当前位置:文档之家› 梁的振动实验报告

梁的振动实验报告

梁的振动实验报告
梁的振动实验报告

《机械振动学》实验报告

实验名称梁的振动实验

专业航空宇航推进理论与工程

姓名刘超

学号 SJ1602006

南京航空航天大学

Nanjing University of Aeronautics and Astronautics

2017年01月06日

1实验目的

改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。对比理论计算结果与实际测量结果。正确理解边界条件对振动特性的影响。

2实验内容

对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。

3实验原理

3.1 固有频率的测定

悬臂梁作为连续体的固有振动,其固有频率为:

()1,2,.......r r l r ωλ==其中, 其一、二、三、四阶时, 1.87514.69417.854810.9955.....r l λ=、

、、 简支梁的固有频率为:

()1,2,.......r r l r ωλ==其中 其一、二、三、四阶时, 4.73007.853210.995614.1372.....r l λ=、

、、 其中E 为材料的弹性模量,I 为梁截面的最小惯性矩,ρ为材料密度,A 为梁截面积,l 为梁的长度。

试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm. 材料参数: 45#钢,弹性模量E =210 (GPa), 密度ρ=7800 (Kg/m 3)

横截面积:A =4.33*10-4 (m 2),

截面惯性矩:J =3

12

bh =2.82*10-9(m 4)

则梁的各阶固有频率即可计算出。

3.2、实验简图

图1 悬臂梁实验简图

图2简支梁实验简图

实验仪器

本次实验主要采用力锤、加速度传感器、YE6251数据采集仪、计算机等。图3和图4分别为悬臂梁和简支梁的实验装置图。图5为YE6251数据采集仪。

图3 悬臂梁实验装置图

图4 简支梁实验简图

图5 YE6251数据采集分析系统

实验步骤

1:"在教学装置选择"中,选择结构类型为"悬臂梁",如果选择等份数为17,将需要测量17个测点。

2:本试验可采用多点激励,单点响应的方式,如果是划分为17等份,请将拾振点放在第5点。

3:请将力锤的锤头换成尼龙头,并将力通道的低通滤波器设置为1KHz,将拾振的加速度通道的低通滤波器设置为2KHz。

4:用力锤对第1点激振,对应的激励为f1,响应为1,平均3次,对应的数据为第1批数据,以此类推,测量完全部测点。

5:选择"教学装置模态分析和振型动画显示",调入测量数据进行分析。6:"在教学装置选择"中,选择结构类型为"简支梁",如果选择等份数为17,将需要测量17个测点。重复2—5的步骤,得到简支梁的试验数据和结果。

实验数据记录和整理

图6 悬臂梁的传递函数幅值和相位

图7 悬臂梁的固有振型、频率和阻尼比

8 简支梁的传递函数幅值和相位

图9 简支梁的固有振型、频率和阻尼比

1、梁的各阶固有频率(理论值)

通过实验原理中推导的公式可以计算出梁的各阶固有频率的理论值如表1中所示:

两端固支梁各阶固有频率(Hz)悬臂梁各阶固有频率(HZ)一阶126.71 19.91

二阶349.30 124.80

三阶684.76 349.44

四阶1131.96 684.75

2、梁的各阶固有频率(实验值)

3、实验结果比

4、误差分析及实验思考

从实验结果对比中可以得出实验值与理论值存在着较大的误差。产生这些误差的原因可能有如下几点因素:

1、在实验中,由于实验仪器的关系,固支端并非完全的固支,梁在振动过程可能幅度偏大,即相当于梁的等效刚度变小,所以这也是测得的梁的固有频率偏大的的主要原因。

2、在梁的实际振动过程中,是梁横向振动和纵向振动的叠加。此次实验中我们只是考虑梁的横向振动,而没有考虑纵向振动的影响,使得测量得到的梁横向振动固有频率出现误差

3、在实验中不断的敲击梁的各个敲击点时,会使梁两端边界条件产生松动,并且人为敲击不能保证每次敲击都作用到同样的位置,从而影响实验精度。

4、在手动模态定阶时,由于计算出来的传递函数波峰较多手动定阶不一定准确,

导致最后得到的固有频率出现误差。

梁的振动实验报告

梁的振动实验报告 实验目的 改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。对比理论计算结果与实际测量结果。正确理解边界条件对振动特性的影响。 实验内容 对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。 实验原理 1、固有频率的测定 悬臂梁作为连续体的固有振动,其固有频率为: , 其一、二、三、四阶时, 简支梁的固有频率为: 其一、二、三、四阶时, 其中E为材料的弹性模量,I为梁截面的最小惯性矩,ρ为材料密度,A为梁截面积,l为梁的长度。 试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm. 材料参数: 45#钢,弹性模量E=210 (GPa), 密度=7800 (Kg/m3) 横截面积:A=4.33*10-4 (m2), 截面惯性矩:J==2.82*10-9(m4) 则梁的各阶固有频率即可计算出。 2、实验简图

图1 悬臂梁实验简图

图2简支梁实验简图 实验仪器 本次实验主要采用力锤、加速度传感器、YE6251数据采集仪、计算机等。图3和图4分别为悬臂梁和简支梁的实验装置图。图5为YE6251数据采集仪。

图3 悬臂梁实验装置图 图4 简支梁实验简图 图5 YE6251数据采集分析系统 实验步骤 1:"在教学装置选择"中,选择结构类型为"悬臂梁",如果选择等份数为17,将需要测量17个测点。 2:本试验可采用多点激励,单点响应的方式,如果是划分为17等份,请将拾振点放在第5点。 3:请将力锤的锤头换成尼龙头,并将力通道的低通滤波器设置为1KHz,将拾振的加速度通道的低通滤波器设置为2KHz。 4:用力锤对第1点激振,对应的激励为f1,响应为1,平均3次,对应的数据为第1批数据,以此类推,测量完全部测点。 5:选择"教学装置模态分析和振型动画显示",调入测量数据进行分

大学物理振动练习题有答案

一.选择题、填空题 1.一质点作简谐振动,振动方程为x =Acos(ωt +?) ,当时间t =T / 2(T 为周期) 时,质点的速度为B A. -A ωsin ? . B. A ωsin ? . C. -A ωcos ? . D. A ωcos ?. 2.两个质点各自作简谐振动,它们的振幅相同、周期相同, 第一个质点的振动方程为x 1=A cos(ω t +α). 当第一个质点从相对平衡位置的正位移处回到平衡位置时, 第二个质点正在最大位移处, 则第二个质点的振动方程为B (A) x 2=A cos(ω t +α +π/2) . (B) x 2=A cos(ω t +α -π/2) . (C) x 2=A cos(ω t +α -3 π/2) . (D) x 2=A cos(ω t +α + π) . 3.一个质点作简谐振动,振辐为A ,在起始时刻质点的位移为A/2,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为图16.1中哪一图?B 4.一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点. 已知周期为T ,振幅为A . (1)若t =0时质点过x =0处且朝x 轴正方向运动,则振动方程为x = . (2)若t =0时质点处于x =A /2处且朝x 轴负方向运动,则振动方程为x = . 5.用余弦函数描述一简谐振动,已知振幅为A ,周期为T ,初位相?=-π/3,则振动曲线为图17.2中哪一图?A 6.一质点作谐振动,振动方程为x=A cos(ωt +?),在求质点振动动能时,得出下面5个表达式:C (1) (1/2) m ω 2A 2sin 2 (ωt+?); (2) (1/2) m ω2A 2cos 2 (ωt+?); (A) 图16.1 (A) (C) (B) (D) 图17.2

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒 定的位相差,当它们在媒质内沿一条直线相向传播时,

将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A端振动引起的波沿弦线向右传播,称为入射波。同时波在C点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为: (3-13-1) (3-13-2)式中为波的振幅,为频率,λ为波长,为弦线上质点的坐标位置。 两波叠加后的合成波为驻波,其方程为: (3-13-3)由上式可知,入射波与反射波合成后,弦线上各点都在以同一频率作 简谐振动,它们的振幅为,即驻波的振幅与时间无关,而与质

弦振动实验报告

弦振动的研究 '、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密p、弦长L和弦的张力T的关系,并进行测 量。 、、实验仪器 弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺 、实验原理 为了研究问题的方便,认为波动是从A 点发出的,沿弦线朝E端方向传播,称为入射波,再由E端反射沿弦线朝A端传播,称为反射 波。入射波与反射波在同一条弦线上沿相反方向传 播时将相互干涉,移动劈尖E 到适合位置?弦线上 的波就形成驻波。这时, 弦线上的波被分成几段形 成波节和波腹。驻波形成如图(2)所示。 设图中的两列波是沿X轴相向方向传 播的振幅相等、频率相同振动方向一致的简谐波。向右传播的用细实线表示,向 图(2)左传播的用细虚线 表示,它们的合成驻波用粗 实线表示。由图可见,两个 波腹间的距离都是等于半 个波长,这可从波动方程推

导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “0”,且在X二0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y i = Acos2 (ft —x/ ) Y2 = Acos[2 (ft + x/ "+ ] 式中A为简谐波的振幅,f为频率,为波长,X为弦线上质点的坐标位置。两波 叠加后的合成波为驻波,其方程为: Y i + 丫2 = 2Acos[2 (x/ ) + /2]Acos2 ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动, 它们的振幅为丨2A cos[2 (x/ )+ /2] | ,与时间无关t,只与质点的位置 x有关。 由于波节处振幅为零,即:丨cos[2 (x/ ) + /2] | =0 2 (x/ ) + /2 = (2k+1) / 2 (k=0. 2. 3. …) 可得波节的位置为: x = k /2 ②而相邻两波节之间的距离为: X k+1 —X k = (k + 1) 12—k / 2 = / 2③又因为波腹处的质点振幅为最大,即I cos[2 (x/ ) + /2] | =1

振动实验报告剖析

振动与控制系列实验 姓名:李方立 学号:201520000111 电子科技大学机械电子工程学院

实验1 简支梁强迫振动幅频特性和阻尼的测量 一、实验目的 1、学会测量单自由度系统强迫振动的幅频特性曲线。 2、学会根据幅频特性曲线确定系统的固有频率f 0和阻尼比。 二、实验装置框图 图3.1表示实验装置的框图 图3-1 实验装置框图 K C X 图3-2 单自由度系统力学模型 三、实验原理 单自由度系统的力学模型如图3-2所示。在正弦激振力的作用下系统作简谐强迫振动, 设激振力F 的幅值B 、圆频率ωo(频率f=ω/2π),系统的运动微分方程式为: 扫频信号源 动态分析仪 计算机系统及分析软件 打印机或 绘图仪 简支梁 振动传感器 激振器 力传感器 质量块 M

或 M F x dt dx dt x d M F x dt dx n dt x d F Kx dt dx C dt x d M /2/222 22 2 222=++=++=++ωξωω (3-1) 式中:ω—系统固有圆频率 ω =K/M n ---衰减系数 2n=C/M ξ---相对阻尼系数 ξ=n/ω F ——激振力 )2sin(sin 0ft B t B F πω== 方程①的特解,即强迫振动为: ) 2sin()sin(0?π?ω-=-=f A A x (3-2) 式中:A ——强迫振动振幅 ? --初相位 2 0222024)(/ωωωn M B A +-= (3-3) 式(3-3)叫做系统的幅频特性。将式(3-3)所表示的振动幅值与激振频率的关系用图形表示,称为幅频特性曲线(如图3-3所示): 3-2 单自由度系统力学模型 3-3 单自由度系统振动的幅频特性曲线 图3-3中,Amax 为系统共振时的振幅;f 0为系统固有频率,1f 、2f 为半功率点频率。 振幅为Amax 时的频率叫共振频率f 0。在有阻尼的情况下,共振频率为: 2 21ξ-=f f a (3-4) 当阻尼较小时,0f f a =故以固有频率0f 作为共振频率a f 。在小阻尼情况下可得 01 22f f f -= ξ (3-5) 1f 、2f 的确定如图3-3所示: M X C K

大学物理A第九章 简谐振动

第九章 简谐振动 填空题(每空3分) 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=×10-2cos(T π2t+4 π ) (SI) , X 2=×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=×10-2cos(T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡 位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最大位移处的势能为 。(3210J -?) 9-11一质点做谐振动,其振动方程为6cos(4)x t ππ=+(SI ),则其周期为 。

弦振动实验报告

弦 振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L 和弦的张力Τ的关系,并进行测量。 三、波。示。轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “O ”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y 1=Acos2(ft -x/ ) Y 2=Acos[2 (ft +x/λ)+ ]式中A 为简谐波的振幅,f 为频率,为波长,X 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y 1 +Y 2=2Acos[2(x/ )+/2]Acos2ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2(x/ )+/2] |,与时间无关t ,只与质点的位置x 有关。 由于波节处振幅为零,即:|cos[2(x/ )+/2] |=0

2(x/ )+/2=(2k+1) / 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=k /2 ②而相邻两波节之间的距离为: x k+1-x k =(k+1)/2-k / 2= / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2(x/ )+/2] | =1 2(x/ )+/2 =k ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=n / 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: =2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=f,将⑤式代入可得弦线上横波的传播速度: V=2Lf/n ⑥ 另一方面,根据波动理论,弦线上横波的传播速度为: V=(T/ρ)1/2 ⑦ 式中T为弦线中的张力,ρ为弦线单位长度的质量,即线密度。 再由⑥⑦式可得 f =(T/ρ)1/2(n/2L) 得 T=ρ / (n/2Lf )2 即ρ=T (n/2Lf )2 ( n=1. 2. 3. … ) ⑧ 由⑧式可知,当给定T、ρ、L,频率f只有满足以上公式关系,且积储相应能量时才能在弦线上有驻波形成。 四、实验内容 1、测定弦线的线密度:用米尺测量弦线长度,用电子天平测量弦线质量,记录数据 2、测定11个砝码的质量,记录数据

材料力学梁变形实验报告

梁变形实验报告 (1)简支梁实验 一、实验目的 1、简支梁见图一,力F 在跨度中点为最严重受力状态,计算梁内最危险点达到屈服应力时的屈服载荷Fs ; 2、简支梁在跨度中点受力F=1.5kg 时,计算和实测梁的最大挠度和支点剖面转角,计算相对理论值的误差; 3、在梁上任选两点,选力F 的适当大小,验证位移互等定理; 4、简支梁在跨度中点受力F=1.5kg 时,实测梁的挠度曲线(至少测8个点挠度,可用对称性描点连线)。 二、试件及实验装置 简支梁实验装置见图一,中碳钢矩形截面梁,屈服应力 =s σ360MPa ,弹性模量E=210GPa 。 百分表和磁性表座各1个; 砝码5个,各砝码重0.5kg ;砝码盘和挂钩1套,约重0.1kg ;游标卡尺和钢卷尺各1个。 三、实验原理和方法 1、求中点挠度 简支梁在跨度中点承受力F 时,中点挠度最大,在终点铅垂方向安装百分表,小表针调到量程中点附近,用手轻拍底座振动,使标杆摩擦力最小,大表指针示值稳定时,转表盘大表针调零,分级加力测挠度,检验线性弹性。 2、求支点转角 梁小变形时,支点转角a δθ≈ ;在梁的外伸端铅垂方向安装百分表,加力测 图一 实验装置简图

挠度,代入算式求支点转角。 3、验证位移互等定理: 图二的线弹性体,F 1在F 2引起的位移?12上所作之功,等于F 2在F 1引起的位 移?21上所作之功,即:212121??=??F F ,若F 1=F 2,则有:2112?=? 上式说明:当F 1与F 2数值相等时,F 2在点1沿F 1方向引起的位移?12,等于F 1在点2沿F 2方向引起的位移?21,此定理称为位移互等定理。 为了尽可能减小实验误差,重复加载4次。 取初载荷F 0=(Q+0.5)kg ,式中Q 为砝码盘和砝码钩的总重量,?F=2kg ,为了防止加力点位置变动,在重复加载过程中,最好始终有0.5kg 的砝码保留在砝码盘上。 四、数据记录 1、中点分级加载时,中点挠度值: 2、测支点转角 F=1.5kg ;w (端点)=0.15mm ;a=71mm 3、验证位移互等定理 F ( 2)=1.5kg w (5)=0.34mm F (5)=1.5kg w (2)=0.36mm 4、绘制挠曲线(中点加载F=1.5kg ) 五、实验结果处理 图二 位移互等定理示意图

15机械振动习题解答

第十五章 机械振动 一 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?( ) A. 物体在运动正方向的端点时,速度和加速度都达到最大值; B. 物体位于平衡位置且向负方向运动时,速度和加速度都为零; C. 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; D. 物体处负方向的端点时,速度最大,加速度为零。 解:根据简谐振动的速度和加速度公式分析。 答案选C 。 2.下列四种运动(忽略阻力)中哪一种不是简谐振动?( ) A. 小球在地面上作完全弹性的上下跳动; B. 竖直悬挂的弹簧振子的运动; C. 放在光滑斜面上弹簧振子的运动; D. 浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动。 解:A 中小球没有受到回复力的作用。 答案选A 。 3. 一个轻质弹簧竖直悬挂,当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。则此系统作简谐振动时振动的角频率为( ) A. l g B. l g C. g l D. g l 解 由kl =mg 可得k =mg /l ,系统作简谐振动时振动的固有角频率为l g m k ==ω。 故本题答案为B 。 4. 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取作t =0,则振动初相?为( ) A. 2π- B. 0 C. 2π D. π 解 由 ) cos(?ω+=t A x 可得振动速度为 ) sin(d d ?ωω+-==t A t x v 。速度正最大时有0) cos(=+?ωt ,1) sin(-=+?ωt ,若t =0,则 2 π-=?。 故本题答案为A 。 5. 如图所示,质量为m 的物体,由劲度系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,其振动频率为 ( )

波尔共振实验报告

波尔共振 振动是一种常见的物理现象,而共振是特殊的振动,为了趋利避害在工程技术和科学研究领域中对其给予了足够的重视。 目前,电力传输采用的是高压输电法。而据报载,2007年6月美国麻省理工学院的物理学家索尔加斯克领导的一个小组,成功地利用无线输电技术,点亮了距离电源2米远的灯泡!无线输电法原理的核心就是共振。人们期待着能在更远的距离实现无线输电,那时生产和生活将会发生一场重大变革。 【目的与要求】 1. 观察测量自由振动中振幅与周期的关系。 2. 研究阻尼振动并测量阻尼系数。 3. 观察共振现象及其特征;研究不同阻尼力矩对受迫振动的影响及其辐频特性和相频特 性。 4. 学习用频闪法测定动态物理量----相位差。 【实验原理】 物体在周期性外力(即强迫力)的作用下发生的振动称为受迫振动。若外力是按简谐振动规律变化,则稳定状态时的振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统的固有频率以及阻尼系数有关。在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。在无阻尼情况下,当强迫力频率与系统的固有频率相同时产生共振,此时振幅最大,相位差为90°。 当摆轮受到周期性强迫外力矩t M M ωcos 0=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dt d b θ-),其运动方程为 t M dt d b k dt d J ωθ θθcos 02 2+--= (33-1) 式中,J 为摆轮的转动惯量,-k θ为弹性力矩,M 0为强迫力矩的幅值,ω为强迫力的圆频率。 令 ,2 0J k =ω ,2J b =β J M m 0= 则式(33-1)变为 t m dt d dt d ωθωθβθcos 22022=++ (33-2) 当0cos =t m ω时,式(2)即为阻尼振动方程。 当0=β,即在无阻尼情况时式(33-2)变为简谐振动方程,系统的固有圆频率为ω0。方程(33-2)的通解为 )cos()cos(021?ωθαωθθβ+++=-t t e f t (33-3) 由式(33-3)可见,受迫振动可分成两部分: 第一部分,)cos(1αωθβ+-t e f t 和初始条件有关,经过一定时间后衰减消失。

弦振动实验报告

弦振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系, 并进行测量。 三、 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程

分别为: Y1=Acos2π(ft-x/ λ) Y2=Acos[2π (ft+x/λ)+ π] 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2π(x/ λ)+π/2]Acos2πft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2π(x/ λ)+π/2] |,与时间无关t,只与质点的位置x有关。 由于波节处振幅为零,即:|cos[2π(x/ λ)+π/2] |=0 2π(x/ λ)+π/2=(2k+1) π/ 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=kλ /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1)λ/2-kλ / 2=λ / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2π(x/ λ)+π/2] | =1 2π(x/ λ)+π/2 =kπ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)λ/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=nλ/ 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: λ=2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=λf,将⑤式代入可得弦线上横波的

悬臂梁地振动模态实验报告材料

实验 等截面悬臂梁模态测试实验 一、 实验目的 1. 熟悉模态分析原理; 2. 掌握悬臂梁的测试过程。 二、 实验原理 1. 模态分析基本原理 理论上,连续弹性体梁有无限多个自由度,因此需要无限多个连续模型才能描述,但是在实际操作中可以将连续弹性体梁分为n 个集中质量来研究。简化之后的模型中有n 个集中质量,一般就有n 个自由度,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。这就是说梁可以用一种“模态模型”来描述其动态响应。 模态分析的实质,是一种坐标转换。其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。这一坐标系统的每一个基向量恰是振动系统的一个特征向量。也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。 多次锤击各点,通过仪器记录传感器与力锤的信号,计算得到第i个激励点与定响应点(例如点2)之间的传递函数 ω ,从而得到频率响应函数矩阵中的一行 频响函数的任一行包含所有模态参数,而该行的r 阶模态的频响函数 的比值,即为r 阶模态的振型。 2. 激励方法 为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。传递函数分析实质上就是机械导纳,i 和j 两点之间的传递函数表示 [] ∑==N r iN r i r i r H H H 1 21 ... [] Nr r r N r r r r ir k c j m ???ωω? (2112) ∑ =++-=[]{}[] T r ir N r r iN i i Y H H H ??∑==1 21 ...

气垫弹簧振子的简谐振动实验报告

××大学实验报告 学院:×× 系:物理系专业:×× 年级:××级 姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________ 实验四:气垫弹簧振子的简谐振动 一.实验目的与要求: 1. 考察弹簧振子的振动周期与振动系统参量的关系。 2. 学习用图解法求出等效弹簧的倔强系数和有效质量。 3. 学会气垫调整与试验方法。 二.实验原理: 1.弹簧的倔强系数 弹簧的伸长量x 与它所受的拉力成正比 F=kx k=X F 2.弹簧振子的简谐运动方程 根据牛顿第二定律,滑块m 1 的运动方程为 -k 1(x+x 01)-k 2(x-x 02)=m 2 2dt x d ,即-(k 1+k 2)x=m 2 2dt x d 式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。令 k=k 1+k 2,则 -kx= m 2 2dt x d 解为x=A sin (ω0t+ψ0 ),ω0= m k = m k k 2 1+ 而系统振动周期 T 0=0 2ωπ=2π k m

当 m 0《 m 1时,m 0=3 s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成 m 0=3 m s )。 本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和 k 。 三.主要仪器设备: 气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。 四.实验内容及实验数据记录: 1.气垫导轨水平的调节 使用开孔挡光片,智能测时器选在2pr 功能档。让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δ t 1和Δt 2控制在20-30ms 内),让 它在导轨上依次通过两个光电门.若在同一方向上运动的Δ t 1和Δt 2的相对 误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。 2.研究弹簧振子的振动周期与振幅的关系 先将测时器设置于6pd (测周期)功能档。按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T = n t 2。 再重新测量几次并取平均值。并测量滑块和弹簧的质量,利用T 0= 2ωπ =2π k m 计算弹簧的倔强系数。取不同的振幅测量,探讨周期与振幅是否有关。 3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

均匀弦振动实验报告

实验八 固定均匀弦振动的研究 XY 弦音计是研究固定金属弦振动的实验仪器,带有驱动和接收线圈装置,提供数种不同的弦,改变弦的张力,长度和粗细,调整驱动频率,使弦发生振动,用示波器显示驱动波形及传感器接收的波形,观察拨动的弦在节点处的效应,进行定量实验以验证弦上波的振动。它是传统的电子音叉的升级换代产品。它的优点是无燥声污染,通过函数信号发生器可以方便的调节频率,而这两点正好是电子音叉所不及的。 [实验目的] 1. 了解均匀弦振动的传播规律。 2. 观察行波与反射波互相干涉形成的驻波。 3. 测量弦上横波的传播速度。 4. 通过驻波测量,求出弦的线密度。 [实验仪器] XY 型弦音计、函数信号发生器、示波器、驱动线圈和接收线圈等。 [实验原理] 设有一均匀金属弦线,一端由弦码A 支撑,另一端由 弦码B 支撑。对均匀弦线扰动,引起弦线上质点的振动, 假设波动是由A 端朝B 端方向传播,称为行波,再由B 端 反射沿弦线朝A 端传播,称为反射波。行波与反射波在同 一条弦线上沿相反方向传播时将互相干涉,移动弦码B 到 适当位置。弦线上的波就形成驻波。这时,弦线就被分成 几段,且每段波两端的点始终静止不动,而中间的点振幅 最大。这些始终静止的点称为波节,振幅最大的点称为波 腹。驻波的形成如图4-8-1所示。 设图4-8-1中的两列波是沿x 轴相反方向传播的振幅相等、频率相同的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。由图4-8-1可见,两个波腹间的距离都是等于半个波长,这可以从波动方程推导出来。 下面用简谐表达式对驻波进行定量描述。设沿x 轴正方向传播的波为行波,沿x 轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点,且在x =0处,振动质点向上达最大位移时开始计时,则它们的波动方程为: )(2cos 1λπx ft A y -= )(2cos 2λ πx ft A y += 式中A 为简谐波的振幅,f 为频率,λ为波长,x 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: 图 4-8-1

振动实验报告

振动力学实验报告 学院:___________________ 班级:___________________ 学号:___________________ 姓名:___________________ 山东科技大学

单自由度系统振动实验报告 实验者姓名:________ 院系:_______系_______专业_______班_______组实验日期:________年________月________日 自由振动法测量单自由度系统的参数 一、实验目的 二、实验对象和装置 三、实验步骤 四、实验数据记录和整理 1、无阻尼单自由度自由振动系统实验测量:

计算单自由度振动的振动频率、周期、固有频率、衰减系数、相对阻尼系数周期、频率和阻尼系数: 2、有阻尼单自由度自由振动系统实验测量: 计算单自由度振动的振动频率、周期、固有频率、阻尼系数、相对阻尼系数: 五、简答 1、上述无阻尼自由振动实验中,为什么振动曲线呈现衰减状态? 2、简述阻尼对于自由振动周期、频率的影响。

用冲击激励法测量系统的频率响应函数 实验者姓名:________ 院系:_______系_______专业_______班_______组实验日期:________年________月________日 一、实验目的 二、实验对象和装置 三.实验步骤

四、实验数据记录和整理 1、无阻尼单自由度自由振动系统实验测量: 2、有阻尼单自由度自由振动系统实验测量: 五、简答 1、力锤施加力的大小是否影响单自由度系统的振动频率和阻尼,为什么? 2、实验过程中,力锤敲击质量块时应注意什么?

大学物理实验简谐振动与阻尼振动的实验报告

湖北文理学院物理实验教学示范中心 实 验 报 告 学院 专业 班 学号: 姓名: 实验名称 简谐振动与阻尼振动的研究 实验日期: 年 月 日 实验室: N1-103 [实验目的]: 1. 验证在弹性恢复力作用下,物体作简谐振动的有关规律;测定弹簧的弹性系数K 和有效质量m. 2. 测定阻尼振动系统的半衰期和品质因数,作出品质因数Q 与质量M 的关系曲线。 [仪器用具]:仪器、用具名称及主要规格(包括量程、分度值、精度等) 气垫导轨、滑块、附加质量(2)、弹簧(4)、光电门(2)、数字毫秒计. [实验原理]:根据自己的理解用简练的语言来概括(包括简单原理图、相关公式等) 1.简谐振动 在水平气垫导轨上的滑块m 的两端连接两根弹性系数1k 、2k 近乎相等的弹簧,两弹簧的另一端分别固定在气轨的两端点。滑块的运动是简谐振动。其周期为: 2 122k k M T +== π ω π 由于弹簧不仅是产生运动的原因,而且参 加运动。因此式中M 不仅包含滑块(振子)的质量m ,还有弹簧的有效质量0m 。M 称为弹簧振子系统的有效质量。经验 证:0m m M += 其中 s m m 31 0=,s m 为弹簧质量。假设:k k k ==21则有周期: 22T πω= = 若改变滑块的质量m ?,则周期2T 与m ?成正比。222 4422M m T k k ππ?=+。以2T 为纵坐标,以m ?为横坐标,作2T -m ?曲线。则为一条斜率为242k π的直线。由斜率可以求出弹簧的弹性系数k 。求出弹性系数后再根据式22 42M T k π=求出弹簧的 有效质量。 2.阻尼振动 简谐振动是一种振幅相等的振动,它是忽略阻尼振动的理想情况。事实上,阻尼力不可避免,而抵抗阻力做功的结果,使振动系统的能量逐渐减小。因此,实验中发生的一切自由振动,振幅总是逐渐减小以至等于零的。这种振动称为阻尼振动。用品质因数(即Q 值),来反映阻尼振动衰减的特性。其定义为:振动系统的总能量E 与在一个周期中所损耗能 量E ?之比的π2倍,即 2E Q E π =?;通过简单推导也有: 12 ln 2 T Q T π= 2 1T 是 阻尼振动的振幅从 0A 衰减为 2 0A 所用时 间,叫做半衰期。测出半衰期就可以计算出品质因数Q 。在实验中,改变滑块的质量。作质量与品质因数的关系曲线。 [实验内容]: 简述实验步骤和操作方法 1. 打开气泵观察气泵工作是否正常,气轨出气孔出气大小是否均匀。 2. 放上滑块,调节气轨底座,使气轨处于水平状态。 3. 把滑块拉离平衡位置,记录下滑块通过光电门10次所用的时间。 4. 改变滑块质量5次,重复第3步操作。 5. 画出m T -2 关系曲线,.据m T -2关系曲线,求出斜率K ,并求出弹性系数k 。 6. 用天平测量滑块(附挡光片)、每个附加物的质量后;求出弹簧的有效质量。 7. 用秒表测量滑块儿的振幅从A 0衰减到A 0/2所用的时间2 1T ;求出系统的品质因数Q 8. 滑块上增至4个附加物,重复步骤7作出Q-m ?的关系曲线;

弦振动研究试验(教材)分析

弦振动研究试验 传统的教学实验多采用音叉计来研究弦的振动与外界条件的关系。采用柔性或半柔性的弦线,能用眼睛观察到弦线的振动情况,一般听不到与振动对应的声音。 本实验在传统的弦振动实验的基础上增加了实验内容,由于采用了钢质弦线,所以能够听到振动产生的声音,从而可研究振动与声音的关系;不仅能做标准的弦振动实验,还能配合示波器进行驻波波形的观察和研究,因为在很多情况下,驻波波形并不是理想的正弦波,直接用眼睛观察是无法分辨的。结合示波器,更可深入研究弦线的非线性振动以及混沌现象。 【实验目的】 1. 了解波在弦上的传播及弦波形成的条件。 2. 测量拉紧弦不同弦长的共振频率。 3. 测量弦线的线密度。 4. 测量弦振动时波的传播速度。 【实验原理】 张紧的弦线4在驱动器3产生的交变磁场中受力。移动劈尖6改变弦长或改变驱动频率,当弦长是驻波半波长的整倍数时,弦线上便会形成驻波。仔细调整,可使弦线形成明显的驻波。此时我们认为驱动器所在处对应的弦为振源,振动向两边传播,在劈尖6处反射后又沿各自相反的方向传播,最终形成稳定的驻波。 图 1

为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从左端劈尖发出的,沿弦线朝右端劈尖方向传播,称为入射波,再由右端劈尖端反射沿弦线朝左端劈尖传播,称为反射波。入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,在适当的条件下,弦线上就会形成驻波。这时,弦线上的波被分成几段形成波节和波腹。如图1所示。 设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同、振动方向一致的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,当传至弦线上相应点时,相位差为恒定时,它们就合成驻波用粗实线表示。由图1可见,两个波腹或波节间的距离都是等于半个波长,这可从波动方程推导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动相位始终相同的点作坐标原点“O”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1=Acos2π(ft-x/ λ) Y2=Acos2π(ft+x/ λ) 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos2π(x/ λ)cos2πft ······①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Acos2π(x / λ) |,只与质点的位置X有关,与时间无关。 由于波节处振幅为零,即|cos2π(x / λ) |=0 2πx / λ=(2k+1) π / 2 ( k=0.1. 2. 3. ······) 可得波节的位置为: X=(2K+1)λ /4 ······②而相邻两波节之间的距离为: X K+1-X K =[2(K+1)+1] λ/4-(2K+1)λ / 4)=λ / 2 ·····③又因为波腹处的质点振幅为最大,即|cos2π(X / λ) | =1 2πX / λ=Kπ ( K=0. 1. 2. 3. ······) 可得波腹的位置为: X=Kλ / 2= 2kλ / 4 ·····④这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节(或相邻两波腹)间的距离,就能确定该波的波长。 1

机械振动实验报告

《机械振动基础》实验报告 (2015年春季学期) 姓名 学号 班级 专业机械设计制造及其自动化报告提交日期2015.05.07 哈尔滨工业大学

报告要求 1.实验报告统一用该模板撰写,必须包含以下内容: (1)实验名称 (2)实验器材 (3)实验原理 (4)实验过程 (5)实验结果及分析 (6)认识体会、意见与建议等 2.正文格式:四号字体,行距为1.25倍行距; 3.用A4纸单面打印;左侧装订; 4.报告需同时提交打印稿和电子文档进行存档,电子文档由班长收 齐,统一发送至:liuyingxiang868@https://www.doczj.com/doc/3516814916.html,。 5.此页不得删除。 评语: 教师签名: 年月日

实验一报告正文 一、实验名称:机械振动的压电传感器测量及分析 二、实验器材 1、机械振动综台实验装置(压电悬臂梁) 一套 2、激振器一套 3、加速度传感器一只 4、电荷放大器一台 5、信号发生器一台 6、示波器一台 7、电脑一台 8、NI9215数据采集测试软件一套 9、NI9215数据采集卡一套 三、实验原理 信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。电荷放大器的内部等效电路如图1所示。 q

6.机械振动习题及答案

一、 选择题 1、一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动按余弦函数描述,则其初相为 [ D ] (A ) 6π (B) 56π (C) 56π- (D) 6π- (E) 23 π- 2、已知一质点沿y 轴作简谐振动,如图所示。其振动方程为3cos()4 y A t π ω=+,与之对应的振动曲线为 [ B ] 3、一质点作简谐振动,振幅为A ,周期为T ,则质点从平衡位置运动到离最大 振幅 2A 处需最短时间为 [ B ] (A );4T (B) ;6T (C) ;8 T (D) .12T 4、如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为m 4的物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为m 的物体, 此三个系统振动周期之比为 (A);2 1 : 2:1 (B) ;2:21:1 [ C ] (C) ;21:2:1 (D) .4 1 :2:1

5、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取坐标原点。若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为 (A);1s (B) ;32s (C) ;34 s (D) .2s [ B ] 6、一长度为l ,劲度系数为k 的均匀轻弹簧分割成长度分别为21,l l 的两部分, 且21nl l =,则相应的劲度系数1k ,2k 为 [ C ] (A );)1(,121k n k k n n k +=+= (B );11,121k n k k n n k +=+= (C) ;)1(,121k n k k n n k +=+= (D) .1 1 ,121k n k k n n k +=+= 7、对一个作简谐振动的物体,下面哪种说法是正确的 [ C ] (A ) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B ) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C ) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D ) 物体处于负方向的端点时,速度最大,加速度为零。 8、 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为 A 2 1 ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]

弦振动实验-报告

弦振动实验-报告

实验报告 班级姓名学号 日期室温气压成绩教师 实验名称弦振动研究 【实验目的】 1.了解波在弦上的传播及驻波形成的条件 2.测量不同弦长和不同张力情况下的共振频率 3.测量弦线的线密度 4.测量弦振动时波的传播速度 【实验仪器】 弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台 【实验原理】 驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播,波动方程为 ()λ πx =2 y- cos A ft 当波到达端点时会反射回来,波动方程为 ()λ πx cos =2 y+ A ft

式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为 ft x A y y y πλπ2cos 2cos 22 1=+= 这就是驻波的波函数,称为驻波方程。式中,λπx A 2cos 2是各点的振幅 ,它只与x 有关,即各点 的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ πx A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λπx A ,可得波节的位置坐标为 () 412λ +±=k x Λ2,1,0=k 令12cos 2=λπx A ,可得波腹的位置坐标为 2λ k x ±= Λ 2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。 在本试验中,由于弦的两端是固定的,故两端 点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。 既有 2λ n L = 或 n L 2=λ Λ2,1,0=n

相关主题
文本预览
相关文档 最新文档