻璃陶瓷分为四大类:硅酸盐玻璃陶瓷、铝硅酸盐玻璃陶瓷、氟硅酸盐玻璃陶瓷、磷酸盐玻璃陶瓷[12] 。 1.1 硅酸盐玻璃陶瓷 硅酸盐玻璃陶瓷主要是由碱金属和碱土金属两部分组成,主晶相为硅酸盐,晶相可以决定玻璃陶瓷的性能[13]。硅酸盐玻璃陶瓷可分为两种:光敏玻璃陶瓷和 矿渣玻璃陶瓷。光敏玻璃陶瓷是以二硅酸锂(Li 2Si 2 O 5 )为主晶相的,这种晶体是 一种骨架结构[14],形貌像树枝,因为它的晶体生长方向是沿某些晶面,或者晶格 方向。而矿渣玻璃陶瓷主晶相则为硅灰石(CaSiO 3)和透辉石[Ca Mg(SiO 3 ) 2 ]。透 辉石因为其结构的特殊性,比硅灰石更加耐磨,耐腐烛,强度也更高。 1.2 铝硅酸盐玻璃陶瓷 铝硅酸盐玻璃陶瓷包括Li 2O—Al 2 O 3 —SiO 2 系统、MgO—Al 2 O 3 —SiO 2 系统、Na 2 O

微晶玻璃及微晶玻璃幕墙

微晶玻璃及微晶玻璃幕墙 一、什么是微晶玻璃 微晶玻璃(CRYSTOE and NEOPARIES)又称微晶玉石或陶瓷玻璃。是综合玻璃、石材技术发展起来的一种新型建材。因其可用矿石、工业尾矿、冶金矿渣、粉煤灰、煤矸石等作为主要生产原料,且生产过程中无污染,产品本身无放射性污染,故又被称为环保产品或绿色材料。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优於天石材和陶瓷,可用於建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 二、微晶玻璃的组成 把加有晶核剂或不加晶核剂的特定组成的玻璃,在有控条件下进行晶化热处理,使原单一的玻璃相形成了有微晶相和玻璃相均匀分布的复合材料。微晶玻璃和普通玻璃区别是:前者部分是晶体,后者全是非晶体。微晶玻璃表面可呈现天然石条纹和颜色的不透明体,而玻璃则是各种颜色、不同程序的透明体。 微晶玻璃的综合性能主要决定三大因素:原始组成的成份、微晶体的尺寸和数量、残余玻璃相的性质和数量。 后两种因素是由微晶玻璃晶化热处理技术决定。微晶玻璃的原始组成不同,其晶相的种类也不同,例如有β硅灰石、β石英、氟金云母、二硅酸锂等,各种晶相赋予微晶玻璃的不同性能,在上述晶相中,β硅灰石晶相具有建筑微晶玻璃所需性能,为此常选用CaO-Al2O3-SiO2系统为建筑微晶玻璃原始组成系统,其一般成分如表一所示。

表一: CaO-Al2O3-SiO2微晶玻璃组成 颜色\组成SiO2 Al2O3 B2O3 CaO ZnO BaO Na2O K2O Fe2O3 Sb2O3 白色59.0 7.0 1.0 17.0 6.5 4.0 3.0 2.0 0.5 黑色59.0 6.0 0.5 13.0 6.0 4.0 3.0 2.0 6.0 0.5 上述玻璃成份在晶化热处理后所析出的主晶相是:β——硅灰石(β——CaO、SiO2)。 三、建筑微晶玻璃性能 建筑用微晶玻璃装饰面板材与天然大理石、花岗岩性能列表二(见下页)。 材料微晶玻璃大理石花岗岩 特性 机械性能抗弯强度①(Mpa) 40~50 5.7~15 8~15 抗压强度(Mpa) 341.3 67~100 100~200 抗冲击强度(Pa) 2452 2059 1961 弹性模量(×104MPa) 5 2.7~8.2 4.2~6.0 莫氏硬度6,5 3~5 ~5.5 维氏硬度(100g)600 130 130~570 比重2.7 2.7 2.7 化学性能耐酸性②(1%H2SO4)0.08 10.0 0.10 耐碱性②(1%NaOH) 0.05 0.30 0.10 耐海水性③(mg/cm2) 0.08 0.19 0.17 吸水率④(%)0 0.3 0.35 抗冻性(%)⑤0.028 0.23 0.25

微晶玻璃

微晶玻璃的生产制备 1.微晶玻璃概述 新型微晶材料的开发研制最先起于美国,亚洲的日本紧随其后,成为目前世界上新型微晶材料的生产大国,此后西欧和亚太地区的经济发达国家不甘落后,也加紧开发研制。而我国则起步于上世纪的八十年代初,经过二十年的开发,微晶材料的生产工艺基本上已趋于成熟,进入了实用阶段。它主要用做建筑装饰材料、飞机、火箭、卫星等结构材料,医疗、化工等防腐材料以及军事上,如激光制导材料等。 微晶玻璃是新型微晶材料的一种,它是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。更具体说,它是在高达1500℃高温条件下,从含特殊成份的玻璃液中析出的特殊晶相及硅灰石晶体和玻璃相结合致密整体结晶材料。其颜色多种多样。生产方法可分为烧结法、压延法、浇铸法。产品按配方可分为两大类,一类是矿渣类。所用原料为矿渣、石英砂、长石、石灰石、萤石、白云石、滑石等;第二类为泥沙类。所用原料为泥沙、石英砂、长石、纯碱、石灰石、白云石、重晶石、萤石等。 由于微晶玻璃是硅灰石相和玻璃相相结合的致密整体结晶材料,颜色上是以金属氧化物为着色剂,因而其表面特征既有陶瓷的特征,又与天然石材极其相似,加之材料形状多为板材,因而许多人又将其称作为微晶板材、微晶石材、微晶玉石、玻璃陶瓷、结晶化玻璃或人造石材等等。由于其结构极为致密并用作表面装饰材料。因此,又有人将其归为实体面材。与建筑陶瓷及天然石材制品相比,由于微晶玻璃具有特定性能的晶相析出。因而,在机械强度、表面硬度、热膨胀性能、耐酸碱及抗腐蚀等方面具有一些独特的优点。 1.1微晶玻璃的分类 微晶玻璃可按不同的标准分类,从外观看,有透明微晶玻璃和不透明微晶玻璃;按微晶化原理可分为光敏微晶玻璃和热敏微晶玻璃;按照性能分为耐高温、耐热冲击、高强度、耐磨、易机械加工、易化学蚀刻、耐腐蚀、低膨胀、零膨胀、低介电损失、强介电性、强磁性和生物相容等种类;按基础玻璃组成可分为硅酸盐、铝硅酸盐、硼硅酸盐、硼酸盐及磷酸盐等五大类;按所用材料则分为技术微晶玻璃和矿渣微晶玻璃两类。 2.微晶玻璃的性质及应用 2.1力学性质 (1)机械强度,微晶玻璃的机械强度比一般玻璃、陶瓷材料以及某些金属材料高很多。抗压强度为0.59~1.02GPa,弯曲强度为88.2~220.5GPa,拉伸强度为49~137.2MPa;特殊的或增强的微晶玻璃,弯曲强度高达411.6~548.5MPa。微

触摸屏用盖板材料研究报告

触摸屏用盖板材料研究报告 一、综述 1.触摸屏的结构 电容式触摸屏的结构较为复杂,由于技术进步和厂商技术选择的不同,有多种结构形式,典型的触摸屏结构如图1所示。包括保护膜、防反射层、盖板、粘接层、透明导电膜、显示屏等。本文中关心的是其中的盖板(Protective Cover)的材料性能和新型盖板材料的选择。 图1电容触摸屏的典型结构 对于这层盖板材料而言,目前所使用的最为成熟的材料是康宁(Corning)公司的大猩猩玻璃(Gorilla Glass),目前已经发展到第4代。其基本性能见表1。 对于康宁大猩猩玻璃而言,已经具备了良好的综合性能,如其维氏硬度指标已经较高,但仍然不能抵抗日常使用中如沙粒(主要成分为SiO2)等的磨损破坏,同时由于断裂韧性较低,仍不能满足抗跌落

性能的要求。 表1 康宁大猩猩4代玻璃盖板材料性能 除了上面所列指标外,透光率、表面应力状态、折射率和厚度等 基本参数也必须作为盖板材料选择时的重要参考依据。 2.可行的技术路线汇总 分析认为,目前潜在的提高盖板材料性能的技术路线有以下几条, 可通过深入分析从而选择技术上可行及低成本可产业化的路线进行: 1.织构化透明陶瓷(Textured T ransparent C eramics)技术路线 2.织构化微晶玻璃(Textured G lass C eramics)技术路线 3.织构化低温镀膜(Textured & L T C oating)技术路线 4.非晶化镀膜技术路线 为实现几条技术路线,需要突破的关键技术有透明陶瓷取向制备 技术;微晶玻璃晶化过程控制技术;低温(室温)织构化镀膜技术。 这几条技术路线各有优缺点,各自需要面对的技术难点问题是不 同的:

微晶玻璃简述

微晶玻璃简要概述 刘帅聪 (无机非金属材料工程1301班,湖南工学院材料与化学工程学院 湖南衡阳 421002) 摘要 微晶玻璃是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。 关键词微晶玻璃特点制备工艺应用发展 Brief Introduction of Glass - Ceramics Shuai Cong Liu (Inorganic Nonmetallic Materials Engineering1301class,Hunan Institute of TechnologyDepartment of Material and Chemical Engineering Hunan Hengyang 421002) Abstract: Crystalline glass is a composite solid material containing a large amount of microcrystals and vitreous bodies obtained by controlling crystallization during the heating process by the base glass or other materials. Because of its high mechanical strength, adjustable thermal expansion, good thermal shock resistance, chemical resistance, low dielectric loss, good electrical insulation properties such as superior performance, has been widely used in many fields. Key words: glass - ceramics, characteristics, preparation technology, application development

相关主题
文本预览
相关文档 最新文档