当前位置:文档之家› 电化学整理笔记

电化学整理笔记

扫描电镜(SEM)(是一种利用电子束扫描样品表面从而获得样品信息的电子显微镜。它能产生样品表面的高分辨率图像,且图像呈三维,扫描电子显微镜能被用来鉴定样品的表面结构。)

透射电子显微镜(TEM)(简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件(如荧光屏、胶片、以及感光耦合组件)上显示出来。
由于电子的德布罗意波长非常短,透射电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2nm,放大倍数为几万~百万倍。因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构,比光学显微镜所能够观察到的最小的结构小数万倍。TEM在中和物理学和生物学相关的许多科学领域都是重要的分析方法,如癌症研究、病毒学、材料科学、以及纳米技术、半导体研究等等。
在放大倍数较低的时候,TEM成像的对比度主要是由于材料不同的厚度和成分造成对电子的吸收不同而造成的。而当放大率倍数较高的时候,复杂的波动作用会造成成像的亮度的不同,因此需要专业知识来对所得到的像进行分析。通过使用TEM不同的模式,可以通过物质的化学特性、晶体方向、电子结构、样品造成的电子相移以及通常的对电子吸收对样品成像。)

ZETA电位(界达电位, 在胶体化学中,是指胶体粒子上累积的离子所引发的静电压;胶体粒子由电双层构成,包含固定层和扩散层。一个粒子可以借由亨利公式导出电泳的移动率,进而求出其界达电位的值.)

XRD(X-ray powder diffraction)(X射线衍射,通过对材料进行X射线衍射,分析其衍射图谱,分析材料的成分等),

拉曼光谱(对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法),

MTT实验(检测细胞存活和生长的方法)

电化学原子力显微镜(ECAFM)是将接触式的原子力显微镜用于电解质溶液研究电极的表面形貌,其力的作用原理与大气中的AFM相同。接触模式(Contact mode)和轻敲模式(Tapping mode)是AFM的两种主要工作模式。

接触角 是一只在液体/气体界面接触固体表面而形成的夹角。接触角是由三个不同界面相互作用的一个系统。最常见的概念解说是,一个小液滴在一单位横向的固体表面,由杨格—拉普拉斯方程所定义的水滴的形状,接触角扮演了约束条件。接触角测量可由接触角量角器所测得。接触角并不限

于液体/气体界面;它同样适用于两种液体界面或两种蒸气界面。

Ret(electron-transfer resistance电子转移电阻)[硬第80页]

倒置荧光显微镜(倒置荧光显微镜由荧光附件与倒置显微镜有机结合构成的,主要用于细胞等活体组织的荧光、相差观察。 倒置显微镜(Inverted microscope)是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于这些活体被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。倒置显微镜多用于无色透明的活体观察,在倒置显微镜的基础上添加一套荧光附件:激光激发块,荧光光源,荧光照明器,激发块切换装置,即可进行倒置荧光观察。 进口四大品牌显微镜都有相应的倒置荧光显微镜,如奥林巴斯的IX71倒置荧光显微镜,CKX41倒置荧光显微镜。国产品牌显微镜厂家近年随着相差技术与荧光成像技术的不断提升,也推出多款倒置荧光显微镜,MSHOT MF51就是一款,其荧光亮度高,且成像清晰,接近国外同类中档显微镜的水准)

Western Blotting (以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异性目的基因表达的蛋白成分。该技术也广泛应用于检测蛋白水平的表达。)

石墨烯(是一种从石墨材料中剥离出的单层碳原子面材料,是碳的二维结构,是一种“超级材料”,硬度超过钻石,同时又像橡胶一样可以伸展。它的导电和导热性能超过任何铜线,重量几乎为零。这种石墨晶体薄膜的厚度只有0.335纳米,把20万片薄膜叠加到一起,也只有一根头发丝那么厚。石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣 。在2006年3月,佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路。)

X射线光电子能谱(简称XPS)(是一种用于测定材料中元素构成、实验式,以及其中所含元素化学态和电子态的定量能谱技术。这种技术用X射线照射所要分析的材料,同时测量从材料表面以下1纳米到10纳米范围内逸出电子的动能和数量,从而得到X射线光电子能谱。X射线光电子能谱技术需要在超高真空环境下进行。
XPS是一种表面化学分析技术,可以用来分析金属材料在

特定状态下或在一些加工处理后的表面化学。
XPS可以用来测量:
表面的元素构成(通常范围为1纳米到10纳米)
纯净材料的实验式
不纯净表面的杂质的元素构成
表面每一种元素的化学态和电子态
表面元素构成的均匀性)

量子点(QDs)(是准零维的纳米材料,由少量的原子所构成。粗略地说,量子点三个维度的尺寸都在100纳米以下,外观恰似一极小的点状物,其内部电子在各方向上的运动都受到局限,所以量子局限效应特别显著。由于量子局限效应会导致类似原子的不连续电子能阶结构,因此量子点又被称为“人造原子”。量子点具有激发光谱宽且连续分布,而发射光谱窄而对称,颜色可调,光化学稳定性高,荧光寿命长等优越的荧光特性,是一种理想的荧光探针)

Electrochemical impedance spectroscopy (EIS) 电化学阻抗谱(给电化学系统施加一个频率不同的小振幅的交流电势波,测量交流电势与电流信号的比值(此比值即为系统的阻抗)随正弦波频率ω的变化,或者是阻抗的相位角Φ随ω的变化。进而分析电极过程动力学、双电层和扩散等,研究电极材料、固体电解质、导电高分子以及腐蚀防护等机理。)

UV-vis and PL spectra:紫外-可见和荧光光谱

量子限制效应(quantum confinement effect) 微结构材料三维尺度中至少有一个维度与电子德布罗意(deBroglie)波长相当,因此电子在此维度中的运动受到限制,电子态呈量子化分布,连续的能带将分解为离散的能级,即形成分立的能级和驻波形式的波函数。当能级间距大于某些特征能量(如热运动量KB;塞曼能hω,超导能隙Δ等)时,系统将表现出和大块样品不同的甚至是特有的性质,例如超晶格中由于能级离散引起的带隙展宽及吸收边的蓝移。

傅立叶变换红外吸收光谱仪(FTIR)(由红外光源S发出的红外光经准直为平行红外光束进入干涉系统,经干涉仪调整制后得到一束干涉光。干涉光通过样品Sa,获得含有光谱信息的干涉信号到达探测器D上,由D将干涉信号变为电信号。此处的干涉信号是一时间函数,即由干涉信号绘出的干涉图,其横坐标是动镜移动时间或动镜移动距离。这种干涉图经过A/D转换器送入计算机,由计算机进行傅立叶变换的快速计算,即可获得以波数为横坐标的红外光谱图。然后通过D/A转换器送入绘图仪而绘出人们十分熟悉的标准红外吸收光谱图。)

Surface Plasmon Resonance(表面等离子体共振)当光线入射到由贵金属构成的纳米颗粒上时,如果入射光子频率与贵金属纳米颗粒或金属岛传导电子的整体振动频率相匹配时,纳米颗粒或金属岛会对光子能量产生很强的吸收作用,就会发生局域表面等

离子体共振(LSPR:mcalized Surface Plasmon Resonance))现象。
金、 银、铂等贵金属纳米粒子在紫外可见光波段展现出很强的光谱吸收,从而可以获得局域表面等离子体共振光谱。该吸收光谱峰值处的吸收波长取决于该材料的微观结构特性,例如组成、 形状、结构、尺寸、 局域传导率。因此,获得局域表面等离子体共振光谱,并对其进行分析,就可以研究纳米粒子的微观组成。同时,LSPR吸收谱还对周围介质极其敏感,因此可以作为基于光学信号的化学传感器和生物传感器。

confocal laser-scanning fluorescence microscopy(CLSM)(激光扫描共聚焦显微镜)的基本工作原理是首先由激光器发射的一定波长的激发光,光线经放大后通过扫描器内的照明针孔光栏形成点光源,由物镜聚焦于样品的焦平面上,样品上相应的被照射点受激发而发射出的荧光,通过检测孔光栏后,到达检测器,并成像于计算机监视屏上。这样由焦平面上样品的的每一点的荧光图像组成了一幅完整的共焦图像,称为光切片。 激光扫描共聚焦荧光显微镜相对普通荧光显微镜的优点 (1):LSCM的图象是以电信号的形式记录下来的,所以可以采用各种模拟的和数字的电子技术进行图象处理:(2)LSCM利用共聚焦系统有效的排除了焦点以外的光信号干扰,提高了分辨率,显著改善了视野的广度和深度,使无损伤的光学切片成为可能,达到了三维空间定位;(3)由于LSCM能随时采集和记录检测信号,为生命科学开拓了一条观察活细胞结构及特定分子、离子生物学变化的新途径:(4)LSCM除具有成像功能外,还有图象处理功能和细胞生物学功能,前者包括光学切片、三维图象重建、细胞物理和生物学测定、荧光定量、定位分析以及离子的实时定量测定;后者包括黏附细胞的分选、激光细胞纤维外科及光陷阱技术、荧光漂白后恢复技术等。

Diffuse Reflectance Spectrophotometry(DRS)( 漫反射光谱)漫反射原理:当光线照射到样品上,一部分光在样品表面产生镜面反射,另一部分光经折射进入样品内部,在样品内部与样品分子作用而发生反射、折射、散射和吸收现象,最后光线由样品表面辐射出来,辐射出来的光由于散向空间各个方向而被称为漫反射。由于漫反射光曾进入样品内部与样品分子发生作用,因此漫反射光将载有样品分子的结构信息,这是漫反射光谱技术工作的基础。
漫反射特点:漫反射与镜面反射共存;漫反射光强度弱;漫反射吸收光谱图与透射法测得吸收光谱图形状基本一致。
漫反射光谱的测量:漫反射技术主要用于测量粉末样品和混浊的液体。对粉末样品几乎不需要样品制备,由于上述优点

,在煤、矿等难于用压片法测量的样品的IR研究中得到广泛应用。将待测样品在合适的基质中稀释,能够有效地消除镜面反射和避免产生吸收峰饱和现象,从而获得较高质量的漫反射谱。稀释基质常用KCl和KBr等,比例在1:20至1:10之间。
漫反射的定量分析:利用K-M方程可以实现漫反射的定量研究,具体公式为:f(R∞)=(1-R∞)2/2R∞=K/S;R∞代表样品层无限厚时的反射率(实际上几个毫米就能满足),K为样品的吸光系数,S为样品的散射系数,由于K与粉末样品浓度C呈正比,由此有f(R∞)与C呈正比,可以进行定量分析。



-------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------

生物素(参与脱羧反应的一种酶的辅助因子。广布于动物及植物组织,已从肝提取物和蛋黄中分离,是多种羧化酶辅基的成分。它与酶蛋白活性部位的某个赖氨酸残基的∈-氨基以酰胺键结合生成∈-N-生物素酰L-赖氨酸,亦称生物胞素。生物素是许多需ATP的羧化反应中羧基的载体,羧基暂时与生物素双环系统上的一个氮原子结合,如在丙酮酸羧化酶催化丙酮酸羧化成草酰乙酸的反应中。动物缺乏生物素引起皮肤疾患和脱毛.)

配体(ligand)同锚定蛋白结合的任何分子都称为配体。在受体介导的内吞中, 与细胞质膜受体蛋白结合, 最后被吞入细胞的即是配体。根据配体的性质以及被细胞内吞后的作用, 将配体分为四大类:Ⅰ.营养物, 如转铁蛋白、低密度脂蛋白(LDL)等; Ⅱ.有害物质, 如某些细菌; Ⅲ.免疫物质, 如免疫球蛋白、抗原等; Ⅳ.信号物质, 如胰岛素等多种肽类激素等。 配体(ligand,也称为配基)是一个化学名词,表示可和中心原子(金属或类金属)产生键结的原子、分子和离子。一般而言,配体在参与键结时至少会提供一个电子。配体扮演路易斯碱的角色。但在少数情况中配体接受电子,充当路易斯酸。

ITO导电玻璃(是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化铟锡(俗称ITO)膜加工制作成的。)

S/N(信噪比)又称为讯噪比,是信号的有用成份与杂音的强弱对比,常用分贝数表示。设备的信噪比越高表明它产生的杂音越少。 测量信噪比的简单有效的方法是使用一台 10M 带宽以上的示波器 , 并且它具有较精确的毫伏档 . 将观测视频信号连接到 75 OHMS 输入口 . 观看黑色电平 , 它在同步脉冲上面 0.3V 处 , 正常情况下 , 这应是一条很细的水平线 , 但是当有噪声时 , 会相对宽一点 . 增加毫伏档精度 , 直到能读出该宽度 .

aptamer (适配体)能

与蛋白质或代谢物等配体特异和高效结合的RNA或DNA片段。通常用体外筛选方法制备得到。

formal potential(表观电位)在循环伏安图中的平均氧化还原峰电位。?

SCE (饱和甘汞电极) saturated calomel electrode

band gap(带隙:导带的最低点和价带的最高点的能量之差。也称能隙。 带隙越大,电子由价带被激发到导带越难,本征载流子浓度就越低,电导率也就越低 带隙主要作为带隙基准的简称,带隙基准是所有基准电压中最受欢迎的一种,由于其具有与电源电压、工艺、温度变化几乎无关的突出优点,所以被广泛地应用于高精度的比较器、A/D或D/A转换器、LDO稳压器以及其他许多模拟集成电路中。 带隙的主要作用是在集成电路中提供稳定的参考电压或参考电流,这就要求基准对电源电压的变化和温度的变化不敏感。)

相关主题
文本预览
相关文档 最新文档