当前位置:文档之家› 开关电源热阻计算方法及热管理

开关电源热阻计算方法及热管理

开关电源热阻计算方法及热管理
开关电源热阻计算方法及热管理

开关电源热阻计算方法及热管理

我们设计的DC-DC电源一般包含电容、电感、肖特基、电阻、芯片等元器件;电源产品的转换效率不可能做到百分百,必定会有损耗,这些损耗会以温升的形式呈现在我们面前,电源系统会因热设计不良而造成寿命加速衰减。所以热设计是系统可靠性设计环节中尤为重要的一面。但是热设计也是十分困难的事情,涉及到的因素太多,比如电路板的尺寸和是否有空气流动。

我们在查看IC产品规格书时,经常会看到R

JA 、T

J

、T

STG

、T

LEAD

等名词;首先R

JA

是指芯

片热阻,即每损耗1W时对应的芯片结点温升,T

J 是指芯片的结温,T

STG

是指芯片的存储温

度范围,T

LEAD

是指芯片的加工温度。

二、术语解释

首先了解一下与温度有关的术语:T

J 、T

A

、T

C

、T

T

。由“图1”可以看出,T

J

是指芯片

内部的结点温度,T

A 是指芯片所处的环境温度,T

C

是指芯片背部焊盘或者是底部外壳温度,

T

T

是指芯片的表面温度。

数据表中常见的表征热性能的参数是热阻R

JA ,R

JA

定义为芯片的结点到周围环境的热阻。

其中T

J = T

A

+(R

JA

*P

D

图1.简化热阻模型

对于芯片所产生的热量,主要有两条散热路径。第一条路径是从芯片的结点到芯片

顶部塑封体(R

JT ),通过对流/辐射(R

TA

)到周围空气;第二条路径是从芯片的结点到背部焊

盘(R

JC ),通过对流/辐射(R

CA

)传导至PCB板表面和周围空气。

对于没有散热焊盘的芯片,R

JC 是指结点到塑封体顶部的热阻;因为R

JC

代表从芯片内

的结点到外界的最低热阻路径。

三、典型热阻值

表1典型热阻

从表1可以看出,热阻与PCB板尺寸、空气流动、PCB板厚度、过孔数量等参数都有关系。

四、设计实例

某直流降压方案,输出5V,电流1A,转换效率η为90%,环境温度TA为50℃。使用的电容额定温度100℃,且跟芯片靠的很近,要求芯片TJ温度控制在90℃。

首先系统的损耗PD=VOUT*IOUT*(1/η-1)=5*1*(1/0.9-1)=0.56W

假定所有损耗都算在芯片上,可以计算出:

热阻RJA≤(90℃-50℃)/0.56≤71.4℃/W

Part.1 PCB板尺寸

选用芯片的热阻要低于71.4℃/W,选用SOP8-EP芯片,其RJA为60℃/W,仍需要设计一个PCB板或散热片来把热量从塑封体传到周围空气。在只有自然对流(即没有空气流动)及没有散热片的情况下,一个两面都覆铜的电路板上,根据经验法则需要的电路板面积可用如下方程估算得到:

Part.2 散热孔

散热孔对应的热阻方程:

通过以上公式可知,增加散热孔的数量可以有效降低过孔的热阻。

Part.3 铜箔厚度

铜箔对应的热阻方程:

其中λCu=4W/cm℃,长度和宽度单位都是厘米,可以通过增加铜箔厚度来降低热阻。Part.4 散热片

散热片可以有效的降低芯片的温度,但是散热片的位置也很重要。对于贴片元器件,散热片可以直接放置在芯片塑封体顶部,如“图2”所示,但是由于芯片塑封体的热阻较大,且散热片与其接触不良,会降低散热片的性能。也可以将散热片与芯片背部的过孔相连,提高散热片的性能。

图2.散热片的摆放位置

Part.5 风冷

在产品空间范围比较大,且不是密封的环境内,可以通过小功率的风扇产生气流,这样可以显著降低系统整体的热阻。

Part.6 灌胶

对于要求防水、防尘、防震动的产品,可以通过在密封的模具中灌入导热硅脂,使电源系统元器件通过导热硅脂将热量传递到外壳,进而将热量散出去。

采暖热负荷的计算方法

采暖热负荷的计算方法((0 目前绝大多数企业为节省时间,采用的热负荷确定方法均为估算法,即用房间面积乘以每平方米的设计热负荷指标。通常为朝南房间为120W/m2,其它房间为120W/m2-150W/m2不等,全凭设计人员的经验和感觉。为了设计效果,尽可能往大值选取。最终导致一些散热器型号选取过大,大马拉小车的现象在目前供暖设计中屡见不鲜,导致用户的初投资增加,整个供暖系统的花费加大。 站在为客户省钱的角度,尽可能规范选取散热器型号,我们的热负荷选择只需在充分满足房间温度的要求下,上下有轻微浮动即可。 以本公司原本设计的锦苑天元坊15幢的某户家庭暖气系统为例。该设计说明中缺少一些关键的技术参数,如:建筑物所处楼层(是否有屋顶),整个建筑物的维护结构资料(外墙,外窗,地面的材质和传热系数),扬州市的气象参数等,导致估算出来的某些房间热负荷太大。以书房为例,书房面积8.2m2,选取的是雅克菲钢制板式散热器,规格型号22K-600-800,热量1399W,算下来单位设计热负荷高达170W/m2,以北方比较成熟的供暖工艺来说,从节能角度出发,某户用热的单位面积热量超过98W/m2就要罚款,由此可见我们的设备选型不太合理,需要改进。 仍以该住宅的书房为例,采用常规的热负荷计算方法,其中维护结构:层高3m,外墙:双面抹灰24空心砖墙,传热系数为1.47W/m2·K,外窗:金属框 经过计算,在保证房间温度18o C的情况下,最东北角的房间热负荷为957W。单位面积平均负荷为116 W/m2,其他房间由于朝向等因素,该值会相应降低。而本设计选择的散热器其单位设计热负荷高达170W/m2,选择稍大,如选择小一号的散热器22K-600-600,热量1061W即可满足要求。 但是这种计算相对复杂,每个房间的外墙,外窗都要计算,如果是底层或者是顶层还需计算地面和顶层的散热量。工作量很大,对于企业设计不太适用。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

采暖设计热负荷指标q计算

采暖设计热负荷指标q计算 一、比较准确的计算方法,公式如下: q=Q/A0 式中Q,A0分别为冬季采暖通风系统的热负荷(W)和建筑面积(m2)。 Q=Q1+Q2 1)围护结构的耗热量,包括基本耗热量和附加耗热量,且基本耗热量计算公式为 Q1=A×F×K×(tn-twn) 式中Q1、F、K、a、tn、twn分别表示围护结构的基本耗热量(W)、维护结构的面积(m2)、传热系数[W/(m2·K)]、温差修正系数(采暖通风与空气调节设计规范,表4.1.8-1)是根据围护结构与室外空气接触的状况对室内外温差采取的修正系数、冬季室内计算温度(℃)、采暖室外温度(℃)。 围护结构附加耗热量Q2,包括朝向附加、风力附加、外门附加和高度附加,各项附加应按其占基本耗热量的百分比确定。根据采暖通风与空气调节设计规范4.2.6中规定进行修正。2)加热由门窗缝隙渗入室内的冷空气的耗热量,计算公式为: Q2=0.28×cp×ρwn×L×(tn-twn) 式中Q2表示由门窗缝隙渗入室内的冷空气的耗热量(W)、tn和twn与上同、Cp表示空气的定压比热容[kJ/(kg·K)] ,温度为250K时,空气的定压比热容cp=1.003kJ/(kg·K),300K时,空气的定压比热容cp=1.005kJ/(kg·K),冬天可按250K时的值算。ρwn表示采暖室外计算温度下的空气密度(kg/m3)、L表示渗透空气量(m3/h)、其计算公式如下: L=L0×l×m×b 式中L0表示在基准高度(10m)风压的单独作用下,通过每米门缝进入室内的空气量[m3/(m·h)] 、l表示门窗缝隙的计算长度(m)、m表示冷风渗透压差综合修正系数(采暖通风与空气调节设计规范,附录D),b表示门窗缝渗风指数, b=0.56~0.78。 二、概算的方法: 1)体积热指标法:建筑物的供暖设计热负荷可按下式进行概算。 Qn=qv×V×(tn-twn)式中, Qn——建筑物的供暖设计热负荷,W; V——建筑物的外围体积,m3; tn——供暖室内计算温度,℃; twn——供暖室外计算温度,℃; qv——建筑物的供暖体积热指标(W/m3·℃),它表示各类建筑物,在室内外温差为1℃时,每1 m3建筑物外围体积的供暖热负荷。供暖体积热指标qv的大小主要与建筑物的围护结构及外形有关。建筑物围护结构传热系数越大、采光率越大、外部建筑体积越小等qv值将越大。 2)面积热指标法: 建筑物的供暖设计热负荷可按下式进行概算。 Qn=qf×F 式中, Qn——建筑物的供暖设计热负荷,W; F——建筑物的建筑面积,m2; Qf——建筑物的供暖面积热指标,W/m2,它表示每1 m2建筑面积的供暖设计热负荷。 建筑物的供暖热负荷,主要取决于通过垂直围护结构(墙、门、窗等)向外传递热量,它与建筑物的平面尺寸和层高有关,因而不是直接取决于建筑平面面积。用供暖体积热指标表征建筑物供暖热负荷的大小,物理概念清楚;但采用供暖面积热指标法,比体积热指标更易于概算,对于一般民用住宅层高在3m以下工程上可采用面积热指标法进行概算。

锅炉热负荷的定义及供暖热负荷的计算方式

锅炉热负荷的定义及供暖热负荷的计算方式 锅炉的热负荷,也就是单位时间内锅炉能产生的热量的大小,相当于一台锅炉的功率。在选购锅炉的时候,得先确定好所需要的锅炉热负荷的大小,再进行锅炉的选购。锅炉热负荷的单位一般有以下几种:千卡(大卡)/小时、吨/小时、千瓦/小时。 几种主要的热量单位 首页我们得了解一下几种热量单位。常用的几种热量单位主要有以下三种: 1、大卡(Kcal):大卡也称为千卡,1千卡的热量等于将1公斤的水温度升高1℃所需要的热量。 2、瓦(W):瓦是瓦特的简称,是国际单位制的功率单位。瓦特的定义是1焦耳/秒(1J/s),即每秒钟转换,使用或耗散的(以焦耳为量度的)能量的速率。通常我们用千瓦来作单位。1瓦=1焦耳(1W=1J/S) 3、1吨:在锅炉热负荷中称的吨,是工程上所用的吨,又指1吨的蒸发量。工程上是指在1小时内产生1吨蒸汽所需要的热量 热量单位的换算方法 这几种热量单拉的换算方法如下所示: 1万大卡/小时≈11.63千瓦 1千瓦=0.086万大卡/小时 1吨蒸发量≈60万大卡/小时1万大卡/小时≈0.0166吨蒸发量 1吨蒸发量≈700千瓦 1千瓦≈0.0014吨蒸发量 1吨蒸发量≈0.7MW 1MW≈1000千瓦 怎么计算取暖热负荷 知道了怎么热量计算单位,那么我们又如何对计算自己的需要多大的供暖热负荷呢? 用这个公式就能计算出所需要的供暖热负荷的大小: Q=q(单位面积热负荷指标)×S供暖面积 其中Q表示供暖热负荷的大小,q代表单位面积热负荷指标,s代表供0暖面积。单位面积热负荷指标:对北京地区居民取暖q一般取60大卡/平方米小时,对新建经济房甚至可以取到45大卡/平方米小时;对办公大楼、商场、宾馆等可以取65~70大卡/平方米小时。 以上是锅炉热负荷的定义及供暖热负荷的计算方式,

采暖热负荷详细计算表采暖计算公式

采暖负荷计算书 一、工程信息 项目名称0采暖形式传统形式 地理位置0建筑层数5建筑高度 18 二、基本计算公式 计算原理参照《实用供热空调设计手册》陆耀庆,中国建筑工业出版社1.通过围护结构的基本耗热量计算公式 —基本耗热量 K —传热系数 F —传热面积 —室内空气计算温度—室外供暖计算温度α —温差修正系数 2.附加耗热量计算公式 —考虑各项附加后,某围护的耗热量—某围护的基本耗热量—朝向修正—风力修正 —两面外墙修正—窗墙面积比过大 —房高附加—间歇附加 α )(w n j t t KF Q -=j Q n t w t ) 1)(1)(1(.1j g f m li f ch j Q Q ββββββ++++++=1Q j Q ch βf βli βm βfg βj β

2若C<=-1或m<=0,可不计算冷空气渗透耗热量 3对于大于六层的高层建筑,计算中,若h<10m 时,h=10m , 当无以上及门窗构造相关数据时,可采用换气次数法计算门窗隙缝的冷风渗透耗热量房间类型一面外墙有窗房间 二面外墙有窗房间 三面外墙有窗房间 门厅换气次数k 0.5 0.5-1.0 1.0-1.5 2 门窗隙缝的冷风渗透耗热量:Q 2=0.28*1*1.4*(t n-t w)*k*V 4.外门开启冲入冷风耗热量计算公式 —通过外门冷风侵入耗热量—某围护的基本耗热量 —外门开启外门开启冲入冷风耗热量附加率,参见[2]p128表4.1-12 三、气象参数 室外采暖计算温度℃-22风力附加系数0热压系数0.25风压系数 0.25东/西[朝向修正] 0北/东北/西北[朝向修正]0.1南[朝向修正] -0.23东南/西南[朝向修正] -0.13 kq j Q Q β?=33Q j Q kq β

电池热管理系统

电池热管理 电池热管理概述 电池热管理系统 (Battery Thermal Management System, BTMS)是电池管理系统(Battery Management System, BMS)的主要功能(电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等)之一,通过导热介质、测控单元以及温控设备构成闭环调节系统,使动力电池工作在合适的温度范围之内,以维持其最佳的使用状态,用以保证电池系统的性能和寿命。 电池热管理重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。 1)电池能量与功率性能:温度较低时,电池的可用容量将迅速发生衰减,在过低温度 下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部短路。 2)电池的安全性:生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部 过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件。 3)电池使用寿命:电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起 电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命。 电池热管理系统是应对电池的热相关问题,主要功能包括: 1)散热:在电池温度较高时进行有效散热,防止产生热失控事故; 2)预热:在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性 能和安全性;

3)温度均衡:减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电 池过快衰减,以提高电池组整体寿命。 电池热管理方案 电池热管理方案主要分为风冷与液冷两大类,主要侧重于防止电池过热方面: 1.风冷 该技术利用自然风或风机,在电池包一端加装散热风扇,另一端留出通风孔,使空气在电芯的缝隙间加速流动,带走电芯工作时产生的高热量。风冷方案设计主要考虑电池系统结构的设计,风道,风扇的位置及功率的选择,风扇的控制策略等。风冷是以低温空气为介质,利用热的对流,降低电池温度的一种散热方式,分为自然冷却和强制冷却(利用风机等)。 整车中的电池风冷流道

12种开关电源拓扑及计算公式

输入输出电压关系 D T Ton Vin Vout == 开关管电流 Iout Iq =(max)1开关管电压 Vin Vds =二极管电流 ) 1(1D Iout Id ?×=二极管反向电压 Vin Vd =12、BOOST 电路 输入输出电压关系 D Ton T T Vin Vout ?= ?=11 开关管电流 11( (max)1D Iout Iq ?×=开关管电压 Vout Vds =二极管电流 Iout Id =1二极管反向电压 Vout Vd =13、BUCK BOOST 电路 输入输出电压关系 D D Ton T Ton Vin Vout ?= ?=1开关管电流 11( (max)1D Iout Iq ?×=开关管电压 Vout Vin Vds ?=二极管电流 Iout Id =1二极管反向电压 Vout Vin Vd ?=1

输入输出电压关系 D D Vin Vout ?= 1开关管电流 )1( (max)1D D Iout Iq ?×=开关管电压 Vout Vin Vds +=二极管电流 Iout Id =1二极管反向电压 Vin Vout Vd +=15、FLYBACK 电路 输入输出电压关系 Lp Iout Vout T D Vin Vout ×××=2开关管电流 (max)1Lp Ton Vin Iq ×= 开关管电压 Ns Np Vout Vin Vds × +=二极管电流 Iout Id =1二极管反向电压 Np Ns Vin Vout Vd × +=16、FORW ARD 电路 输入输出电压关系 D Np Ns T Ton Np Ns Vin Vout ×=×=开关管电流 Iout Np Ns Iq ×= (max)1开关管电压 Vin Vds ×=2二极管电流 D Iout Id ×=1

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该如何来计算高频变压器的匝数,从而解决这个问题?接下来,晨飞电子就为大家介绍下匝数的计算方法:

动力电池热管理系统性能试验方法

动力电池热管理系统性能试验方法 1 范围 本标准规定了动力电池热管理系统性能的试验方法。 本标准适用于乘用车用动力电池热管理系统,商用车用动力电池热管理系统可以参考。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.41-2008 电工术语原电池和蓄电池 GB/T 19596-2017 电动汽车术语(ISO 8713:2002,NEQ) GB/T 31467.2电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试规程QC/T 468-2010 汽车散热器 GB/T 18386-2017 电动汽车能量消耗率和续驶里程试验方法 GB 18352.6-2016 轻型汽车污染物排放限制及测量方法(中国第六阶段) 3 术语和定义 GB/T 2900.41-2008、GB/T 19596-2017中界定的以及下列术语和定义适用于本文件。 3.1 动力电池热管理系统 battery thermal management system 综合运用各种技术手段,具备动力电池冷却、加热、保温和均温等功能,保证动力电池在不同环境下正常工作的系统。同时,该系统可以在动力电池发生热失控时提供报警信号,具备安全防护功能。通常,动力电池热管理系统包括主动式热管理系统和被动式热管理系统两种。 3.2 被动式热管理系统 passive thermal management systems 基于热传导、热辐射、热对流等热量传输原理,只依靠冷却或加热流体因为温度因素缓慢流动自然完成热量输入输出交换的热管理系统。该类系统通常适用于单体产热量小于 5W的电池。 3.3 主动式热管理系统 active thermal management systems 基于热传导、热辐射、热对流等热量传输原理,使用耗能部件消耗能量完成热量输入输出交换的系统。主动式热管理系统包括主动空气冷却加热系统和主动液体冷却加热系统两种,根据需要采用流体串行流动和并行流动两种方式实现热交换。 3.4 主动式空气冷却加热系统 Active Air Cooling and Heating Systems 又称风冷系统,利用空气作为热量交换载体控制分配动力电池系统内部温度的系统。该系统通常使用风扇和管道完成空气在电池系统内的流动,分为直接接触式和间接接触式两种。空气可以从电池系统外部进入并排出电池系统外,也可以在电池系统内部循环实现电池冷却或加热功能;若空气仅在电池内部循环,则电池系统内部通常需要有空气冷却装置(通常为空调蒸发器)、空气加热装置和空气循环风扇。该类系统通常适用于单体产热量

开关电源热阻计算方法及热管理

开关电源热阻计算方法及热管理 我们设计的DC-DC电源一般包含电容、电感、肖特基、电阻、芯片等元器件;电源产品的转换效率不可能做到百分百,必定会有损耗,这些损耗会以温升的形式呈现在我们面前,电源系统会因热设计不良而造成寿命加速衰减。所以热设计是系统可靠性设计环节中尤为重要的一面。但是热设计也是十分困难的事情,涉及到的因素太多,比如电路板的尺寸和是否有空气流动。 我们在查看IC产品规格书时,经常会看到R JA 、T J 、T STG 、T LEAD 等名词;首先R JA 是指芯 片热阻,即每损耗1W时对应的芯片结点温升,T J 是指芯片的结温,T STG 是指芯片的存储温 度范围,T LEAD 是指芯片的加工温度。 二、术语解释 首先了解一下与温度有关的术语:T J 、T A 、T C 、T T 。由“图1”可以看出,T J 是指芯片 内部的结点温度,T A 是指芯片所处的环境温度,T C 是指芯片背部焊盘或者是底部外壳温度, T T 是指芯片的表面温度。 数据表中常见的表征热性能的参数是热阻R JA ,R JA 定义为芯片的结点到周围环境的热阻。 其中T J = T A +(R JA *P D ) 图1.简化热阻模型 对于芯片所产生的热量,主要有两条散热路径。第一条路径是从芯片的结点到芯片 顶部塑封体(R JT ),通过对流/辐射(R TA )到周围空气;第二条路径是从芯片的结点到背部焊 盘(R JC ),通过对流/辐射(R CA )传导至PCB板表面和周围空气。 对于没有散热焊盘的芯片,R JC 是指结点到塑封体顶部的热阻;因为R JC 代表从芯片内 的结点到外界的最低热阻路径。 三、典型热阻值 表1典型热阻

建筑物耗热量指标和采暖设计热负荷

热负荷是只室内18C,室外-9C(北京)的条件下,供暖需求量,用这个值去配置供暖设备,相当于在最大条件下的出力,也就是汽车最高时速200公里的能力极限;北京通常每平米50瓦左右。 指标是在整个冬季不断变化的气候环境下,冬季实际总耗能除以时间得出的平均功率,相当于汽车的平均时速,在北京能开到40公里就很不错了。北京冬天室外平均-1.6,室内保证16,这时的规定平米指标20.6瓦 很多人不清楚的是,指标与设备配置??即热负荷没有太大的关系,例如我设备给的很大,像日本鬼子那样不问功能一平米给配200瓦的量,但是温控做的好,实际输出不大,最后指标依然正好。 再往深了说,指标就是约束墙体保温的,只要保温达到要求,指标就能达到,系统浪费它不管,就算室温高了,也折合到标准温度下了,没有影响。 采暖设计热负荷指标(g)indexOfdesignloadforheatingOfbuilding在采暖室外计算温度条件下,为保持室内计算温度,单位建筑面积在单位时间内需由锅炉房或其他供热设施供给的热量,单位:W/m。 2.1设计规范采暖设计热负荷指标计算方法采暖设计热负荷指标q(W/m2)。采暖设计热负荷指标是指在采暖室外计算温度条件下,为保持室内计算温度,单位建筑面积在单位时间内需由锅炉房向其它供热设施供给的热量。采暖设计热负荷指标q计算公式如下:q=Q/Ao(1) 式中Q,Ao分别为冬季采暖通风系统的热负荷(W)和建筑面积(m2),且Q值应根据建筑物下列散失的获得的热量确定:1)围护结构的耗热量,包括基本耗热量和附加耗热量,且基本大批量计算公式为Q1=Afk(tn-twn)(2)式中Q1、F、K、a、tn、twn 分别表示围护结构的基本耗热量(W)、面积(m2)、传热系数[W/(m2?K)]、温差修正系数及冬季室内计算温度(℃)、采暖室外(℃)。围护结构附加耗热量,包括朝向附加、风力附加、外门附加和高度附加,各项附加应按其占基本耗热量的百分比确定。2)加热由门窗隙渗入室内的冷空气的耗热量旧设计规范中的计算公式为:Q2=acpρwnLlm(tn-twn) (3)式中Q2表示由门窗缝隙渗入室内的冷空气的耗热量(W)、a表示单位换算系数、cp表示空气的定压比热容[kJ/(kg?K)]、L 表示在基准高度(10m)风压的单独作用一,通过每米门缝进入室内的空气量[m3/(m?h)]、l 表示门窗缝隙的计算长度(m)、tn和twn与上同、ρwn表示采暖室外计算温度下的空气温度(kg/m3)、m表示综合修正系数。新设计规范中的计算公式为:Q2=0.28cpρwnL(tn-twn) (4)式中tn和twn、ρwn与上同,L 表示渗透空气量(m3/h)、其计算公式如下:L=L0lmb (5)式中L0表示在基准高度(10m)风压的单独作用下,通过每米门缝进入室内的空气量[m3/(m?h)] 、l表示门窗缝隙的计算长度(m)、m表示冷风渗透压差综合修正系数,b表示门窗缝渗风指数,b=0.56~0.78。由式(4)和式(5)可知,新设计规范对公式的形式及有关参数的确定上都进行了较大的修订,加热由门窗缝隙渗入室内的冷空气的耗热量的计算将更加合理和精确。3)加热由门、孔沿及相邻房间浸入的冷空气的耗热量;4)建筑内部设备得热;5)通过其他途径散失或获得的热量;2.2节能标准

暖通冷负荷热负荷计算书

XXXX大学环境工程学院课程设计说明书 课程《暖通空调》 班级 姓名 学号 指导教师 年月

第1篇采暖设计 1 工程概况 1.1 工程概况 1、本工程建筑面积约1600㎡,砖混结构,层高均为3.6M。本工程建筑所在地湖北咸宁,供暖室外计算温度0.3℃.根据设计要求供暖室内设计温度为18℃ 2、窗均为铝合金推拉窗,窗高为1.5M采用中空双层玻璃,在满足建筑节能要求的前提下查得K=4 w/(㎡.℃). 3、内门为木门,门高均为2M, 在满足建筑节能要求的前提下查得K=2 w/(㎡.℃) . 4、走廊根据要求没有做供暖设计 5、墙均为200空心砖墙,外墙做保温设计在满足建筑节能要求的前提下查得K=1 w/(㎡.℃).内墙在满足建筑节能要求的前提下查得K=1.5 w/(㎡.℃) . 6、走廊因为有两侧传热作用的存在查节能设计手册差的修正系数为0.3 7、冷风渗入由所在供暖房间窗布置情况和数量查建筑节能手册应用换气次数法计算而得。屋面为现浇为现浇板厚100MM,做保温和防漏水设计,在满足建筑节能要求的前提下查得K=0.8 w/(㎡.℃) 2 负荷计算 2.1 采暖负荷 1.围护结构耗热量 (1) 维护结构基本耗热量 Q1j=αKF(t n+ t wn) (2) 维护结构附加耗热量 ①朝向修正率: 北、东北、西北:0- +10% 东、西:-5% 东南、西南:-10%- -15% 南:-15%- -30% 2.冷风渗透耗热量 Q2=0.28c pρwn L(t wn-t n) 2.2 算例:以四层办公室(编号为401)为例 咸宁市为夏热冬冷地区,由《公共建筑节能设计标准》GB50189-2005查得夏热冬冷地区外围护结构外墙的传热系数K≦1W/(m2·k),屋面传热系数≦0.7 W/(m2·k),窗墙面积比>0.2,由《公共建筑节能设计标准》GB50189-2005查得窗的传热系数K≦3.5 W/(m2·k).

反激式开关电源的设计方法

1 设计步骤: 1.1 产品规格书制作 1.2 设计线路图、零件选用. 1.3 PCB Layout. 1.4 变压器、电感等计算. 1.5 设计验证. 2 设计流程介绍: 2.1 产品规格书制作 依据客户的要求,制作产品规格书。做为设计开发、品质检验、生产测试等的依据。 2.2 设计线路图、零件选用。 2.3 PCB Layout. 外形尺寸、接口定义,散热方式等。 2.4 变压器、电感等计算. 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的, 2.4.1 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max ) B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考 虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的 power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心 因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以 做较大瓦数的Power 。 2.4.2 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。 2.4.3 决定变压器线径及线数: 变压器的选择实际中一般根据经验,依据电源的体积、工作频率,

开关电源设计计算公式

CDQZ-5107 SEHOTTKY 计算方法1、由于前面计算变压器可知: Np=82T3N S=13T3 2、在输入电压为264Vac时,反射到次级电压为: Vmax=264Vac* 迈=373 V “ Vs产土* Vmax =—*373=59.5 V DC N p82 3、设次级感量引起的电压为:(VR:初级漏感引起的电压) V严尹V 件*90=14.5V” 4、计算肖特基的耐压值: V卩产V $? + V 脳 + V。=59.5+14.5+12=86 V DC 5、计算出输出峰值电流: 2人2*1 出=- =3?8A 1-Z) 1-0.474 6、由计算变压器可知: 1/1.59 A 故选择3A/100V的肖特基满足设计要求。(因3A的有效值为3.9A) 客户名称客户编号 公司编号样品单编号日期输入范围输入电压电流

CDQZ-5107 MOSFET 计算方法 1、 由于前面计算变压器可知: Np=82T 3 N S =13T 3 2、 输入电压最大值为264Vac,故经过桥式整流后,得到: Vmax=264Vac* 迈=373 V “ 3、 次级反射到初级的电压为: V 沪尹 V 。斗 *12=76J. 4、由前而计算变压器可知,取初级漏感引起的电压,V R =90V”,故MOFET 要求耐 压值为: V D5=V max+V w + V P/f =373+90+76=539 V DC 5、计算初级峰值电流: T =匕 _ 。 厶丄 _n 227A 曲 7广 V 肿 DF 0.88*100*0.6 '? 6、故选择2A/600V 的MOSFET 满足设计要求,即选用仙童2N60C 。 客户名称 客户编号 公司编号 样品单编号 日期 输入范围 输入电压电流 82*1 r/ns =0.571 A

动力电池热管理系统组成及设计流程

动力电池热管理系统组成及设计流程 动力电池是电动汽车的能量来源,在充放电过程中电池本身会伴随产生一定热量,从而导致温度上升,而温度升高会影响电池的很多工作特性参数,如内阻、电压、SOC、可用容量、充放电效率和电池寿命。 电池热效应问题也会影响到整车的性能和循环寿命,因此,做好热管理对电池的性能、寿命至整车行驶里程都十分重要。接下来,就从电池热管理系统及设计流程、零部件类型及选型、热管理系统性能及验证等几个方面来和大家聊一聊: 动力电池热管理必要性 1、电池热量的产生 由于电池阻抗的存在,在电池充放电过程中,电流通过电池导致电池内部产生热量。另外,由于电池内部的电化学反应也会造成一定的生热量。 2、温度升高对电池寿命的影响 温度的升高对电池的日历寿命和循环寿命都有影响。 从上面两个图可以看出,温度对电池的日历寿命有很大的影响。同样的电芯,在环境温度23℃,6238天后电池的剩余容量为80%,但是电池在55℃的环境下,272天后电池的剩余容量已经达到80%。温度升高32℃,电芯的日历寿命下降了95%以上。因此,温度对日历寿命的影响极大,温度越高日历寿命衰退越严重。

从上面两个图可以看出,温度对电池的循环寿命也有很大的影响。同一款电芯,当剩余容量为90%,25℃温度下输出容量为300kWh,而35℃温度下的输出容量仅为163kWh。温度上升10℃,电芯的循环寿命下降了近50%。由此可见,温度对电池的循环寿命有很大的影响。 因此,为了电池包性能的最优化,需要设计热管理系统确保各电芯工作在一个合理的温度范围内。 02 热管理系统的分类及介绍 不同的热管理系统,零部件类型的结构不同、重量不同以及系统的成本不同和控制方式不同,使得系统所达到的性能也不相同。主要有如下五大类:

热电厂热负荷的数理统计计算方法

热电厂热负荷的数理统计计算方法(1) 日前,我国北方大中城市已普遍建有热电厂,很多大型工业企业也建有自备热电厂,甚至一些中小型企业也建有以裕压发电形式的小型自备热电站。这些以供热为主、热电联产的热电厂,已成为我国电力事业的一个重要组成部分。 按照热电联产的理论计算结果,利用供热抽汽或背压排汽进行热电联产的发电煤耗率应为O.1 5~0.2kg标准煤/千瓦时,即使再考虑蓟抽汽式汽轮机内凝汽发电的低效率和其它汽 水损失,热电厂的综合发电煤耗率也不应超过O.3.kg标准煤/千瓦时。但是很多热电厂实际运行结果都高于这个指标. 其原因是多方面的,其中非常重要的一条就是热电厂在设计阶段对热电联产的最基本设计参数——最大热负荷及其变化特性估算不准,还有热化系数取值过高,导致热电厂规模偏大,甚至供热机组的设计热负荷值大大高于实际最南热负荷。这样,热电厂只好加大凝汽发电份额或降低设备容量利胃率,对背压式机组的运行往往带来困难。 热电联产有两个显著特点一是热负荷的供需应基本保持适时平衡;二是以热定电。要使热电联产取得较好的节能效果,必须在热电厂设计的前期就应比较准确地计算出它的最大热负荷,总供热量以及绘制出全年热负荷持续时间曲线. 在此基础上再考虑适当的热化系数,列举出若干可行的方案,进行技术经济比较计算,最后确定出最优方案。 目前对栗暖热负荷的测算已有了比较可靠的算法,但对工业热负荷的测算尚无较有效盼方法。以往对热电厂工业热负荷的估算方法有以下几种, (1)按各个热用户原有供热锅炉的容量来估算,通常是取各个容量之和作为热电厂工业热负荷的设计值; (2)根据各个热用户自报的热负荷数据,取各用户避大热负荷之和作为热电厂热负荷的最大值; (3)根据各热用户生产产品的单位热鞠和产量情况,估算热电厂的最大热负荷; (4 )根据热用户进行过的企业能量平衡测试数据来估算热电厂的最太热负荷; (5)对各热用户的用热情况作简单的潮试,并通过简单的现场调查来决定热电厂的最大热负荷。 这些估算方法都不够合理,特别是前三种方法误差极大,因此都不能比较准确可靠地估算出热电厂的最大热负荷值,其主要问题是。 1、未考虑各热用户最大热负荷的同时出现率一般来说,各用户的最大热负荷并不在一日内同一时刻出现所以热电厂的最大热负荷并不等于各用户最大热负荷之和,而是小于这个数. 热电厂最大热负荷与各用户最大热负荷之和的比值可定义为用户最大热负荷的同时出现率γ, γ= 通常,γ< 1。它的大小与热用户的多少、各用户热负荷的波动特性等多方面因素有关。由

采暖设计热负荷指标q计算公式定稿版

采暖设计热负荷指标q 计算公式 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

采暖设计热负荷指标q计算 一、比较准确的计算方法,公式如下: (1) q=Q/A 式中Q,A0分别为冬季采暖通风系统的热负荷(W)和建筑面积(m2)。 Q=Q1+Q2 1)围护结构的耗热量,包括基本耗热量和附加耗热量,且基本耗热量计算公式为 Q1=A×F×K×(tn-twn)(2) 式中Q1、F、K、a、tn、twn分别表示围护结构的基本耗热量(W)、维护结构 的面积(m2)、传热系数[W/(m2·K)]、温差修正系数(采暖通风与空气调节设 计规范,表4.1.8-1)是根据围护结构与室外空气接触的状况对室内外温差采 取的修正系数、冬季室内计算温度(℃)、采暖室外温度(℃)。 围护结构附加耗热量Q1,包括朝向附加、风力附加、外门附加和高度附加,各项附加应按其占基本耗热量的百分比确定。根据采暖通风与空气调节设计规范4.2.6中规定进行修正。 2)加热由门窗缝隙渗入室内的冷空气的耗热量,计算公式为: Q2=0.28×cp×ρwn×L×(tn-twn) (3) 式中Q2表示由门窗缝隙渗入室内的冷空气的耗热量(W)、tn和twn与上同、Cp表示空气的定压比热容[kJ/(kg·K)] ,温度为250K时,空气的定压比热容 cp=1.003kJ/(kg·K),300K时,空气的定压比热容cp=1.005kJ/(kg·K),冬天可 按250K时的值算。ρwn表示采暖室外计算温度下的空气密度(kg/m3)、L表 示渗透空气量(m3/h)、其计算公式如下:

热负荷及散热量计算..

热负荷及散热量计算 所谓热负荷是指维持室内一定热湿环境所需要的在单位时间向室内补充的热量。所谓得热量是指进入建筑物的总量,它们以导热、对流、辐射、空气间热交换等方式进入建筑。 系统热负荷应根据房间得、失热量的平衡进行计算,即 房间热负荷=房间失热量总和-房间得热量总和 房间的失热量包括: 1)围护结构传热量Q1; 2)加热油门、窗缝隙渗入室内的冷空气的耗热量Q2; 3)加热油门、孔洞和其他相邻房间侵入的冷空气的耗热量Q3; 4)加热由外部运入的冷物料和运输工具的耗热量Q4; 5)水分蒸发的耗热量Q5; 6)加热由于通风进入室内冷空气的耗热量Q6; 7)通过其他途径散失的热量Q7; 房间的得热量包括: 1)太阳辐射进入房间的热量Q8; 2)非供暖系统的管道和其他热表面的散热量Q9; 3)热物料的散热量Q10; 4)生产车间最小负荷班的工艺设备散热量Q11; 5)通过其他途径获得的散热量Q12; 1.1围护结构的基本耗热量 a t t KF q w n )(''-= 式中 ' q —围护结构的基本耗热量,W ; K —围护结构的传热系数,w/(㎡.℃); F —围护结构的面积,㎡; w t ' —供暖室外计算温度,℃; n t —冬季室内计算温度,℃; a —围护结构的温差修正系数。 整个建筑物的基本耗热量等于各个部分围护结构的基本耗热量的总和: ) (Q ' '' 1w n t t KF q -==∑∑ 1.2围护结构的附加耗热量 在实际中,气象条件和建筑物的结构特点都会影响基本耗热量使其发生变化,此时需要对基本耗热量加以修正,这些修正耗热量称为围护结构附加耗热量。附加耗热量主要有朝向修正,风力附加和高度附加耗热量。 1.2.1朝向修正耗热量 朝向修正耗热量是太阳辐射对建筑围护耗热量的修正。

采暖热负荷计算

采暖热负荷计算 采暖负荷计算流程示意图 转条件图(ZTJT) 区分外 搜索房间(T66_TUpdSpace) 缺省设置(DVS) 采暖热负荷 计算原理说明 参考文献 采暖负荷计算流程示意图

转条件图(ZTJT) 菜单位置:【计算】→【转条件图】 功能:转暖通条件图。 在菜单上点取该命令,出现”建筑转暖通条件图”对话框

建筑转暖通条件图对话框 将需要删除的建筑底图容的对应选择标志清除,然后点击【确认】按钮,再选择转换围,将建筑条件图转换为暖通条件图。 说明: [1]、计算空调冷负荷和采暖热负荷时,建议将[柱]删除,这样在自动提取 房间数据时会墙中心线的净面积进行计算,这样算出的负荷会更趋于安全。 [2]、在进行负荷计算时,必须保留墙、门窗和房间的底图信息。 区分外 如果建筑底图中的墙体没有区分外,则此时需要用户进行外墙区分。 [区分外]菜单下提供了三个功能: 识别外(T66_TMarkWall) 指定外墙(T66_TmarkExtWall) 指定墙(T66_TmarkIntWall) 识别外(T66_TMarkWall) 菜单位置:【计算】→【区分类外】→【识别类外】 功能:自动识别外。 在菜单上点取该命令,命令行提示: 请选择一栋建筑物的所有墙体(或门窗):

识别出的外墙用红色的虚线示意. 用于自动识别、外墙。点击[识别外]后,框选要识别的墙体围。 指定外墙(T66_TmarkExtWall) 菜单位置:【计算】→【区分类外】→【指定外墙】 功能:自行指定外墙。 如果自动识别的外墙不是十分准确,则可点击指定外墙,选择指定为外墙的墙体,自行指定外墙。 指定墙(T66_TmarkIntWall) 菜单位置:【计算】→【区分类外】→【指定墙】 功能:自行指定墙。 如果自动识别的外墙不是十分准确,则可点击[指定外墙],选择指定为外墙 的墙体,自行指定外墙。 区分外菜单 说明: 在用户指定了外墙之后,在进行楼层数据提取时,软件会自动的区分墙和 外墙,这样会明显的减少用户的输入操作。 搜索房间(T66_TUpdSpace) 菜单位置:【计算】→【搜索房间】 功能:自行指定墙。 在菜单上点取该命令,命令行提示: 请选择构成一完整建筑物的所有墙体(或门窗): 房间起始编号<1001>:

国内外汽车动力电池管理系统(BMS)发展概况

引言 电池的性能和使用寿命直接决定了电动汽车的性能和成本,因此,如何提高电池的性能和寿命得到了各方面的重视。电动汽车上使用的动力电池是由多个电池单体通过串并联方式组成电池组,电池单体都紧密地布置在一起,在进行充放电时,各个电池单体所产生的热量互相影响,如果散热不均匀,将造成电池组局部温度快速上升,使电池的一致性恶化,使用寿命大大缩短,严重时会造成某些电池单体热失控,产生比较严重的事故。当动力电池处于低温环境中,电池的充放电性能会大大降低,导致电池无法正常工作。为了使动力电池组保持在合理的温度范围内工作,电池组必须拥有科学和高效的热管理系统。目前,国内外的许多研究人员对电池组的热管理系统做了大量的研究,进行了一些新的探索,以期提高热管理系统的控制效果,从而提高电动汽车电池组的性能和使用寿命。 国内外汽车动力电池管理系统(BMS)发展概况 目前,影响电动汽车推广应用的主要因素包括动力电池的安全性和使用成本问题,延长电池的使用寿命是降低使用成本的有效途径之一为确保电池性能良好,延长电池使用寿命,必须对电池进行合理有效的管理和控制,为此,国内外均投入大量的人力物力开展广泛深入的研究。 日本青森工业研究中心从1997年开始至今,持续进行(BMS)实际应用的研究,丰田、本田以及通用汽车公司等都把BMS纳入技术开发的重点;美国Villanova大学和USNanocorp公司已经合作多年对各种类型的电池SOC进行基于模糊逻辑的预测; 韩国Ajou大学和先进工程研究院开发的BMS系统的组成结构及其相互逻辑关系。该系统在上述结构中进行功能扩展,即增设热管理系统、安全装置、充电系统以及与PC机的通信联系。另外还增加与电动机控制器的通信联系,实现能量制动反馈和最

相关主题
文本预览
相关文档 最新文档