当前位置:文档之家› 反函数规律总结

反函数规律总结

反函数规律总结
反函数规律总结

反函数规律总结

2)函数的单调性是比较函数值大小的依据,对于属于函数同一单调区间的两个函数值大小的比较可通过比较其自变量值的大小来确定.

(3)判断函数奇偶性的程序是:(i)求函数的定义域.若定义域不关于原点对称,则函数为非奇非偶函数;(ii)若定义域关于原点对称,则比较f(-x),f(x),-f(x),并根据奇、

偶函数的定义作出判断.

(4)在判断函数的奇偶性时,可利用下列的等价关系:

(5)可利用函数的奇偶性来判断函数的对称性:奇函数的图象关于原点对称;偶函数的图象关于y轴对称.利用函数的对称性可简化对函数性质的讨论,即先讨论函数在y轴某一侧的性质,然后利用对称性将其推广到整个定义域上.

(6)求函数y=f(x)的反函数的步骤:(i)判断原函数是否有反函数,如有反函数,则求出原函数的值域(即反函数的定义域);(ii)从y=f(x)中解出x,得x=f-1(y);(iii)对换x,

y,得反函数y=f-1(x),并写出其定义域.

(7)判断两个函数图象是否关于直线y=x对称的方法之一是判断这两个函数是否互

为反函数.

(8)求某些函数的值域可通过求其反函数的定义域来实现.

反函数和复合函数的求导法则

二、反函数的导数法则 定理1:设)(x f y =为)(y x ?=的反函数,若)(y ?在0y 的某邻域内连续,严格单调,且0)(0≠'y ?,则)(x f 在0x (即)(0y f 点有导数),且) (1 )(00y x f ?'= '。 证明:0 0000)()(1 lim )()(lim )()(lim 000 y y y y y y y y x x x f x f y y y y x x --=--=--→→→???? )(1 )()(lim 100 00y y y y y y y ???'=--= → 所以 ) (1 )(00y x f ?'='。 注1:00 y y x x →? →,因为)(y ?在0y 点附近连续,严格单调; 2:若视0x 为任意,并用x 代替,使得)(1)(y x f ?'= '或)(1 dy dx dx dy =,其中dy dx dx dy , 均为整体记号,各代表不同的意义; 3:)(x f '和)(y ?'的“′”均表示求导,但意义不同; 4:定理1即说:反函数的导数等于直接函数导数的倒数; 5:注意区别反函数的导数与商的导数公式。 【例1】 求x y arcsin =的导数, 解:由于]1,1[,arcsin -∈=x x y ,是]2 ,2[,sin π π- ∈=y y x 的反函数,由定理1 得: 2211 sin 11cos 1)(sin 1)(arcsin x y y y x -= -=='='。 注1:同理可证:2 22 11 )tan (,11)(arctan ,11)(arccos x x arcc x x x x +-='+= '-- =';

反函数-高中数学知识点讲解

反函数 1.反函数 【知识点归纳】 【定义】一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y 把x 表示出,得到x =g(y).若对于y 在中的任何一个值,通过x=g(y),x 在A 中都有唯一的值和它对应,那么,x=g(y)就表 示y 是自变量,x 是因变量是y 的函数,这样的函数y=g(x)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记 作y=f(﹣1)(x)反函数y=f(﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 【性质】 反函数其实就是y=f(x)中,x 和y 互换了角色 (1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x 对称;函数及其反函数的图形关于直线y=x 对称 (2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C (其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y 轴垂直的直线 截时能过 2 个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数. (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】; (8)反函数是相互的且具有唯一性; (9)定义域、值域相反对应法则互逆(三反); (10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)). 1/ 1

反比例函数知识点总结(供参考)

反比例函数知识点总结 李苗 知识点1 反比例函数的定义 一般地,形如x k y =(k 为常数,0k ≠)的函数称为反比 例函数,它可以从以下几个方面来理解: ⑴x 是自变量,y 是x 的反比例函数; ⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x k y =(0k ≠), ②1kx y -=(0k ≠), ③k y x =?(定值)(0k ≠); ⑸函数x k y =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。 (k 为常数,0k ≠)是反比例函数的一部分,当k=0时, x k y =,就不是反比例函数了,由于反比例函数x k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。 知识点2用待定系数法求反比例函数的解析式 由于反比例函数x k y =(0k ≠)中,只有一个待定系 数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分 别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。 再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取; ②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用 光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐 标轴相交。 知识点4反比例函数的性质 ☆关于反比例函数的性质,主要研究它的图像的位置及函数 值的增减情况,如下表: 反比例 函数 x k y =(0k ≠) k 的 符号 0k > 0k < 图像 性质 ① x 的取值范围是0x ≠,y 的取值范围是①x 的取值范围是0x ≠,y 的取值范围是0y ≠ ②当0k <时,函数图像

求导法则与求导公式

§2.2 求导法则与导数的基本公式 教学目标与要求 1. 掌握并能运用函数的和、差、积、商的求导法则 2. 理解反函数的导数并能应用; 3. 理解复合函数的导数并会求复合函数的导数; 4. 熟记求导法则以及基本初等函数的导数公式。 教学重点与难度 1. 会用函数的和、差、积、商的求导法则求导; 2. 会求反函数的导数; 3. 会求复合函数的导数 前面,我们根据导数的定义,求出了一些简单函数的导数。但是,如果对每一个函数都用定义去求它的导数,有时候将是一件非常复杂或困难的事情。因此,本节介绍求导数的几个基本法则和基本初等函数的导数公式。鉴于初等函数的定义,有了这些法则和公式,就能比较方便地求出常见的函数——初等函数的导数。 一、函数的和、差、积、商求导法则 1.函数的和、差求导法则 定理1 函数()u x 与()v x 在点x 处可导,则函数()()y u x v x =±在点x 处也可导,且 [()()]()()y u x v x u x v x ''''=±=± 同理可证:' ' ' [()()]()()u x v x u x v x -=- 即证。 注意:这个法则可以推广到有限个函数的代数和,即 12''' ' 12[()()()]()()()n n u x u x u x u x u x u x ±± ±=±±±, 即有限个函数代数和的导数等于导数的代数和。

例1 求函数4 cos ln 2 y x x x π =+++ 的导数 解 4 c o s l n 2y x x x π'??'=+++ ?? ? ()()()4 cos ln 2x x x π'??'''=+++ ??? 3 1 4s i n x x x =-+ 2.函数积的求导公式 定理2 函数()u x 与()v x 在点x 处可导,则函数()()y u x v x =在点x 也可导,且 ''''[()()]()()()()y u x v x u x v x u x v x ==+。 注意:1)特别地,当u c =(c 为常数)时, '''[()]()y cv x cv x ==, 即常数因子可以从导数的符号中提出来。而且将其与和、差的求导法则结合,可得: ''''[()()]()()y au x bv x au x bv x =±=±。 2)函数积的求导法则,也可以推广到有限个函数乘积的情形,即 ''' '12 1212 12 ()n n n n u u u u u u u u u u u u =+++。 例2 求下列函数的导数。 1)32 3254sin y x x x x =+-+; 解 ()()()()3 2 3254sin y x x x x '''''=+-+

(完整版)高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -?? ? ??-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+-=?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导 解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

反函数的导数

反函数的导数 首先证明反函数的求导公式: 定理:设)(x f y =为)(y x ?=的反函数,若)y (?在点y 0的某邻域内连续,严格单 调且()0' 0≠y ?,则()x f 在点()()00y x x ?=可导,且()() 00'1 'y x f ?= 证:设()()00y y y x ??-?+=?,()()00x f x x f y -?+=?因为?在0y 的某邻域内连续且 严格单调,故1-=?f 在0x 的某邻域内连续且严格单调,从而当且仅当0=?y 时0=?x , 并 且 当 且仅当 →?y 时 0→?x ,由()0'0≠y ?,可得 ()()00000'1 lim 1lim lim 'y y x x y x y x f y y x ?= ??=??=??=→?→?→?。 例6 证明: (i )(a a a x x ln )'(=其中) 1.0(≠>a a 特别地()x x e e =' . (ii) )arcsin ' (x = x 2 -11; ()x arccos '=— x 2 -11 (iii) () x arctan ' = x 2 11 +;() x arc cot ' =— x 2 11 + 证 (i )由于R x y a x ∈= .为对数函数 ,y x a log = .),0(+∞∈y 的反函数,故由公 式(6)得到 ()a x '=) (log ' 1 y a = e y a log = a a x ln . (ii )由于)1,1(,arcsin -∈=x x y 是) 2.2(,sin π π-∈=y y x 的反函数,故由公式(6)得到 ()x arcsin ' = () y sin ' 1 = y cos 1 = y sin 2 -11= )1,1(.-112 -∈x x 同理可 证:()x arccos ' =—)1,1(.-11 2 -∈x x

反函数

一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x)。则y=f(x)的反函数为y=f (x)^-1。 存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的) 【反函数的性质】 (1)互为反函数的两个函数的图象关于直线y=x对称; (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)一般的偶函数一定不存在反函数(但一种特殊的偶函数存在反函数,例f(x)=a(x=0)它的反函数是f(x)=0(x=a)这是一种极特殊的函数),奇函数不一定存在反函数。关于y 轴对称的函数一定没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。 (8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2) [编辑本段]⒈反函数的定义一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= f(y). 若对于y在C中的任何一个值,通过x= f(y),x在A中都有唯一的值和它对应,那么,x= f(y)就表示y是自变量,x是自变量y的函数,这样的函数x= f(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f^-1(y). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 说明:⑴在函数x=f^-1(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f^-1(y)中的字母x,y,把它改写成y=f^-1(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式. ⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f^-1(x),那么函数y=f^-1(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f^-1(x)互为反函数. ⑶从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f^-1(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f^-1(x)的值域;函数y=f(x)的值域正好是它的反函数y=f^-1(x)的定义域(如下表): 函数y=f(x) 反函数y=f^-1(x) 定义域A C 值域C A ⑷上述定义用“逆”映射概念可叙述为: 若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数x=f^-1(x)就叫做函数y=f(x)的反函数. 反函数x=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.

最新反函数常用知识点总结

精品文档 反函数 定义 一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,-1 -1 (x)y=f (x) 。y=f y=f(x)(x∈A)的反函数,记作反函数这样的函数x= g(y)(y∈C)叫做函数的定义域、值域分别是函数y=f(x)的值域、定义域。(不求过深理解) 引申 一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数-1为y=f (x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。 注意:上标╜???指的并不是幂。 (n)(x)是用来指f的f n次微分的。在微积分里,若一函数有反函数,此函数便称为可逆的(invertible)。 性质 -1(x)图象关于直线fy=x对称;(1)函数f(x)与它的反函数 图1 函数及其反函数的图形关于直线y=x对称 (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C}, 值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)严格增(减)的函数一定有严格增(减)的反函数; (6)反函数是相互的且具有唯一性; (7)定义域、值域相反,对应法则互逆(三反); (8)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)); (9)反函数的导数关系:如果x=f(y)在区间I上单调,可导,且f'(y)≠0,那么它的反函数 y=f'(x)在区间S={x|x=f(y),y属于I }内也可导,且[f'(x)]'=1\[f'(x)]'。 (10)y=x的反函数是它本身。

高考数学 反函数

高考数学 反函数 时间:45分钟 分值:100分 一、选择题(每小题5分,共30分) 1.设函数f (x )=log 2x +3,x ∈=__________. 解析:依题意得g (-1)=-1+2=1,g =g (1)=f -1(1).设f -1(1)=t ,则有f (t )=1,即e 2(t -1)=1,t =1,所以g =1. 答案:1 9.已知函数f (x )=a -x x -a -1 的反函数f -1(x )的图象的对称中心是(-1,3),则实数a 的值为__________. 解析:因为f -1(x )的图象的对称中心是(-1,3),所以f (x )的图象的对称中心为(3,-1).又由f (x )=a -x +1-1x -a -1=-1-1x -a -1 ,则f (x )的图象可由g (x )=-1x 的图象中心(0,0)平移到(3,-1)得到,所以a +1=3,即a =2. 答案:2 10.(2009·重庆二次调研)若函数f (x )=log 2(4x -2),则方程f - 1(x )=x 的解是__________. 解析:由f -1(x )=x ,得x =f (x ),∴x =log 2(4x -2),即2x =4x -2,∴2x =2.∴x =1. 答案:x =1 三、解答题(共50分) 11.(15分)求y =lg(x -x 2-4)的反函数. 解:由x -x 2-4>0,得x >x 2-4, ∴????? x >0,x 2-4≥0, x 2>x 2-4. ∴x ≥2. ∴lg(x -x 2-4)=lg 4 x +x 2-4 ≤lg 42=lg2. 由y =lg(x - x 2-4).得 x -x 2-4=10y , x 2-4=x -10y . ∴x 2-4=x 2-2·10y x +102y . ∴x =12 (4·10-y +10y ). 故f -1(x )=12 (10x +4·10-x ),x ∈(-∞,lg2]. 12.(15分)设函数f (x )=2x -1有反函数f -1(x ),g (x )=log 4(3x +1), (1)若f -1(x )≤g (x ),求x 的取值范围D ; (2)设H (x )=g (x )-12 f -1(x ),当x ∈D 时,求函数H (x )的值域及它的反函数H -1(x ). 解:(1)∵f (x )=2x -1的定义域是R ,值域是(-1,+∞).由y =2x -1解得x =lo g 2(y + 1)(y >-1),

反函数的基本知识点

1 反函数的基本知识点 一.定义:设式子)(x f y = 表示y 是x 的函数,定义域为A ,值域为C ,从式子)(x f y =中解出x , 得到式子)(y x ?=,如果对于y 在C 中的任何一个值,通过式子)(y x ?=,x 在A 中都有唯一确定的值和它对应,那么式子)(y x ?=就表示x 是y 的函数(y 是自变量),这样的函数,叫做)(x f y =的反函数 ,记作)(1y f x -=,即()y f y x 1)(-==?,一般习惯上对调()y f x 1-=中的字母y x ,,把它改写成)(1x f y -=。 (1).反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数; (2).原函数的定义域、值域分别是反函数的值域、定义域, ()图象在点图象上)在(点几何语言: )(),(,)()(11x f y a b P x f y b a P a b f b a f --='?==?= (3).()y f x =与1()y f x -=的图象关于y x =对称. 二.求反函数的一般步骤 (1) 确定原函数的值域,也就是反函数的定义域 (2) 由)(x f y =的解析式求出)(y x ?= (3) 将y x ,对换,得反函数的一般表达式)(1x f y -=,标上反函数的 定义域(反函数的定义域不能由反函数的解析式求得) 分段函数的反函数可以分别求出各段函数的反函数后再合成。 三.掌握下列一些结论

2 (1) 单调函数?一一对应?有反函数 (2) 周期函数不存在反函数 (3) 若一个奇函数有反函数,则反函数也必为奇函数 (4) 证明)(x f y = 的图象关于直线x y =对称,只需证)(x f y =的反函数和)(x f y =相同。

反函数求导法则

反函数求导法则 刘云 (天水师范学院数学与统计学院数学与应用数学11级六班 甘肃天水 741000) 摘 要:主要叙述了反函数求导定理,基本初等函数的导数和微分公式,求导定理的推广以及在实际例题中的应用。 关键词:反函数;基本初等函数;求导 引 言 除了少数几个最简单的函数之外,可以直接用定义较方便地求出导数的函数实在是微乎其微,因而就有必要对一般的函数导出一系列的求导运算法则,故本节主要讨论反函数的求导法则以及应用。 1. 反函数求导定理 若函数)(x f y =在()b a ,上连续、严格单调、可导并且0)(≠'x f ,记α))(),(min(-+=b f a f ,))(),(max(-+=b f a f β,则它的反函数)(y f x '=在()b a ,上可导,且有 [])(1)(1x f y f '='-. 证明: 因为函数)(x f y =在()b a ,上连续且严格单调,由反函数连续定理,它的反函数)(1y f x -=在),(βα上存在、连续、且严格单调,这时0)()(≠-?+=?x f x x f y 等价于0)()(11≠-?+=?--y f y y f x ,并且当0→?y 时有0→?x 。 因此

[]y y f y y f y f y ?-?+='--→?-)()(lim )(1101 )()(lim 0x f x x f x x -?+?=→? )(1)()(lim 10x f x x f x x f x '=?-?+=→?. 2.基本初等函数的导数和微分公式: 0)(='C 0*0)(==dx C d 1)(-='a a ax x dx ax x d a a 1)(-= x x cos )(sin =' xdx x d cos )(sin = x x sin )(cos -=' xdx x d sin )(cos -= x x 2sec )(tan =' xdx x d 2sec )(tan = x x 2csc )(cot -=' xdx x d 2csc )(cot -= x x x sec tan )(sec =' xdx x x d sec tan )(sec = x x x csc cot )(csc -=' xdx x x d csc cot )(csc -= 3.求导定理的推广 (1)多个函数线性组合的导函数 ∑∑=='='?? ????n i i i n i i i x f c x f c 11)()(, 其中),,3,2,1(n i c i =为常数。 (2)多个函数乘积的导函数 ∑∏∏=≠==?? ????????'='??????n j n j i i i j n i i x f x f x f 111)()()(.

初中数学中考复习题反函数

初中数学中考复习题-----反函数

————————————————————————————————作者:————————————————————————————————日期:

反比例函数 一:【课前预习】 (一):【知识梳理】 一:【课前预习】 (一):【知识梳理】 1.反比例函数:一般地,如果两个变量x 、y 之间的关 系可以表示成 (k 为常数,k ≠0)的形式(或 y=kx -1 , k ≠0),那么称y 是x 的反比例函数. 【名师提醒: 1、在反比例函数关系式中:k ≠0、x ≠0、y ≠0 2、反比例函数的另一种表达式为y= (k 是常数,k ≠0) 3、反比例函数解析式可写成xy= k (k ≠0)它表明反比例函数中自变量x 与其对应函数值y 之积,总等于 】 2.反比例函数的概念需注意以下几点: (1) k 为常数,k ≠0; (2)k x 中分母x 的指数为1;例如y= x k 就不是反比例 函数; (3)自变量x 的取值范围是x ≠0的一切实数; (4)因变量y 的取值范围是y ≠0的一切实数. 3.反比例函数的图象和性质. (1)、反比例函数 y=k x (k ≠0)的图象是 ____它 有两个分支,关于 对称 (2)、反比例函数y=k x (k ≠0) 当k>0时它的图象位于 ,___象限,在每一个象限内曲线从左到右下降,y 随x 的增大而 当k<0时,它的图象位于____,___象限,在每一个象限内,曲线从左到右上升,y 随x 的增大而 。 【名师提醒: 1、在反比例函数y=k x 中,因为x ≠0,y ≠0所以双曲线 与坐标轴无限接近,但永不与x 轴y 轴 2、在反比例函数y 随x 的变化情况中一定注明在每一个象限内】 4、反比例函数中比例系数k 的几何意义: 反曲线y=k x (k ≠0)上任意一点P 向两坐标轴作垂线交 于A,B 两线PA,PB 与坐标轴围成的图形面 积 ,即如图: AOBP= S △AOP= 【名师提醒:k 的几何意义往常与前边提示中所谈到的xy=k 联系起来理解和应用】 5.画反比例函数的图象时要注意的问题: (1)画反比例函数图象的方法是描点法;画反比例函数的图象要注意自变量的取值范围是x ≠0,因此,不能把两个分支连接起来; (2)由于在反比例函数中,x 和y 的值都不能为0,所以,画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y 轴的变化趋势. 6. 反比例函数y=k x (k≠0)中比例系数k 的几何意义,即过双曲线y= k x (k≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k│。 7. 用待定系数法求反比例函数解析式时,可设解析式为 因为反比例函数y=k x (k ≠0)中只有一个被定系 数 所以求反比例函数关系式只需知道一组对应的x 、y 值或一个点的坐标即可,步骤同一次函数解析式的求法 一、 反比例函数的应用 二、 解反比例函数的实际问题时,先确定函数 解析式,再利用同象找出解决问题的方案,这里要特别注意自变量的 (二):【课前练习】 1.下列函数中,是反比例函数的为( ) A . 2 2y x =;B . 12y x =- ;C . 2x y =;D . 13 y x =+

高一函数知识点总结

高一函数知识点总结 (一)、映射、函数、反函数 1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。 2、对于函数的概念,应注意如下几点: (1)掌握构成函数的三要素,会判断两个函数是否为同一函数。 (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。 (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g 的复合函数,其中g(x)为内函数,f(u)为外函数。 3、求函数y=f(x)的反函数的一般步骤: (1)确定原函数的值域,也就是反函数的定义域; (2)由y=f(x)的解析式求出x=f—1(y); (3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。 注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。 ②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。 (二)、函数的解析式与定义域

1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型: (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑; (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如: ①分式的分母不得为零; ②偶次方根的被开方数不小于零; ③对数函数的真数必须大于零; ④指数函数和对数函数的底数必须大于零且不等于1; ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。 应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。 (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。 已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g (x)的值域。

高数重要知识点汇总

高等数学上册重要知识点 第一章 函数与极限 一. 函数的概念 1 两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x) 是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x )与g (x )是同阶无穷小。 (3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x ) 2 常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二 求极限的方法 1.两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=

求导基本法则和公式

四、基本求导法则与导数公式 1. 基本初等函数的导数公式和求导法则 基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设 )(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数 )(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间x I 内也可导,且

高一数学反函数的概念

4.5反函数的概念 一、教学内容分析 “反函数”是《高中代数》第一册的重要内容.这一节课与函数的基本概念有着紧密的联 系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为今后反三角函数的教学做好准备,起到承上启下的重要作用. 二、教学目标设计 (1)理解反函数的概念,并能判定一个函数是否存在反函数; (2)掌握求反函数的基本步骤,并能理解原函数和反函数之间的内在联系; (3)通过反函数概念的引入;函数及其反函数图像特征的主动探索,初步学会自主地学习、 独立地探究问题;掌握观察、比较、分析、归纳等数学试验研究的方法;体验探索 中挫折的艰辛与成功的快乐,激发学习热情. 三、教学重点与难点: 反函数的概念及求法;反函数的图像特征;反函数定义域的确定. 四、教学流程设计 五、教学过程设计 1、设置情境,引出概念 引例:在两种温度度量制摄氏度(C )和华氏度(F )相互转化时会发现,有时两人选用相同的数据,如下表,所建立的函数关系和作出的图像完全不同,这是为什么呢?

教师点拨:指导学生观察上面两个函数的异同,引出反函数的定义.介绍反函数的记号 )(1x f y ;了解)(1x f 表示反函数的符号,1 f 表示对应法则. 2、 探索研究,深化概念 ①探求反函数成立的条件. 例1(1)2x y (R x )的反函数是 (2)2x y (0 x )的反函数是 (3)2 x y (0 x )的反函数是 学生活动:讨论函数反函数成立的条件(理论根据为函数的定 义):对值域A 中任意一个y 值,在定义域D 中总有唯一确定 的x 值与它对应,即x 与y 必须一一对应. ②探求求反函数的方法.(课本例题) 例2.求下列函数的反函数: (1)24 x y (2)13 x y (3))0(12 x x y (4))2 1,(2413 x R x x x y [说明]:学生分四组完成,教师巡视,把典型错误及正确解法投影. 学生活动:探求求反函数的方法. (1) 变形:解方程,)(x f y 得)(1y f x ; (2) 互换:互换y x ,的位置,得)(1 x f y ; (3)写出定义域:注明反函数的定义域. ③观察反函数的图像,探讨互为反函数的两个函数的关系.

反函数知识点总结讲义教案

班级:一对一 所授年级+科目: 高一数学 授课教师: 课次:第 次 学生: 上课时间: 教学目标 理解反函数的意义,会求函数的反函数;掌握互为反函数的函数图象之间的关系,会利用反函数的性质解决一些问题. 教学重难点 反函数的求法,反函数与原函数的关系. 反函数知识点总结教案 【知识整理】 一.函数的定义 如果在某个变化过程中有两个变量x 和y ,并且对于x 在某个围的每一个确定的值,按照某个对应法则, y 都有唯一确定的值和它对应,那么y 就是x 的函数, x 就叫做自变量, x 的取值围D 称为函数的定义域,和x 的值对应的y 的值叫做函数值,函数值的集合A 叫做函数的值域,记为: )(x f y = x ∈D. 二.反函数定义 一般地,函数)(x f y = (x ∈D),设它的值域为A,我们根据这个函数中x , y 的关系,用y 把 x 表示出,得到)(y x ?= ,如果对于 y 在 A 中的任何一个值,通过)(y x ?= , x 在D 中都有唯 一的值和它对应,那么,)(y x ?= 就表示y 是自变量,x 是自变量y 的函数,这样的函数)(y x ?= (y ∈A)叫做函数)(x f y = ( x ∈D)的反函数.记作:)(1 y f x -= 反函数)(1 y f x -=中,x 为因变量,y 为自变量,为和习惯一致,将x , y 互换得: )(1x f y -= ( x ∈A). 注:并非所有的函数都有反函数.反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数; 三.主要方法: 1.求反函数的方法步骤: ①求出原函数的值域,即求出反函数的定义域; ②由)(x f y =反解出)(1 y f x -= (把x 用y 表示出来); ③将x , y 互换得: )(1 x f y -=,并写出反函数的 定义域 2. 分段函数的反函数的求法:逐段求出每段的反函数及反函数的定义域,再合成分段函数. 3. 原函数与反函数的联系

反函数的求导法则辨析

昨天的文章中提到过反函数的求导法则。反函数的求导法则是:反函数的导数是原函数导数的倒数。这话听起来很简单,不过很多人因此犯了迷糊: y=x3的导数是y'=3x2,其反函数是y=x1/3,其导数为y'=1/3x-2/3.这两个压根就不是互为倒数嘛! 出现这样的疑问,其实是对反函数的概念未能充分理解,反函数是说,将f(x)的自变量当成因变量,因变量当成自变量,得到的新函数x=f(y)就是原函数的反函数。所以y=x3的反函数严格来说应该是x=1/3y-2/3,只不过为了符合习惯,经常将x写成y,y写成x而已,这一点,因为在中学的时候没怎么强调,所以到了大学就有些不适应。因此: y=x1/3的导函数应该这样求y‘=1/(y3)'=1/(3y2) (因为y的反函数是x=y3), =1/(3x2/3)=1/3x-2/3.(将y=x1/3带入即可) 实际上反函数求导法则是根据下面的原则 所以反函数求导法则的意思是说,反函数的导数,等于x对y求导的倒数。我们再以反三角函数来作为例子,希望学到这点的朋友能够真正理解他。 例题:求y=arcsinx的导函数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy 因为x=siny,所以cosy=√1-x2;(那个啥,这个符号输入有点蛋疼,不过各位应该能看懂) 所以y‘=1/√1-x2。

同理大家可以求其他几个反三角函数的导数。所以以后在求涉及到反函数的导数时,先将反函数求出来,只是这里的反函数是以x为因变量,y为自变量,这个要和我们平时的区分开。最后将y想法设法换成x即可。 相信大家对这一点应该有所明白的吧!大家可以试着求y=arctanx的导函数,然后与结果进行对照。

高中一年级数学反函数教学设计

高中一年级数学反函数教学设计 一、教材分析: 1、教材的地位与作用 “反函数”一节课是《高中代数》第一册的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。 2、重点与难点:反函数的定义和求法 二、教学目标分析: (1)知识与技能:使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系; (2)能力与方法:培养学生发现问题、观察问题、解决问题的能力; (3)情感与态度:使学生树立对立统一的辩证思维观点。 三、学情分析: 学生已经学习了函数的基本概念和表示法,掌握了函数的基本知识,理解反函数的概念及互为反函数的两个函数的性质和特征,更有助于学生将函数的思想理解得更透彻。 四、教学过程设计 1、创设问题情境: 导入阶段的教学中,抓住反函数也是函数这一实质,以对函数概念的复习来引出反函数。指明函数是一种映射的实质,分析原函数中映射的具体情况,进而引导学生考虑,若将定义域、值域互换,此时映射还是不是一个函数呢? 首先提问学生函数基本概念,使学生明白函数是一种单值对应,即映射。再出示电脑动画,以函数y=2x来具体分析,结合图象引导学生注意:在定义域内所有自变量,都能在值域内找到唯一确定的一个函数值,即存在x→y的单值对应,例如:1→2,2→4,3→6,……若将定义域与值域互换,则对应变为2→1,4→2,6→3,…这种对应是否构成单值对应,即映射呢?这种对应是否构成函数呢?至此,引出反函数的概念,为概念的新授做好准备。 设计意图:这样的引入方式,抓住了反函数概念的实质,确保学生不会产生概念上的偏差。此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习反函数,为顺利完成教学任务做好思维上的准备。 2、知识建构: 给出概念后,必须防止学生对于反函数f-1(y)形式的误解(以为是1/f(x))。此外,还

反函数的基本知识点 2

反函数的基本知识点 一.定义:设式子)(x f y =表示y 是x 的函数,定义域为A ,值域为C ,从式子)(x f y =中解出x ,得到式子)(y x ?=,如果对于y 在C 中的任何一个值,通过式子)(y x ?=,x 在A 中都有唯一确定的值和它对应,那么式子)(y x ?=就表示x 是y 的函数(y 是自变量),这样的函数,叫做)(x f y =的反函数 ,记作)(1y f x -=,即()y f y x 1)(-==?,一般习惯上对调()y f x 1-=中的字母y x ,,把它改写成)(1x f y -=。 (1).反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数; (2).原函数的定义域、值域分别是反函数的值域、定义域, ()图象 在点图象上)在(点几何语言:)(),(,)()(11x f y a b P x f y b a P a b f b a f --='?==?= (3).()y f x =与1()y f x -=的图象关于y x =对称. 二.求反函数的一般步骤 (1) 确定原函数的值域,也就是反函数的定义域 (2) 由)(x f y =的解析式求出)(y x ?= (3) 将y x ,对换,得反函数的一般表达式)(1x f y -=,标上反函数的定义域(反函数的定义域不能由反函数的解析式求得) 分段函数的反函数可以分别求出各段函数的反函数后再合成。 三.掌握下列一些结论 (1) 单调函数?一一对应?有反函数 (2) 周期函数不存在反函数 (3) 若一个奇函数有反函数,则反函数也必为奇函数 (4) 证明)(x f y =的图象关于直线x y =对称,只需证)(x f y =的反函数和)(x f y =相同。

相关主题
文本预览
相关文档 最新文档