当前位置:文档之家› 单回路控制系统详解

单回路控制系统详解

单回路控制系统详解
单回路控制系统详解

一、单回路控制系统

1. 画出图示系统的方框图:

2. 一个简单控制系统总的开环增益(放大系数)应是正值还是负值?仪表行业定义的控制器增益与控制系统中定义的控制器的增益在符号上有什么关系?为什么?

3. 试确定习题1中控制器的正反作用。若加热变成冷却,且控制阀由气开变为气关,控制器的正反作用是否需要

4. 什么是对象的控制通道和扰动通道?若它们可用一阶加时滞环节来近似,试述K P 、K f 、τp 、τf 对控制系统质量的影响。

5. 已知广义对象的传递函数为1)

S (T e K P S

τP P +-,若P P T τ的比值一定时,T P 大小对控制质量有什么影响?为什么?

6. 一个简单控制系统的变送器量程变化后,对控制质量有什么影响?举例说明。

7. 试述控制阀流量特性的选择原则,并举例加以说明。

8. 对图示控制系统采用线性控制阀。当负荷G 增加后,系统的响应趋于

非周期函数,而G 减少时,系统响应震

9. 一个简单控制系统中,控制阀口

径变化后,对系统质量有何影响?

10. 已知蒸汽加热器如图所示,该系

统热量平衡式为:G 1C 1(θ0-θi )=G 2λ(λ

为蒸汽的冷凝潜热)。

(1)主要扰动为θi 时,选择控制阀的流量特性。

(2)主要扰动为G 1时,量特性。

(3特性。

11.

作用后,对系统质量有什么影响?为了保持同样的衰减比,比例度δ要增加,为什么?

12. 试写出正微分和反微分单元的传递函数和微分方程;画出它们的阶跃响应,并简述它们的应用场合。

13. 什么叫积分饱和?产生积分饱和的条件是什么?

14. 采用响应曲线法整定控制器参数,选用单比例控制时,δ=K P τP /T P ×100%,即δ∝K P ,δ∝τP /T P ,为什么?而选择比例积分控制时,δ=1.44K P τP /T P ×100%,即比例度增加,为什么?

15. 采用临界比例度法整定控制器参数,在单比例控制时,δ=2δK (临界比例度),为什么?

16. 在一个简单控制系统中,若对象的传递函数为

)

1T )(1S 1)(T S (T K W P V P +-+S ,进行控制器参数整定时,应注意什么? 17. 已知广义对象的传递函数为1)

S (T e K P S

τP P +-,采用比例控制,当系统达到稳定边缘时,K C =K CK ,临界周期为T K 。问:

(1)T K /τP 在什么数值范围内(即上、下界),τP /T P 增加时,这一比值是上升还是下降?

(2)K CK 在什么数值范围内(即上、下界),τP /T P 增加时,K CK 是上升还是下降?

18. 一个过程控制系统的对象有较大的容量滞后,而另一系统由于测量点位置造成纯滞后。若对两个系统均采用微分控制,试问效果如何?

19. 某一温度控制系统,采用4:1衰减曲线法进行整定,测得系统的衰减比例度

δs=25%,衰减振荡周期Ts=10min ,当控制器采用P 和PI 控制作用时,试求其整定参数值。

20. 有一个过程控制系统(采用DDZ-Ⅲ型仪表),当广义对象的输入电流(即控制器的输出电流)为14mA 时,其被控温度的测量值为70℃。当输入电流突然从14mA 增至15mA ,并待被控温度达到稳定时,其测量值为74℃。设测温仪表的量程为50-100℃。同时由实验测得广义对象的时间常数T P =3min ,滞后时间τP =1.2min ,试求衰减比为4:1时PI 控制器的整定参数值。

21. 某一个过程控制系统,利用临界比例度法进行控制器的参数整定。当比例度为12%时,系统出现等幅振荡,其临界振荡周期为180s ,试求采用PID 控制器时的整定参数值。

22. 已知控制系统方块图如下:

求:(1)X 作单位跃阶变化时,随动控制系统的余差。

(2)F作单位跃阶变化时,定值控制系统的余差。

(题22图)

1一个简单控制系统由那几部分组成?各有什么作用?

2举例说明一个简单控制系统,指出在该控制系统中的被控制系统的被控变量、操纵变量和扰动变量。

3常见的过程动态特性的类型有哪几种?可用什么传递函数来近似描述他们的动态特性?9增大过程的增益对控制系统的控制品质指标有什么影响?过程的时间常数是否越小越好?为什么?

10某温度控制系统已经正常运行,由于原温度变送器(量程200`300℃)损坏,改用量程为0`500℃的同分度号的温度变送器,控制系统会出现什么现象?应如何解决?

13增大积分时间对控制系统的控制品质有什么影响?增大微分时间对控制系统的控制品质有什么影响?

14什么是积分饱和现象?举例说明如何防止积分饱和。

15纯比例控制时,比例度与临界比例度之间有什么近似关系?

6.1说明一下名词术语的含义:被动对象、被控变量、操纵变量、扰动(干扰)量、设定(给定)值、偏差。

答:被控对象——自动控制系统中,工艺参数需要控制的生产过程、设备或机器等。

被控变量——被控对象内要求保持设定数值的工艺参数。

操纵变量——受控制器操作的,用以克服干扰的影响,使被控变量保持设定值的物料或能量。

扰动量——除操作变量外,作用于被控对象并引起被控变量变化的因素。

设定值——被控变量的预定值。

偏差——被控变量的设定值与实际值之差。

6.3下列控制系统中,哪些是开环控制,哪些是闭环控制?

A.定制控制B.随动控制

C.前馈控制D.程序控制

答:C——开环控制;

A、B、D——闭环控制。

(程序控制的设定值也是变化的,但它是一个已知的时间函数,即设定值按一定的时间程序变化。)

6.6在石油化工生产过程中,常常利用液态丙烯汽化吸收裂解气体的热量,使裂解气体的温度下降到规定数值上。图6-3是一个简化的丙烯冷却器温度控制系统。被冷却的物料是乙烯裂解气,其温度要求控制在(15±1.5)℃。如果温度太高,冷却后的气体会包含过多的水分,对生产造成有害影响;如果温度太低,乙烯裂解气会产生结晶析出,杜塞管道。

图6-3

(1)指出系统中被控对象、被控变量和操作变量各是什么?

(2)试画出该控制系统的组成方块图。

答:(1)被控对象为丙烯冷却器;被控变量为乙烯裂解气的出口温度;操作变量为气态丙烯的流量。

(3)该系统的方块图如图6-4所示。

图6-4

6.7图6-5所示是以反应温度控制系统示意图。A、B两种物料进入反映,通过改变进入夹套的冷却水流量来控制反应器内的温度保持不变。图中TT表示温度变送器,TC便是温度控制器。试画出该温度控制系统的方块图,并指出该控制系统中的被控对象、被控变量、操作变量及可能影响被控变量变化的扰动各是什么?

图6-5

答:反应器温度控制系统中被控对象为反应器;被控变量为反应器内温度;操作变量为冷却水流量;干扰为A、B物料的流量、温度、浓度、冷却水的温度、压力及搅拌器的转速。反应器的温度控制系统的方块图如图6-6所示。

图6-6

6.8乙炔发生器是利用电石和水来产生乙炔气装置。为了降低电石消耗量,提高乙炔的收率,确保生产安全,设计了如图6-7所示温度控制系统。工艺要求发生器温度控制在(80±1)℃。试画出该温度控制系统的方块图,并指出图中的被控对被控变量、操作变量及可能存在的扰动。

图6-7

答:乙炔发生器温度控制系统方块图如图6-8所示(图中T、T O分别为乙炔发生器温度及其设定值)。

图6-8

被控对象:乙炔发生器;

被控变量:乙炔发生器内温度;

操纵变量:冷水流量;

扰动量:冷水温度、压力;电石进料量、成分等。

6.9图6-9所示为一列管式换热器。工艺要求出口物料温度保持恒定。经分析如果保持物料入口流量和蒸汽流量基本恒定,则温度的波动将会减小到工艺允许的误差范围之内。现分别设计了物料入口流量和蒸汽流量两个控制系统,以保持出口物料温度恒定。

图6-9

(1)试画出对出口物料温度的控制系统方块图;

(2)指出该系统是开环控制系统还是闭环控制系统,并说明理由。

答:(1)控制系统方块图如图6-10所示。

图6-10

(2)控制系统为开环控制系统。从方块图可以看出,对物料入口流量和蒸汽流量均为闭环控制系统;而对于出口物料温度,未经过测量变送环节反馈到系统输入端,没有形成闭环系统。

6.15 图6-14是一个典型的衰减振荡过程曲线,衰减振荡的品质指标有以下几个:最大偏差、衰减比、余差、过渡时间、振荡周期(或频率)。请分别说明其含义。

图6-14

答:(1)最大偏差――是指过渡过程中被控变量偏离设定值的最大数值。图中A表示最大偏差。最大偏差描述了被控变量偏离设定值的程度,最大偏差愈大,被控变量偏离设定值就越远,这对于工艺条件要求较高的生产过程是十分不利的。

(2)衰减比――是指过渡过程曲线上同方向第一个波的峰值与第二个波的峰值之比。图中衰减比n=B:B’。对于衰减振荡而言,n总是大于1的。若n接近1,控制系统的过渡过程曲线接近于等幅振荡过程;若n小于1,则为发散振荡过程;n越大,系统越稳定,当n 趋于无穷大时,系统接近非振荡衰减过程。根据实际操作经验,通常取n=4~10为宜。

(3)余差――是指过渡过程终了时,被控变量所达到的新的稳态值与设定值之间的差值。图中C表示余差。余差是一个重要的静态指标,它反映了控制的精确程度,一般希望它为0或在一预定的允许范围内。

(4)过渡时间――是指控制系统受到扰动作用后,被控变量从原稳定状态回复到新的平衡状态所经历的最短时间。从理论上讲,对于具有一定衰减比的衰减振荡过程,要完全达到新的平衡状态需要无限长的时间。所以在实际应用时,规定只要被控变量进入新的稳态值的±5%(或±2%)的范围内,且不再越出时为止所经历的时间。过渡时间短,说明系统恢复稳定快,即使干扰频繁出现,系统也能适应;反之,过渡时间长,说明系统稳定慢,在几个同向扰动作用下,被控变量就会大大偏离设定值而不能满足工艺生产的要求。一般希望过渡时间愈短愈好。

(5)振荡周期(或频率)――振荡周期是指过渡过程同向波峰(或波谷)之间的间隔时间,其倒数为振荡频率。在衰减比相同的条件下,周期与过渡时间成正比。一般希望振荡周期短些好。

6.26填空。

(1)根据实践经验的总结发现,除少数无自衡的对象以外,大多数对象均可用_____、_____、_____、_____这4种典型的动态特性来加以近似描述。

(2)为了进一步简化,也可以将所有的对象的动态特性都减化为_____的形式,用传递函数可以表示为_____。

(3)在对象传递函数表达式W(s) 中,K表示对象的_____,T表示对象的_____,表示对象的_____。

答:(1)一阶;二阶;一阶加纯滞后;二阶加纯滞后。

(2)一阶加纯滞后;W(s)=e-s

(3)静态放大系数;时间常数;纯滞后时间。

6.41什么是简单控制系统?试画出简单控制系统的典型方块图。

答:所谓简单控制系统,通常是指由一个被控对象、一个检测元件及传感器(或变送器)、一个调节器和一个执行器所构成的单闭环控制系统,有时也称为单回路控制系统。

简单控制系统的典型方块图如图6-34所示。

图6-34

6.43被控对象、调节阀、调节器的正、反作用方向各是怎样规定的?

答:被控对象的正、反作用方向规定为:当操纵变量增加时,被控变量也增加的对象属于“正作用”;反之,被控变量随操纵变量的增加而降低的对象属于“反作用”。

调节阀的作用方向由它的气开、气关型式来确定。气开阀为“正”方向,气关阀为“反”方向。

如果将调节阀的输入偏差信号定义为测量值减去给定值,那么当偏差增加时,其输出也增加的调节器称为“正作用”调节器;反之,调节器的输出信号随偏差的增加而减小的称为“反作用”调节器。

6.44单参数控制系统中,调节器的正反作用应怎样选择?

答:先做两条规定:

(1)气开调节阀为+A,气关调节阀为-A;

(2)调节阀开大,被调参数上升为+B,下降为-B。

则A·B=“+”调节器选反作用;A·B=“-”调节器选正作用。

例如,图6-35中,阀为气开+A,阀开大,液位下降-B,则(+A)·(-B)=“-”调节器选正作用。

图6-35

6.45图6-36中,控制系统的调节器应该选用正作用方式,还是反作用方式?

(a) (b)

(c) (d) (e)

图6-36

答:(a)――正作用;(b) ――正作用;(c) ――反作用;(d) ――正作用;

(e) ――反作用;

6.46图6-37中的液面调节回路,工艺要求故障情况下送出的气体中也不许带有液体。试选取调节阀气开、气关型式和调节器的正、反作用,再简单说明这一调节回路的工作过程。答:因工艺要求故障情况下送出的气体不许带液,故当气源压力为零时,阀门应打开,所以调节阀是气关式。当液位升高时,要求调节阀开度增大,由于所选取的是气关调节阀,故要求调节阀输出减少,调节器是反作用。

其工作过程如下:液体↑→液位变送器输出↑→调节器输出↓→调节阀开度↑→液体输出↑→液位↓。

图6-37

6.47图6-38所示为加热炉温度控制系统。根据工艺要求,出现故障时炉子应当熄火。试说明调节阀的气开、气关型式,调节器的正、反作用方式,并简述控制系统的动作过程。

图6-38

答:故障情况下气源压力为零,应切断燃料,以确保炉子熄火。故要求调节阀为气开式,气源中断时关闭。

当炉温增高时,要求燃料量减少,即减小调节阀开度。由于是气开阀,所以要求调节器输出减小,应选用反作用调节器。

控制系统的动作过程为:

进料↓→温度↑→调节器输出↓→调节阀开度↓→燃料量↓→炉温↓。反之,由于各种原因引起炉温↓→调节器输出↑→调节阀开度↑→燃料量↑→炉温↑。

6.48请判定图6-39所示温度控制系统中,调节阀和调节器的作用型式。

图6-39

(1)当物料为温度过低时易析出结晶颗粒的介质,调节介质为过热蒸汽时;

(2)当物料为温度过高时易结焦或分解的介质,调节介质为过热蒸汽时;

(3)当物料为温度过低时易析出结晶颗粒的介质,调节介质为待加热的软化水时;

(4)当物料为温度过高时易结焦或分解的介质,调节介质为待加热的软化水时。

答:(1)气关调节阀,正作用调节器;

(2)气开调节阀,反作用调节器;

(3)气开调节阀,正作用调节器;

(4)气关调节阀,反作用调节器。

6.49图6-40为一蒸汽加热器,它的主要作用是对工艺介质加热,要求此介质出口温度恒定。(1)选择被控变量和控制变量,组成调节回路,并画出方块图。

(2)决定调节阀的气开、气关型式和调节器的正反作用。

(3)当被加热的流体为热敏介质时,应选择怎样的调节方案为好?

图6-40

答:(1)方块图见图6-41。

图6-41

(2)对于非热敏介质或易结晶介质,调节阀应选气关式,调节器的作用方向应是正作用。(3)对于热敏介质,为防止局部过热而气化,调节参数不宜为蒸汽而选冷凝水为好。即将调节阀装于冷凝水管线上。

6.50图6-42为一液体储槽,需要对液位加以自动控制。为安全起见,储槽内液体严格禁止溢出,试在下述两种情况下,分别确定调节阀的气开、气关型式及调节器的正、反作用。

图6-42

(1)选择流入量Qi为操纵变量;

(2)选择流出量Qo为操纵变量。

答:(1)当选择流入量Qi为操纵变量时,调节阀安装在流入管线上,这时,为了防止液体溢出,在调节阀膜头上气源突然中断时,调节阀应处于关闭状态,所以应选用气开型式调节阀,为“+”作用方向。这时,操纵变量即流入量Qi增加时,被控变量液位是上升的,故对象为“+”作用方向。

由于调节阀与对象都是“+”作用方向,为使整个系统具有负反馈作用,调节器应选

择反作用方向;

(2)当选择流出量Qo为操纵变量时,调节阀安装在流出管线上,这时,为了防止液体溢出,在调节阀膜头上气源突然中断时,调节阀应处于全开状态,所以应选用气关型式调节阀,为“-”作用方向。这时,操纵变量即流出量Qo增加时,被控变量液位是下降的,故对象为“-”作用方向。

由于选择流出量Qo为操纵变量时,对象与调节阀都是“-”作用方向,为使整个系统具有负反馈作用,应选择反作用方向的调节器。

6.51有一冷却器,以冷却水作为冷剂来冷却物料温度,现选择冷却水流量为操纵变量,物料出口温度被控变量。试确定在下述3种情况下的调节阀气开、气关型式和调节器的正、反作用。

(1)被冷却物料温度不能太高,否则对后续生产不利;

(2)被冷却物料温度不能太低,否则易凝结;

(3)冷却器置于室外,而该地区冬季温度最低达0℃以下。

答:(1)应选气关型调节阀、反作用式调节器;

(2)应选气开型调节阀、正作用式调节器;

(3)应选气关型调节阀、反作用式调节器;

6.53什么是比例、积分、微分调节规律?在自动控制中起什么作用?

答:比例调节依据“偏差的大小”来动作,它的输出与输入偏差的大小成比例。比例调节及时、有力,但有余差。它用比例度δ来表示其作用的强弱,δ愈小,调节作用愈强,比例作用太强时,会引起振荡。

积分调节依据“偏差是否存在”来动作,它的输出与偏差对时间的积分成比例,只有当余差消失时,积分作用才会停止,其作用是消除余差。但积分作用使最大动偏差增大,延长了调节时间。它用积分时间T来表示其作用的强弱,T愈小,积分作用愈强,但积分作用太强时,也会引起振荡。

微分调节依据“偏差变化速度”来动作。它的输出与输入偏差变化的速度成比例,其效果是阻止被控变量的一切变化,有超前调节的作用,对滞后大的对象有很好的效果。它使调节过程偏差减小,时间缩短,余差也减小(但不能消除)。它用微分时间Td来表示其作用的强弱,Td大,作用强,但Td太太,也会引起振荡。

6.54填空

在PID调节中,比例作用是依据______来动作的,在系统中起着______的作用;积分作用是依据______来动作的,在系统中起着______的作用;微分作用是依据______来动作的,在系统中起着______的作用。

答:偏差的大小;稳定被控变量;偏差是否存在;消除余差;偏差变化速度;超前调节。

6.55 在什么场合下选用比例(P)、比例积分(PI)、比例积分微分(PID)调节规律?

答:比例调节规律适应于负荷变化较小、纯滞后不太大而工艺要求不高、又允许有余差的调节系统。

比例积分调节规律适用于对象调节通道时间常数较小、系统负荷变化较大(需要消除干扰引起的余差)、纯滞后不大(时间常数不是太大)而被调参数不允许与给定值有偏差的调节系统。

比例积分微分调节规律适用于容量滞后较大、纯滞后不太太、不允许有余差的对象。

6.56填空

调节器的比例度δ越大,则放大倍数Kc______,比例调节作用就______,过渡过程曲线就______,但余差也______。积分时间Ti越小,则积分速度______,积分特性曲线的斜率______,积分作用______,消除余差______。微分时间Td越大,微分作用______。

答:越小;越弱;平稳;越大;越大;越大;越强;越快;越强。

6.61判断(是为√,非为×)

(1)对纯滞后大的调节对象,为克服其影响,可引入微分调节作用来克服。

(2)当调节过程不稳定时,可增大积分时间或加大比例度,使其稳定。

(3)比例调节过程的余差与调节器的比例度成正比。

(4)调节系统投运时,只要使调节器的测量值与给定值相等(即无偏差)时,就可进行手、自动切换操作。

(5)均匀控制系统的调节器参数整定可以与定值控制系统的整定要求一样。

答:1. ×;2. √;3. √;4. ×;5. ×。

6.67调节器参数整定的任务是什么?工程上常用的调节器参数整定有哪几种方法?

答:调节器参数整定的任务是:根据已定的控制方案,来确定调节器的最佳参数值(包括比例度δ、积分时间Ti、微分时间Td),以便使系统能获得好的调节质量。

调节器参数整定的方法有理论计算和工程整定两大类,其中常用的是工程整定法。

属于调节器参数的工程整定法主要有临界比例度法、衰减曲线法和经验凑试法等。

6.68什么是临界比例度法?有何特点?

答:临界比例度法是在纯比例运行下通过试验,得到临界比例度δk和临界周期Tk,然后根据经验总结出来的关系,求出调节器各参数值。

这种方法比较简单,易于掌握和判断,适用于一般的控制系统。但是不适用于临界比例度小的系统和不允许产生等幅振荡的系统,否则易影响生产的正常进行或造成事故。

6.73什么是衰减曲线法?有何特点?

答:衰减曲线法是在纯比例运行下,通过使系统产生衰减振荡,得到衰减比例度δs和衰减周期Ts(或上升时间T升),然后根据经验总结出来的关系求出调节器各参数值。

这种方法比较简便,整定质量高,整定过程安全可靠,应用广泛,但对于干扰频繁、记录曲线不规则的系统难于应用。

6.83选择。

某控制系统采用比例积分作用调节器。某人用先比例后加积分的凑试法来整定调节器的参数。若比例带的数值已基本合适,在加入积分作用的过程中,则()。

A.应适当减小比例带;

B.应适当增加比例带;

C.无需改变比例带。

答:B。

因为随着积分作用的增强,系统过渡过程的振荡将加剧,所以为了使系统得到与用纯比例作用相同的衰减比或达到同样的调节质量,应适当增加调节器的比例带。这就相当于减少了放大倍数。对二阶系统将会使衰减系数增大。

单回路控制系统原理样本

单回路控制系统原理 一、过程控制的特点 与其它自动控制系统相比, 过程控制的主要特点是: 1、系统由工业上系列生产的过程检测控制仪表组成。一个简单的过程控制系统是由控制对象和过程检测控制仪表( 包括测量元件, 变送器、调节器和调节阀) 两部分组成。 如图1: 液位控制系统 Q2 K C: 调节器的静态放大系数 K V: 调节阀的静态放大系数 K0: 被控对象的静态放大系数

K m: 变送器的静态放大系数 2、被控对象的设备是已知的, 对象的型式很多, 它们的动态特性是未知的或者是不十分清楚的, 但一般具有惯性大, 滞后大, 而且多数具有非线性特性。 3、控制方案的多样性。有单变量控制系统、多变量控制系统; 有线性系统、有非线性系统、; 有模拟量控制系统、有数字量控制系统, 等等。这是其它自动控制系统所不能比拟的。 4、控制过程属慢过程, 多半属参量控制。即需对表征生产过程的温度、流量、压力、液位、成分、PH等进行控制。 5、在过程控制系统中, 其给定值是恒定的( 定值控制) , 或是已知时间的函数( 程序控制) 。控制的主要目的是在于如何减少或消除外界扰动对被控量的影响。 工业生产要实现生产过程自动化, 首先必须熟悉生产过程, 掌握对象特点; 同时要熟悉过程参数的主要测量方法, 了解仪表性能、特点, 根据生产工艺要求和反馈控制理论的分析方法, 合理正确地构建过程控制系统; 而且经过改变调节仪表的PID特性参数, 使系统运行在最佳状态。 过程控制系统的品质是由组成系统的对象和过程检测仪表各环节的特性和系统的结构所决定的。 二、单回路控制系统原理 如图1所示单回路控制系统由对象、测量变送器、调节器、调节阀等环节组成。由于系统结构简单, 投资少, 易于调整、投运, 又

单回路控制系统整定实验报告

单回路控制系统整定实验报告 一、实验目的 (1)掌握动态模型的创建方法.。 (2)掌握单回路控制系统的理论整定方法和工程整定方法。 (3)了解调节器参数对控制品质的影响。 二、实验仪器 计算机一台 三、实验步骤 (1)启动计算机,运行MATLAB应用程序。 (2)在MATLAB命令窗口输入Smulink,启动Simulink。 (3)在Simulink库浏览窗口中,单击工具栏中的新建窗口快捷按钮或在Simulink库窗口中选择菜单命令File→New→Modeel,打开一个标题为“Untitled”的空白模型编辑窗口。 (4)用鼠标双击信号源模块库(Source)图标,打开信号源模块库,将光标移动到阶跃信号模块(Step)的图标上,按住鼠标左键,将其拖放到空白模型编辑窗口中。用鼠标双击附加模块库(Simulink Extra)图标,打开A到底提哦哪里Liner模块库,将光标移到PID Controller 图标上,按住鼠标左键,将其拖放到空白模块编辑窗口中。 (5)用同样的方法从连续系统模块库(Continuous)、接受模块库(Sinks)和数学运算模块库(Math Operations)中把传递函数模块(Transfer Fcn)、示波器模块(Scope)和加法器模块(Sum)拖放到空白模型编辑

窗口中。 (6)用鼠标单击一个模块的输出端口并用鼠标拖放到另一模块的输入端口,完成模块间的连接,如图1,图二。 图1 图二 (7)构造图1所示的单回路反馈系统的仿真模型。其中控制对象由子系统创建,如图2。 (8)设调节器为比例调节器,对象传递函数为: 0(1) n K T s (其中:0K =1,0T =10,n=4) ,用广义频率特性法按衰减率0.75计算调节器的参数;

1.1.1单回路控制系统

1.1.1单回路控制系统设计 第一节过程控制系统设计概述 ?单回路反馈控制系统---又称简单控制系统,是指由一个被控过程、一个 检测变送器、一个控制器和一个执行器所组成的.对一个被控变量进行控 制的单回路反馈闭环控制系统。 ?单回路反馈控制系统组成方框图: ?简单控制系统是实现生产过程自动化的基本单元、其结构简单、投资少、易于调整和投运,能满足一般工业生产过程的控制要求、因此在工业生产小应用十分广泛,尤其适用于被控过程的纯滞后和惯性小、负荷和扰动变化比较平缓,或者控制质量要求不太高的场合。 ?过程控制系统设计和应用的两个重要内容:控制方案的设计、调节器整定参数值的确定。 ?过程控制系统设计的一般要求: ●过程控制系统是稳定的,且具有适当的稳定裕度。 ●系统应是一个衰减振荡过程,但过渡过程时间要短,余差要小。 ?过程控制系统设计的基本方法: 设计方法很多,主要有对数频率特性设计法、根轨迹设计法、系统参数优化的计算机辅助设计等。 ?过程控制系统统设计步骤: ●建立被控过程的数学模型 ●选择控制方案 ●建立系统方框图 ●进行系统静态、动态特性分析计算 ●实验和仿真 ?过程控制系统设计的主要内容: ●控制方案的设计:核心,包括合理选择被控参数和控制参数、信息的获取 和变送、调节阀的选择、调节器控制规律及正、反作用方式的确定等。 ●工程设计:包括仪表选型、控制室和仪表盘设计、仪表供电供气系统设计、 信号及联锁保护系统设计等。 ●工程安装和仪表调校 ●调节器参数工程整定:保证系统运行在最佳状态。

第二节单回路控制系统方案设计 1.被控参数的选择 ?选取被控参数的一般原则为: ●选择对产品的产量和质量、安全生产、经济运行和环境保护具有决定性作 用的,可直接测量的工艺参数为被控参数。 ●当不能用直接参数作为被控参数时,应该选择一个与直接参数有单值函数 关系的间接参数作为被控参数。 ●被控参数必须具有足够大的灵敏度。 ●被控参数的选择必须考虑工艺过程的合理性和所用仪表的性能。 2.控制参数的选择 ?需要正确选择控制参数、调节器调节规律和调节阀的特性。 ?当工艺上允许有几种控制参数可供选择时,可根据被控过程扰动通道和控制通道特性,对控制质量的影响作出合理的选择。所队正确选择控制参数就是正确选择控制通道的问题。 ?扰动作用-----由扰动通道对过程的被控参数产生影响,力图使被控参数偏 离给定性 ?控制作用-----由控制通道对过程的被控参数起主导影响,抵消扰动影响, 以使被控参数尽力维持在给定值。 ?在生产过程有几个控制参数可供选择时,一般希望控制通道克服扰动的校正能力要强,动态响应要比扰动通道快。 ?可由过程静态特性的分析(扰动通道静态放大倍数K f、控制通道静态放大倍数K o)、过程扰动通道动态特性的分析(时间常数T f、时延τf、扰动作用点位置)、过程控制通道动态特性的分析(时间常数T o、时延τ(包括纯时延τ0、容量时延τc)、时间常数匹配)确定各参数选择原则。 ?根据过程特性选择控制参数的一般原则: ●控制通道参数选择:选择过程控制通道的放大系数K o要适当大一些,时间 常数T o要适当小一些。纯时延τ0愈小愈好,在有纯时延τ0的情况下,τ0 与T o之比应小—些(小于1),若其比值过大,则不利于控制。 ●扰动通道参数选择:选择过程扰动通道的放大系数K f应尽可能小。时间常 数T f要大。扰动引入系统的位置要远离控制过程(即靠近调节阀)。容量 时延τc愈大则有利于控制。 ●时间常数匹配:广义过程(包括调节阀和测量变送器)由几个一阶环节组成, 在选择控制参数时,应尽量设法把几个时间常数错开,使其中一个时间常 数比其他时间常数大得多,同时注意减小第二、第三个时间常数。 ●注意工艺操作的合理性、经济性。 3.系统设计中的测量变送问题 ?被控参数的测量和变送必须迅速正确地反映其实际变化情况,为系统设计提供准确的控制依据。 ?测量和变送环节的描述:

单回路控制系统实验过程控制实验指导书

单回路控制系统实验 单回路控制系统概述 实验三单容水箱液位定值控制实验 实验四双容水箱液位定值控制实验 实验五锅炉内胆静(动)态水温定值控制实验 实验三 实验项目名称:单容液位定值控制系统 实验项目性质:综合型实验 所属课程名称:过程控制系统 实验计划学时:2学时 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验内容和(原理)要求 本实验系统结构图和方框图如图3-4所示。被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃

给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 三、实验主要仪器设备和材料 1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。 四、实验方法、步骤及结果测试 本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。 具体实验内容与步骤按二种方案分别叙述。 (一)、智能仪表控制 1.按照图3-5连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。 图3-4 中水箱单容液位定值控制系统

DCS单回路控制系统设计

第五章单回路控制系统设计 ?本章提要 1.过程控制系统设计概述 2.单回路控制系统方案设计 3.单回路控制系统整定 4.单回路控制系统投运 5.单回路控制系统设计原则应用举例 ?授课内容 第一节过程控制系统设计概述 ?单回路反馈控制系统---又称简单控制系统,是指由一个被控过程、一个 检测变送器、一个控制器和一个执行器所组成的.对一个被控变量进行控 制的单回路反馈闭环控制系统。 ?单回路反馈控制系统组成方框图: ?简单控制系统是实现生产过程自动化的基本单元、其结构简单、投资少、易于调整和投运,能满足一般工业生产过程的控制要求、因此在工业生产小应用十分广泛,尤其适用于被控过程的纯滞后和惯性小、负荷和扰动变化比较平缓,或者控制质量要求不太高的场合。 ?过程控制系统设计和应用的两个重要内容:控制方案的设计、调节器整定参数值的确定。 ?过程控制系统设计的一般要求: ●过程控制系统是稳定的,且具有适当的稳定裕度。 ●系统应是一个衰减振荡过程,但过渡过程时间要短,余差要小。 ?过程控制系统设计的基本方法: 设计方法很多,主要有对数频率特性设计法、根轨迹设计法、系统参数优化的计算机辅助设计等。 ?过程控制系统统设计步骤: ●建立被控过程的数学模型 ●选择控制方案

●建立系统方框图 ●进行系统静态、动态特性分析计算 ●实验和仿真 ?过程控制系统设计的主要内容: ●控制方案的设计:核心,包括合理选择被控参数和控制参数、信息的获取 和变送、调节阀的选择、调节器控制规律及正、反作用方式的确定等。 ●工程设计:包括仪表选型、控制室和仪表盘设计、仪表供电供气系统设计、 信号及联锁保护系统设计等。 ●工程安装和仪表调校 ●调节器参数工程整定:保证系统运行在最佳状态。 第二节单回路控制系统方案设计 1.被控参数的选择 ?选取被控参数的一般原则为: ●选择对产品的产量和质量、安全生产、经济运行和环境保护具有决定性作 用的,可直接测量的工艺参数为被控参数。 ●当不能用直接参数作为被控参数时,应该选择一个与直接参数有单值函数 关系的间接参数作为被控参数。 ●被控参数必须具有足够大的灵敏度。 ●被控参数的选择必须考虑工艺过程的合理性和所用仪表的性能。 2.控制参数的选择 ?需要正确选择控制参数、调节器调节规律和调节阀的特性。 ?当工艺上允许有几种控制参数可供选择时,可根据被控过程扰动通道和控制通道特性,对控制质量的影响作出合理的选择。所队正确选择控制参数就是正确选择控制通道的问题。 ?扰动作用-----由扰动通道对过程的被控参数产生影响,力图使被控参数偏 离给定性 ?控制作用-----由控制通道对过程的被控参数起主导影响,抵消扰动影响, 以使被控参数尽力维持在给定值。 ?在生产过程有几个控制参数可供选择时,一般希望控制通道克服扰动的校正能力要强,动态响应要比扰动通道快。 ?可由过程静态特性的分析(扰动通道静态放大倍数K f、控制通道静态放大倍数K o)、过程扰动通道动态特性的分析(时间常数T f、时延τf、扰动作用点位置)、过程控制通道动态特性的分析(时间常数T o、时延τ(包括纯时延τ0、容量时延τc)、时间常数匹配)确定各参数选择原则。 ?根据过程特性选择控制参数的一般原则: ●控制通道参数选择:选择过程控制通道的放大系数K o要适当大一些,时间 常数T o要适当小一些。纯时延τ0愈小愈好,在有纯时延τ0的情况下,τ0 与T o之比应小—些(小于1),若其比值过大,则不利于控制。 ●扰动通道参数选择:选择过程扰动通道的放大系数K f应尽可能小。时间常 数T f要大。扰动引入系统的位置要远离控制过程(即靠近调节阀)。容量 时延τc愈大则有利于控制。 ●时间常数匹配:广义过程(包括调节阀和测量变送器)由几个一阶环节组成,

课程设计(论文)-单回路控制器的设计

单回路控制器的设计 学院:电子工程学院 年级:2012级 专业:自动化 姓名:、 学号:20125229 指导教师:

摘要 介绍了以89C51单片机实现的单回路智能控制器的设计思想,由于软件功能丰富,因此这可完成模拟仪表难以或无法完成的复杂调节功能,运算功能的显示功能,它可适用于工业过程中控制诸多领域。并且分析了51单片机与8255的连接方法,可以用它制成多路扩展的IO口控制器。该系统将单片机应用到单回路控制系统,实现一个比较简单的单回路PID控制。 。 关键词 单片机单回路智能控制器软件设计 IO扩展 PID控制

目录 摘要 (2) 第1章前言 (1) 1.1当前单片机系统的介绍及在单回路控制过程中的应用与前景错误!未定义书签 第2章单片机外部设备扩展 (2) 2.1单片机最小系统设计 (2) 2.1.1 单片机外部存储器的扩展 (2) 2.12 看门狗电路、复位电路的设计 (2) 2.2I/O接口的扩展 (3) 2.2.1.1 I/O扩展概述 (3) 2.2.2 89c51与可编程RAM/IO芯片8255的接口 (4) 2.3键盘的设计 (4) 2.4 LED显示器设计 (5) 2.5 数字量模拟量转换 (5) 2.5.1 信号采样及转换电路设计 (7) 2.6开关量的输入输设计 (8) 2.7 单片机串行口扩展设计。(MAX232与单片机接口设计) (10) 结论 (11) 参考文献 (12) 致谢 (12)

第1章前言 1.1单回路控制系统的介绍及单片机在单回路控制系统中的应用及前景 89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压、高性能CMOS8位微处理器,俗称单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器, VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O 口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据地址的低八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL 门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。 RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

单回路控制系统整定

单回路控制系统整定 一、实验目的 (1) 掌握动态建模的创建方法。 (2) 掌握单回路控制系统的理论整定方法和工程整定方法。 (3) 了解调节器参数对控制品质的影响。 (4) .熟悉控制线性系统仿真常用基本模块的用法 二、实验仪器 计算机一台、MATLAB 软件 三、实验内容: 用SIMULINK 建立被控对象的传递函数为() 4 1 ()101G x s = +,系统输 入为单位阶跃,采用PID 控制器进行闭环调节。 ①练习模块、连线的操作,并将仿真时间定为300 秒,其余用缺省值; ②试用稳定边界法和衰减曲线法设置出合适的PID 参数,得出满意的响应曲线。 ③设计M 文件在一个窗口中绘制出系统输入和输出的曲线,并加图解。 四、实验原理 . PID (比例-积分-微分)控制器是目前在实际工程中应用最为广泛的一种控制策略。PID 算法简单实用,不要求受控对象的精确数学模

型。 .模拟PID 控制器 典型的PID 控制结构如图所示。 . PID 控制规律写成传递函数的形式为 s K s Ki K s T s T K s U s E s G d p d i p ++=++== )11()()()( 式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i p i K K T =为积 分时间常数;p d d K K T =为微分时间常数;简单来说,PID 控制各校正环节的作用如下: (1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生, 控制器立即产生控制作用,以减少偏差。 (2)积分环节:主要用于消除静差,提高系统的无差度。积分作用 的强弱取决于积分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 (3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差 信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。 五、实验步骤

水箱液位单回路控制系统

水箱液位单回路控制系统 一、控制目的 根据设定的控制对象和管道配置,运用计算机和INTOUCH组态软件,设计一套监控系统,并通过调试使得水箱液位维持恒定或保持在一定的误差范围内。 二、性能要求 1、要求水箱液位恒定,液位设定值SP自行给定。 2、无扰动时,水压基本恒定,由变频器控制水泵实现。 3、扰动因数:水箱出水流量允许波动。 4、预期性能:响应曲线为衰减震荡;允许存在一定误差。调整时间尽可能短。 三、方案设计、控制规律选择 简单控制系统一般是单回路控制系统。由于其结构简单并且能够满足大多数控制质量的要求,因此在生产过程控制中得到了广泛的应用,是生产过程控制中最基本的一种控制系统。一个单回路反馈系统是由测量变送器装置、控制器、和被控对象所组成,按其被控变量类型的不同可以分为温度控制系统、压力控制系统、流量控制系统、液位控制系统等。 控制系统设计时针对某一特定生产对象进行的,当系统安装完成之后,控制效果主要取决于控制器的参数设定整定。选择合适的比例度、积分时间、微分时间是保证和提高系统控制质量的主要途径。 单回路水箱的原理,系统地输入变量为进水阀门、出水阀门的开度,输出变量为水箱液位。单回路PID控制的被控制量是水位,控制量是进水门、出水门开度。通过调节PID控制器的比例增益、积分时间、微分时间三个参数得到比较好的控制效果。 PID 调节器构成的闭环控制回路一般原理如图1 所示

图1 控制系统方框图 控制系统草稿图如图2 图2 控制规律选择:目前工业上常用的控制规律主要有:比例控制、比例积分控制和比例积分微分控制等。本方案采用比例积分微分控制。 比例控制——克服干扰能力强、控制及时、过渡时间短。是最基本的控制规律。但在终了时会存在余差,负荷变化越大余差越大。使用于滞后较小、负荷变化不大、允许被控变量存在余差的场合。 比例积分控制——在比例作用下引用积分作用,虽然会使系统的稳定性降低,但没有余差。适用于控制通道滞后较小、负荷变化不大、不允许被控变量存在余差的场合。 比例微分控制——引入了微分作用,具有超前控制作用,在被控对象具有较大滞后时,会有效的改善控制质量。但对于滞后小干扰作用频繁,含有高频噪声的系统,将可能使系统产生振荡,甚至失控。 比例积分微分控制——综合了比例、积分、微分控制规律的优点。适用于容量滞后较大、负荷变化大、控制要求高的场合。 该方案的控制目标是使水位达到平衡状态,通过控制电动调节阀改变阀门开度,来控制流量的大小,从而来控制水位。选择阀门开度为控制量,水位为被控量。控制规律选择PID控制规律。 四、测要求试:

单回路控制系统详解

一、单回路控制系统 1. 画出图示系统的方框图: 2. 一个简单控制系统总的开环增益(放大系数)应是正值还是负值?仪表行业定义的控制器增益与控制系统中定义的控制器的增益在符号上有什么关系?为什么? 3. 试确定习题1中控制器的正反作用。若加热变成冷却,且控制阀由气开变为气关,控制器的正反作用是否需要 4. 什么是对象的控制通道和扰动通道?若它们可用一阶加时滞环节来近似,试述K P 、K f 、τp 、τf 对控制系统质量的影响。 5. 已知广义对象的传递函数为1) S (T e K P S τP P +-,若P P T τ的比值一定时,T P 大小对控制质量有什么影响?为什么? 6. 一个简单控制系统的变送器量程变化后,对控制质量有什么影响?举例说明。 7. 试述控制阀流量特性的选择原则,并举例加以说明。 8. 对图示控制系统采用线性控制阀。当负荷G 增加后,系统的响应趋于 非周期函数,而G 减少时,系统响应震 9. 一个简单控制系统中,控制阀口 径变化后,对系统质量有何影响? 10. 已知蒸汽加热器如图所示,该系 统热量平衡式为:G 1C 1(θ0-θi )=G 2λ(λ 为蒸汽的冷凝潜热)。 (1)主要扰动为θi 时,选择控制阀的流量特性。 (2)主要扰动为G 1时,量特性。 (3特性。 11.

作用后,对系统质量有什么影响?为了保持同样的衰减比,比例度δ要增加,为什么? 12. 试写出正微分和反微分单元的传递函数和微分方程;画出它们的阶跃响应,并简述它们的应用场合。 13. 什么叫积分饱和?产生积分饱和的条件是什么? 14. 采用响应曲线法整定控制器参数,选用单比例控制时,δ=K P τP /T P ×100%,即δ∝K P ,δ∝τP /T P ,为什么?而选择比例积分控制时,δ=1.44K P τP /T P ×100%,即比例度增加,为什么? 15. 采用临界比例度法整定控制器参数,在单比例控制时,δ=2δK (临界比例度),为什么? 16. 在一个简单控制系统中,若对象的传递函数为 ) 1T )(1S 1)(T S (T K W P V P +-+S ,进行控制器参数整定时,应注意什么? 17. 已知广义对象的传递函数为1) S (T e K P S τP P +-,采用比例控制,当系统达到稳定边缘时,K C =K CK ,临界周期为T K 。问: (1)T K /τP 在什么数值范围内(即上、下界),τP /T P 增加时,这一比值是上升还是下降? (2)K CK 在什么数值范围内(即上、下界),τP /T P 增加时,K CK 是上升还是下降? 18. 一个过程控制系统的对象有较大的容量滞后,而另一系统由于测量点位置造成纯滞后。若对两个系统均采用微分控制,试问效果如何? 19. 某一温度控制系统,采用4:1衰减曲线法进行整定,测得系统的衰减比例度 δs=25%,衰减振荡周期Ts=10min ,当控制器采用P 和PI 控制作用时,试求其整定参数值。 20. 有一个过程控制系统(采用DDZ-Ⅲ型仪表),当广义对象的输入电流(即控制器的输出电流)为14mA 时,其被控温度的测量值为70℃。当输入电流突然从14mA 增至15mA ,并待被控温度达到稳定时,其测量值为74℃。设测温仪表的量程为50-100℃。同时由实验测得广义对象的时间常数T P =3min ,滞后时间τP =1.2min ,试求衰减比为4:1时PI 控制器的整定参数值。 21. 某一个过程控制系统,利用临界比例度法进行控制器的参数整定。当比例度为12%时,系统出现等幅振荡,其临界振荡周期为180s ,试求采用PID 控制器时的整定参数值。 22. 已知控制系统方块图如下: 求:(1)X 作单位跃阶变化时,随动控制系统的余差。

单回路控制系统参数整定

课程设计报告 ( 2015-- 2016年度第2学期) 名称:过程控制系统 题目:单回路控制系统参数整定院系: 班级: 学号: 学生姓名: 指导教师: 设计周数:第十七周 成绩: 日期:2016年6月23日

《过程控制系统》课程设计 任务书 一、目的与要求 1.掌握单回路控制系统整定方法; 2.掌握PID参数对控制品质影响规律; 3.运用相应软件开发单回路控制系统整定程序。 二、主要内容 1.学习基于被控对象模型的单回路控制系统参数整定方法; 2.开发单回路控制系统PID参数整定程序; 3.寻找不同PID参数对控制品质影响规律。 三、进度计划 四、设计成果要求 1.阐明基于被控对象模型的单回路控制系统参数整定方法的基本原理; 2.完整的、可运行的单回路控制系统PID参数整定程序; 3.验证整定的PID参数下的控制效果,给出控制曲线图,同时给出其它PID参数下的控制曲线图,总结不同PID参数对控制品质影响规律。 五、考核方式 1.设计报告; 2.设计答辩。

二、设计(实验)正文 1.学习基于被控对象模型的单回路控制系统参数整定方法; 1)经验法 内容: 经验法实际是一种试凑法,是在生产实践中总结出来的参数整定法,该法在现场中得到了广泛的应用。利用经验法对系统的参数进行整定时,首先根据经验设置一组调节器参数,然后将系统投入闭环运行,待系统稳定后作阶跃扰动试验,观察调节过程;若调节过程不满足要求,则修改调节器参数,再作阶跃扰动试验,观察调节过程;反复上述试验,直到调节过程满意为止。 实验步骤: (1) 首先将调节器的积分时间Ti置最大,微分时间Td置最小,根据经验设置比例带δ的数值,完成后将系统投入闭环运行,待系统稳定后作阶跃扰动试验,观察调节过程,若过渡过程有希望的衰减率则可,否则改变比例带δ的值,重复上述试验,直到满意为止; (2) 将调节器的积分时间Ti由最大调整到某一值,由于积分作用的引入导致系统的稳定性下降,因而应将比例带适当增大,一般为纯比例作用的1.2倍。系统投入闭环运行,待系统稳定后,作阶跃扰动试验,观察调节过程,若过渡过程有希望的衰减率则可,否则改变积分时间Ti的值,重复上述试验,直到满意为止; (3) 将调节器的微分时间由小到大调整到某一数值,系统投入闭环运行,待系统稳定后,作阶跃扰动试验,观察调节过程,修改微分时间重复试验,直到满意为止; 2)临界比例带法 内容: 临界比例带法又称边界稳定法,首先将调节器设置成纯比例调节器,然后系统闭环投入运行,将比例带由大到小改变,观察系统输出,直到系统产生等幅振荡为止。记下此状态下的比例带数值(即为临界比例带δk)和振荡周期Tk,然后根据经验公式计算调节器的其它参数。 实验步骤: (1) 将调节器的积分时间Ti置于最大,微分时间Td置最小,即Ti→∞,Td=0;置比例带δ为一个较大的值; (2) 系统闭环投入运行,待系统稳定后调整比例带δ的数值直到出现等幅振荡。记录并计算临界状态下临界比例带δcr和振荡周期Tcr,根据表2-1计算调节器的参数; (3)根据δcr和Tcr,由计算公式求得控制器的各个参数。 (4) 将调节器按计算出的参数设置好,系统闭环投入运行,待系统稳定后作阶跃扰动试验,观察系统的调节过程,适当修改参数,直到满意为止。

单回路控制

一、单回路控制系统 1一个简单控制系统由那几部分组成?各有什么作用? 2什么是简单控制系统?试画出简单控制系统的典型方块图。 答:所谓简单控制系统,通常是指由一个被控对象、一个检测元件及传感器(或变送器)、一个调节器和一个执行器所构成的单闭环控制系统,有时也称为单回路控制系统。 简单控制系统的典型方块图如下图所示。 题2 方块图 3在石油化工生产过程中,常常利用液态丙烯汽化吸收裂解气体的热量,使裂解气体的温度下降到规定数值上。下图是一个简化的丙烯冷却器温度控制系统。被冷却的物料是乙烯裂解气,其温度要求控制在(15±1.5)℃。如果温度太高,冷却后的气体会包含过多的水分,对生产造成有害影响;如果温度太低,乙烯裂解气会产生结晶析出,杜塞管道。 题3 图丙烯冷却器 (1)指出系统中被控对象、被控变量和操作变量各是什么? (2)试画出该控制系统的组成方块图。 答:(1)被控对象为丙烯冷却器;被控变量为乙烯裂解气的出口温度;操作变量为气态丙烯的流量。 (3)该系统的方块图: 题3 方块图 4反应温度控制系统示意图。A、B两种物料进入反映,通过改变进入夹套的冷却水流量来控制反应器内的温度保持不变。图中TT表示温度变送器,TC便是温度控制器。试画出该温度控制系统的方块图,并指出该控制系统中的被控对象、被控变量、操作变量及可能影响被控变量变化的扰动各是什么?

题4图反应器温度控制系统 答:反应器温度控制系统中被控对象为反应器;被控变量为反应器内温度;操作变量为冷却水流量;干扰为A、B物料的流量、温度、浓度、冷却水的温度、压力及搅拌器的转速。反应器的温度控制系统的方块图: 题4方块图 5 乙炔发生器是利用电石和水来产生乙炔气装置。为了降低电石消耗量,提高乙炔的收率,确保生产安全,设计了如图所示温度控制系统。工艺要求发生器温度控制在(80±1)℃。试画出该温度控制系统的方块图,并指出图中的被控对被控变量、操作变量及可能存在的扰动。 题5图乙炔发生器 答:乙炔发生器温度控制系统方块图如下图所示(图中T、T O分别为乙炔发生器温度及其设定值)。 题5 方块图 被控对象:乙炔发生器; 被控变量:乙炔发生器内温度; 操纵变量:冷水流量; 扰动量:冷水温度、压力;电石进料量、成分等。 6列管式换热器。工艺要求出口物料温度保持恒定。经分析如果保持物料入口流量和蒸汽流量基本恒定,则温度的波动将会减小到工艺允许的误差范围之内。现分别设计了物料入口流量和蒸汽流量两个控制系统,以保持出口物料温度恒定。 题6图

单回路控制系统原理

单回路控制系统原理 过程控制的特点一、与其它自动控制系统相比,过程控制的主要特点是: 1、系统由工业上系列生产的过程检测控制仪表组成。一个简单的过程控制系统是由控制对象和过程检测控制仪表(包括测量元件,变送器、调节器和调节阀)两部分组成。 如图1:液位控制系统 H Q1 Q2

(t) z(t) 测量变 :调节器的静态放大系数 :调节阀的静态放大系数 1 / 13 K:被控对象的静态放大系数0:变送器的静态放大系数 2、被控对象的设备是已知的,对象的型式很多,它们的动态特性是未知的或者是不十分清楚的,但一般具有惯性大,滞后大,而且多数具有非线性特性。 3、控制方案的多样性。有单变量控制系统、多变量控制系统;有线性系统、有非线性系统、;有模拟量控制系统、有数字量控制系统,等等。这是其它自动控制系统所不能比拟的。 4、控制过程属慢过程,多半属参量控制。即需对表征生产过程的温度、流量、压力、液位、成分、等进行控制。

5、在过程控制系统中,其给定值是恒定的(定值控制),或是已知时间的函数(程序控制)。控制的主要目的是在于如何减少或消除外界扰动对被控量的影响。 工业生产要实现生产过程自动化,首先必须熟悉生产过程,掌握对象特点;同时要熟悉过程参数的主要测量方法,了解仪表性能、特点,根据生产工艺要求和反馈控制理论的分析方法,合理正确地构建过程控制系统;并且通过改变调节仪表的特性参数,使系统运行在最佳状态。 过程控制系统的品质是由组成系统的对象和过程检测仪表各环 节的特性和系统的结构所决定的。 单回路控制系统原理二、 如图1所示单回路控制系统由对象、测量变送器、调节器、调2 / 13 节阀等环节组成。由于系统结构简单,投资少,易于调整、投运,又能满足一般生产过程的控制要求,所以应用十分广泛。 单回路控制系统的设计原则同样适用于复杂控制系统的设计,控制方案的设计和调节器整定参数值的确定,是系统设计中的两个重要内容。如果控制方案设计不正确,仅凭调节器参数的整定是不可能获得较好的控制质量的;反之,如果控制方案设计很好,但是调节器参数整定不合适,也不能使系统运行在最佳状态。 选择被控参数1、对于一个生产过程来说,影响正常操作的因素是很多的,但是,并非对所有影响因素都需要加以控制。

温度单回路过程控制系统

工业过程控制 课程设计

工业过程控制课程设计任务书

目录 引言 (1) 1 设计目的 (1) 2 控制要求 (2) 3 系统结构设计 (2) 3.1 系统结构框图 (2) 3.2 仪表选择 (2) 3.2.1 温度传感器 (2) 3.2.2 加热器 (3) 3.2.3 过程模块 (3) 3.2.4 电动调节阀 (3) 3.2.5 其他设备 (4) 3.3 系统流程图 (4) 4 系统组态设计 (5) 4.1 组态王简介 (5) 4.2 组态软件设计 (5) 4.2.1 设备设置 (5) 4.2.2 组态画面 (6) 4.2.3 变量定义 (7) 4.2.4 PID 控制算法 (8) 4.2.5 PID 控制算法流程图 (10) 4.2.6 温度单回路控制过程 (10) 总结 (13) 参考文献 (15) 附录 (16)

引言 温度控制,在工业自动化控制中占有非常重要的地位。单片机系统的开发应用给现代工业测控领域带来了一次新的技术革命,自动化、智能化均离不开单片机的应用。将单片机控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和控制精度。 温度的控制问题是一个工业生产中经常会遇到的问题。本文以它为例进行介绍,希望能收到举一反三和触类旁通的效果。 现代自动控制越来越朝着智能化发展,在很多自动控制系统中都用到了工控机,小型机、甚至是巨型机处理机等,当然这些处理机有一个很大的特点,那就是很高的运行速度,很大的内存,大量的数据存储器。但随之而来的是巨额的成本。在很多的小型系统中,处理机的成本占系统成本的比例高达20%,而对于这些小型的系统来说,配置一个如此高速的处理机没有任何必要,因为这些小系统追求经济效益,而不是最在乎系统的快速性,所以用成本低廉的单片机控制小型的,而又不是很复杂,不需要大量复杂运算的系统中是非常适合的。 随着电子技术以及应用需求的发展,单片机技术得到了迅速的发展,在高集成度,高速度,低功耗以及高性能方面取得了很大的进展。伴随着科学技术的发展,电子技术有了更高的飞跃,我们现在完全可以运用单片机和电子温度传感器对某处进行温度检测,而且我们可以很容易地做到多点的温度检测,如果对此原理图稍加改进,我们还可以进行不同地点的实时温度检测和控制。 1设计目的 运用组态软件“组态王King View6.05”,结合工业过程实验室已有设备,按照定值系统的控制要求,应用PID算法,自行设计,构成单回路温度控制系统,并整定现相关的PID参数以使系统稳定运行,最终得到一个具有较美观组态画面和较完善组态控制程序的温度单回路控制系统。

单回路控制系统原理

单回路控制系统原理 一、 过程控制的特点 与其它自动控制系统相比,过程控制的主要特点是: 1、系统由工业上系列生产的过程检测控制仪表组成。一个简单的过程控制系统是由控制对象和过程检测控制仪表(包括测量元件,变送器、调节器和调节阀)两部分组成。 如图1:液位控制系统 Q2 t ) z (t ) :调节器的静态放大系数 :调节阀的静态放大系数

K0:被控对象的静态放大系数 :变送器的静态放大系数 2、被控对象的设备是已知的,对象的型式很多,它们的动态特性是未知的或者是不十分清楚的,但一般具有惯性大,滞后大,而且多数具有非线性特性。 3、控制方案的多样性。有单变量控制系统、多变量控制系统;有线性系统、有非线性系统、;有模拟量控制系统、有数字量控制系统,等等。这是其它自动控制系统所不能比拟的。 4、控制过程属慢过程,多半属参量控制。即需对表征生产过程的温度、流量、压力、液位、成分、等进行控制。 5、在过程控制系统中,其给定值是恒定的(定值控制),或是已知时间的函数(程序控制)。控制的主要目的是在于如何减少或消除外界扰动对被控量的影响。 工业生产要实现生产过程自动化,首先必须熟悉生产过程,掌握对象特点;同时要熟悉过程参数的主要测量方法,了解仪表性能、特点,根据生产工艺要求和反馈控制理论的分析方法,合理正确地构建过程控制系统;并且通过改变调节仪表的特性参数,使系统运行在最佳状态。 过程控制系统的品质是由组成系统的对象和过程检测仪表各环节的特性和系统的结构所决定的。 二、单回路控制系统原理 如图1所示单回路控制系统由对象、测量变送器、调节器、调

节阀等环节组成。由于系统结构简单,投资少,易于调整、投运,又能满足一般生产过程的控制要求,所以应用十分广泛。 单回路控制系统的设计原则同样适用于复杂控制系统的设计,控制方案的设计和调节器整定参数值的确定,是系统设计中的两个重要内容。如果控制方案设计不正确,仅凭调节器参数的整定是不可能获得较好的控制质量的;反之,如果控制方案设计很好,但是调节器参数整定不合适,也不能使系统运行在最佳状态。 1、选择被控参数 对于一个生产过程来说,影响正常操作的因素是很多的,但是,并非对所有影响因素都需要加以控制。 选择被控参数的一般原则为: [1]、选择对产品的产量和质量、安全生产、经济运行和环境保护等具有决定性作用的、可直接测量的工艺参数为被控参数。 [2]、当不能用直接参数(如测量滞后过大)作为被控参数时,应选择一个与直接参数有单值函数关系的间接参数作为被控参数。 [3]、被控参数必须具有足够大的灵敏度。 [4]、被控参数的选取,必须考虑工艺过程的合理性和所采用仪表的性能。 2、选择控制参数 若生产工艺有几种控制参数可供选择,一般希望控制通道克服扰动的校正能力要强,动态响应应比扰动通道快。 控制通道:是指调节作用与被控参数之间的信号联系。即P(t)

单回路控制系统的设计和仿真

本科实验报告 课程名称:过程控制工程 唐子涵 姓名: 院系:控制系 专业:控制0904 3090104383 学号: 指导教师:戴连奎 2012年3月23日

目录 一、实验目的和要求 (2) 二、主要仪器设备 (2) 三、实验内容和模型建立与实现 (2) A.仿真任务1: (3) B.仿真任务2: (6) C. 仿真任务3: (9) D. 其他: (17)

课程名称: 过程控制工程 指导老师:戴连奎 成绩:_________ 实验名称: 单回路控制仿真练习 实验类型: 同组学生: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 学习搭建SimuLink 仿真模型的过程和方法; 2. 学习使用Matlab 绘制阶跃响应曲线并计算相应的特性参数的方法; 3. 学习在SimuLink 仿真环境下对控制系统进行PID 参数整定; 4. 在闭环的条件下,学习对系统的动态特性进行评估的方法; 二、主要仪器设备 PC 机、Matlab 软件。 三、实验内容和模型建立与实现 针对某一单程逆流列管式换热器,对应的工艺介质出口温度单回路控制系统如图3-1所示。它采用饱和蒸汽冷凝所释放的热量对工艺介质进行加热,使工艺介质的出口温度2T 稳定在某个定值。 图3-1中,F R 为工艺介质流量,1T 为工艺介质的进口温度,它们都由上游流程决定,是影响工艺介质出口温度2T 的主要干扰;V R 为加热蒸汽流量,作为工艺介质出口温度2T 的控制手段,V P 为蒸汽入口压力;u 为蒸汽控制阀的相对输入信号(以DDZ III 型为例,当输入电流为4 mA 时,对应相对输入信号为0 %;当输入电流为20 mA 时,对应相对输入信 专业:自动化(控制) 姓名:唐子涵 学号:3090104383 日期:2012.3.23 地点:玉泉五舍515

(完整word版)单回路负反馈控制系统的设计

单回路负反馈系统 校正前系统的单位阶跃响应曲线程序 num=[20]; den=[0.0125 0.525 1 20]; step(num,den); grid on; xlabel('t');ylabel('c(t)'); title('Unit-Step Response of G(s)=20/(0.0125*s^3+0.525s^2+s+1)') 图2.1.2校正前系统的单位阶跃响应曲线

2.1.3校正前系统的波特图 校正前波特图程序 num=[20]; den=[0.0125 0.525 1]; w=logspace(-2,3,100); bode(num,den,w); grid on; title('Bode Diagram of G(s)=20/[s*(0.5s+1)*(0.025s+1)]') 图2.1.3校正前的波特图

校正前根轨迹图程序 K=20; Z=[]; P=[0 -2 -40]; [num,den]=zp2tf(Z,P,K); rlocus(num,den); V=[-45 2 -25 25]; axis(V); TITLE('Root-locus plot of G(s)=4.08(0.432s+1)/[s(0.088s+1)(0.5s+1)(0.025s+1)]'); xlabel('Re'); ylabel('Im'); 图2.1.1校正前根轨迹图

图2.1.4校正前的仿真图 图2.1.5校正前的仿真阶跃响应曲线

校正后系统的单位阶跃响应曲线 num=[0 1.7626 4.0800]; den=[0.0011 0.0587 0.6130 2.7626 4.08]; step(num,den); grid on; xlabel('t');ylabel('c(t)'); title('jlyC(s)/R(s)=20*0.204*(0.432*s+1)/((0.088*s+1)*(0.0125*s^3+0.525s^2+s+1)+20*0.204*( 0.432*s+1))'); 图2.3.3校正后系统的单位阶跃响应曲线

相关主题
文本预览
相关文档 最新文档