当前位置:文档之家› 温度测量及控制实验

温度测量及控制实验

温度测量及控制实验
温度测量及控制实验

温度测量及控制实验

一、实验目的

1、了解热电阻或热电偶等温度传感器的工作原理和与工作特性;

2、学习PID控制方法和原理,加深对各式温度传感器工作特性的认识。

二、实验原理

PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正温度系数热敏电阻传感器,具有抗振动、稳定性好、准确度高、耐高压等优点。其电阻和温度变化的关系式如下:R=R0(1+αT)

其中α=0.00392,R0为100Ω(在0℃的电阻值),T为摄氏温度

依据1821年塞贝克发现的热电现象,即:当两种不同的导体或半导体接成闭合回路时,如果它们的两端接点的温度不同,则在该回路中就会产生电流。这表明回路中存在电动势,称为塞贝克温差电势,简称热电势。

K型热电偶是以镍铬合金为正极,镍硅合金为负极的两导体的一端焊接而成的。这两根导体的焊接端称为K型的热电极,其焊接端为热端,非焊接端为冷端。在进行温度测量时,将插入被测的物体介质中,使其热端感受到被测介质的温度,其冷端置于恒定的温度下,并用连接导线连接电气测量仪表。由于两端所处的温度不同,在回路中就会产生热电势,在保持冷端温度不变的情况下,产生的热电势只随其热端温度而变化。因此,用电气测量仪表测得热电势的数值后,便可求出对应的温度数值。由于这种合金具有较好的高温抗氧化性,可适用于氧化性或中性介质中。K型热电偶能测量较高温度,可长期测量1000度的高温,短期可测到1200度。

1.系统框图

控制系统的主要工作过程是:用户在人机界面上设置目标温度及各个控制参数,热电偶测量被控对象的温度信号,经过EM231热电偶模拟量输入模块转换为标准的数字量,PLC作出相应的数字处理,并进行PID控制的运算。在固态继电器输出方式下通过输出过程映像寄存器发出PWM波来驱动固态继电器控制加热器工作。在调压模块输出方式下通过模拟量输出模块EM232驱动调压模块控制加热器工作。

2.固态继电器调压原理

(1) 上升时间tr

(2) 峰值时间tp

(3) 超调量Mp

在本实验中,超调量为最大偏差/设定温度,为百分

比形式。

(4) 调整时间ts

三、实验步骤

1、在实验室使用的是一个1000W的加热器,加热水量约为600mL。为了节省实验时间我们首先将设定温度设置为40度,待温度基本稳定后记录从40度加热到60度时的各个过程参数。

2、进入触摸屏“PID加热控制”,设置合适的PID参数,点击“加热”按钮开始加热。

3、进入触摸屏“过程曲线监控”或者“过程变量监控”对加热过程进行监控,摘抄数据。

4、同时在电脑Setp 7 MicroWIN软件上监控。在菜单栏“工具”调出“PID调节控制面板”,这个曲线可以保存无数个点,能完整地显示整条温度曲线,方便截图。

四、实验数据处理

1、设置不同的参数,操作并填写下表1实验数据:

表1 实验过程相关数据

设定参数由40度到60度测量参数

Kp Ti(分) Td(分) 最大偏差(度) 超调量% 上升时间(秒) 峰值时间(秒)

20 2 0 0.5 0.83% 280s 340s

40 1 0 0.6 1.00% 290s 310s

50 2 0 0.8 1.33% 420s 480s

80 8 0 1.2 2.00% 580s 650s

设定不同参数的实验曲线如下:

①增益20,积分时间2min,微分时间0min

②增益40,积分时间1min,微分时间0min

③增益50,积分时间2min,微分时间0min

④增益80,积分时间8min,微分时间0min

由于实验曲线难以放大观察,在改变参数之后,各曲线的基本趋势很相似;另外,读取上升时间与峰值时间时误差也比较大。

在一定范围内,比较1、3曲线,可知:当调高增益Kp时,系统反应的最大偏差增大,上升时间与峰值时间也都增大;综合比较4组数据,可知:当调高积分时间Ti时,系统反应的最大偏差同样增大,上升时间与峰值时间也都增大。

2、利用温控系统设计不同的目标温度,测量PT100热电阻在不同温度下的阻值,分析其工作原理。

表2 PT100实验测量数据

温度(℃)45 50 55 60 65 70 75 80 85 90 94.6 阻值(Ω)112.7 114.4 116.2 117.8 119.5 121.3 122.8 124.6 126.2 127.9 129.6

根据数据画出曲线如下:

由图可看出:在一定范围内,PT100热电阻的阻值与温度成正比例关系,这是因为PT100热电阻属于正温度系数热敏电阻。当温度升高时,阻值随着增大。

五、思考题

1、根据实验结果查询并比较热电偶和热电阻传感器的工作原理和应用特性。

答:

热电偶传感器

工作原理:利用塞贝克效应制造的一种传感器,当将另一端温度保持一定时,那么回路的热电动势则变成测量端温度的单值函数。

应用特征:测量范围广,准确度高,能适应各种测量对象的要求(特定部位或狭小场所),适于远距离测量和控制。但测量时必须有参考端,并且温度要保持恒定。

热电阻传感器

工作原理:利用物质在温度变化时自身电阻也随着发生变化的特性来测量温度。

应用特征:在所有常用温度计中,准确度最高,可达1mk。输出信号大,灵敏度高。测量时无需参考点,温度值可由测得的电阻值直接求出。但其热响应时间长,不适宜测量体积狭小和温度瞬变区域。

2、P(增益Kp)和Ti(积分时间)参数对加热控制效果有何影响?

答:P和Ti参数的增大都会使系统的超调量和反应时间增大。所以,当这些参数增大到超过合适的范围后,系统的加热效果变得不稳定。

3、增益越大,上升时间就越短吗?如果不是,什么原因导致了这种误差?

答:由实验曲线1、3可看出,当增益增大时,上升时间不但没有变短,反而是变长,这可能是由于水的比热容较大,温度稳定性较好,因此表现出来的水温反应时间差异不大。

六、实验心得

实验时,我们小组分工明确,将各项实验操作分给各组员去完成,如设置参数、截图、换水、测电阻、读数据、记录数据等。

通过此次实验的学习,我明白了热电阻和热电偶传感器的工作原理和与工作特性,它们的原理都很简单。利用温度传感器设置了一个PID控制水温的方法,这让我再一次熟悉了之前所学的自动控制原理中的知识点。

现代检测技术 实验四__K热电偶测温性能实验

检测技术实验报告 院(系):自动化专业:自动化姓名:学号: 同组人员: 评定成绩:评阅教师:

K热电偶测温性能实验 一、实验目的: 了解热电偶测温原理及方法和应用。 二、基本原理: 热电偶测量温度的基本原理是热电效应。将A和B二种不同的导体首尾相连组成闭合回路,如果二连接点温度(T,T0)不同,则在回路中就会产生热电动势,形成热电流,这就是热电效应。热电偶就是将A和B二种不同的金属材料一端焊接而成。A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊接的一端(接引线)处在温度T0称为自由端或参考端,也称冷端。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度(见附录)表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。 三、需用器件与单元: 主机箱、温度源、P t100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。 四、实验步骤: 热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;E(镍铬-康铜),偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。 热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电

智能型温度测量控制系统

河北农业大学 毕业论文﹙设计﹚开题报告 题目智能型温度测量控制系统-开题报告 学生姓名学号 所在院(系)信息工程学院 专业班级通信工程2010140 指导教师 2014年02月23日

题目基于单片机的温度控制系统设计 一、选题的目的及研究意义 温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用,是工业对象中主要的被控参数之一。在单片机温度测量系统中的关键是测量温度、控制温度和保持温度。在日常生活中,也可广泛实用于地热、空调器、电加热器等各种家庭室温测量及工业设备温度测量场合。随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。近年来,温度的检测在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。这次毕业设计选题的目的主要是让生活在信息时代的我们,将所学知识应用于生产生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。通过对温度控制通信系统的设计、制作、了解信息采集测试、控制的全过程,提高在电子工程设计和实际操作方面的综合能力,初步培养在完成工程项目中所应具备的基本素质和要求。培养研发能力,通过对电子电路的设计,初步掌握在给定条件和要求的情况下,如何达到以最经济实用的方法、巧妙合理地去设计工程系统中的某一部分电路,并将其连接到系统中去。提高查阅资料、语言表达能力和理论联系实际的技能。 当今社会温度的测量与控制系统在生产与生活的各个领域中扮着越来越重要的角色,大到工业冶炼,物质分离,环境检测,电力机房,冷冻库,粮仓,医疗卫生等方面,小到家庭冰箱,空调,电饭煲,太阳能热水器等方面都得到了广泛的应用,温度控制系统的广泛应用也使得这方面研究意义非常的重要。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。在今后的温控系统的研究中会趋于智能化,集成化,系统的各项性能指标更准确,更加稳定可靠。应用领域非常的广泛,①冷冻库,粮仓,储罐,电信机房,电力机房,电缆线槽等测温和控制领域。 ②轴瓦,缸体,纺机,空调等狭小空间工业设备测温和控制。③汽车空调,冰箱,冷柜以及中低温干燥箱等。④太阳能供热,制冷管道热量计量,中央空调分户热能计量等。温度是一种最基本的环

温度测量实验报告

温度测量实验报告 上海交通大学材料科学与工程学院 实验目的 1.掌握炉温实时控制系统结构图及其电压控制原理; 2.通过数据采集板卡,对温度信号(输入为电压模拟量)采集和滤波; 3.通过数据采集板卡,输出模拟电压量到调节器; 4.通过观测温度曲线,实施手动调节输出电压,使得温度曲线与理想波形尽量接近; 5.用增量式PID控制算法控制炉温曲线。 实验原理 (一)炉温实时控制系统结构图 (二)输出控制电压与工作电压的关系 加热炉加热电压=板卡输出控制电压×220 10 (三)电压控制原理 (四)温度与电压的关系

温度=电压× 700℃ (五)PID控制算法公式 ?u k= Ae k? Be k ? 1+ Ce(k ? 2) 其中:A=K P(1+ T T I + T D T );B=K P(1+2T D T );C=K P T D T 。 u k=u k ? 1+ ?u(k) 手动控制炉温参数选择及理由 加热电压:4V 理由:本套实验装置加热速度很快,若加热电压过高(高于5V)则会导致升温过快从而有可能损坏实验装置,而若加热电压过低则会导致升温过慢,浪费时间。综合实际情况以及上述分析,本组成员决定将加热电压设置为4V。 PID炉温控制参数选择及理由 表1 PID炉温控制参数 选取理由 周期:由于温度滞后性较大,因此周期应当大一些。此处本组采用了推荐值0.2s。 K P:由实际经验可知,K P的最佳范围在0.5-1.5之间。此处本组取了中间值1。 T I:实际操作过程中,本组同学发现若T I较小,超调量就会很大。所以这里将T I取得大一些,设置为20s。T D:小组成员发现炉温滞后现象非常严重,因此T D不得不调大一些,取成0.9s。

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

实验探究一用常见温度计测温度

■实验探究一用常见温度计测温度 ★实验准备 1、(1)实验室用温度计、体温计、寒暑表的图片 2)观察比较三种液体温度计

补充:体温计在使用之前先将体温计的水银汞柱甩到35℃以下及读数时可离开人体的原因:体温计盛水银的玻璃泡上方有一段非常细的缩口, 测体温时水银膨 胀能通过缩口升到上面的玻璃泡里,读数时体温计离开人体,水银变冷收缩, 在缩口处断开,水银柱不能退回玻璃泡,仍然指示原来的温度,所以体温计虽然离开了人体, 表示的还是人体的温度,体温计的量程是35℃—42℃。所以,在使用之前要使已经升上去的水银再退回玻璃泡里, 要先将体温计的水银汞柱甩到35℃以下(其他温度计不允许甩)。 2、3、略。 ★实验课题在实验室用温度计测出冷水、温水、热水的温度 1、实验器材:温度计、分别装有冷水、温水、热水的三个烧杯; 2、实验要求: (1)检查器材,看器材是否符合实验要求,器材是否齐全; (2)观测器材,看温度计的量程和分度值,记录数据; (3)估测冷水、温水、热水的温度,记录数据; (4)用温度计测量冷水、温水、热水的温度,操作正确,记录数据; (5)整理器材。 3、实验步骤

问题探讨:为什么不能用体温度测量热水的温度?因为热水的温度一般要超过体温计的量程,体温计会损坏。 温度与温度计习题 一、选择题(本大题共5小题,每题3分,共15分) 1.(2014 ·滨湖区质检) 下列关于温度的描述中符合实际的是( ) A.人体的正常温度为37℃ B.冰箱冷冻室的温度为10℃ C.饺子煮熟即将出锅时温度为50℃ D.加冰的橙汁饮料温度为-20 ℃ 【解析】选A。本题考查温度的估测。人体的正常温度为37℃, 冰箱冷冻室的温度低于0℃。1 标准大气压下水的沸点是100℃,故饺子煮熟即将出锅时的温度与沸水温度相同, 为100℃。加冰的橙汁饮料为冰水混合物, 温度为0℃。 2.(2014 ·连云港岗埠期中)体温计的测量精度可达到0.1℃, 这是因为( ) A.体温计的玻璃泡的容积比细管的容积大得多 B.体温计的测量范围只有35~42℃ C.体温计的玻璃泡附近有一段弯曲的细管 D.体温计比较短 【解析】选A。本题考查体温计的构造。体温计和常用温度计相比, 前者内径很细,而下端的玻璃泡则很大,使得有微小的温度变化,即吸收很少的热量, 管中水银上升的高度会非常明显, 所以可以测量得更为精密。 3.(2013 ·郴州中考)我国在高温超导研究领域处于世界领先地位, 早已获得绝对温度为100 K 的高温超导材料。绝对温度(T) 与摄氏温度的关系是T=(t+273)K, 绝对温度100 K 相当于( ) A.-173 ℃ B.-100 ℃ C.273℃ D.100℃ 【解析】选A。本题考查绝对温度与摄氏温度的关系。由T=(t+273)K 可

基于NTC热敏电阻的温度测量与控制系统设计(论文)

题目名称:基于NTC热敏电阻的温度测量与控 制系统设计 摘要:本系统由TL431精密基准电压,NTC热敏电阻(MF-55)的温度采集,A/D和D/A转换,单片机STC89C51为核心的最小控制系统,LCD1602的显示电路等构成。温度值的线性转换通过软件的插值方法实现。该系统能够测量范围为0~100℃,测量精度±1℃,并且能够记录24小时内每间隔30分钟温度值,并能够回调选定时刻的温度值,能计算并实时显示24小时内的平均温度、温度最大值、最小值、最大温差,且有越限报警功能。由于采用两个水泥电阻作为控温元件,更有效的增加了温度控制功能。 关键词: NTC TL431 温度线性转换 Abstract: The system is composed of TL431 as precise voltage,the temperature acauisition circuit with NTC thermistors (MF-55), the transform circuit of A/D and D/A, the core of the minimum control system with STC89C51, 1the display circuit usingLCD1602, etc. Get the temperature of the linear transformation by the software method. The range of the measure system is 0 ~ 100 ℃, measurement accuracy + 1 ℃.It can record 24 hours of each interval temperature by per 30 minutes selected of temperature.The time can be calculated and real-time display within 24 hours of the average temperature, maximum temperature and minimum temperature, maximum value, and each temperature sensor has more all the way limit alarm function. Due to the two cement resistance as temperature control components, the more effective increase the temperature control function. Keyword: NTC TL431 temperature linear conversion

热电偶测温系统实验报告材料书

热电偶测温系统 实验报告书 班级:铁道自动化091班 小组成员:何俊峰、严云钧、王鹏远、倪森 瑜、康宁

目录 一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 2热电偶的补偿方法 3热电偶的实际应用 二热电偶测温系统的相关介绍 1线路原理图 2主要原件及其作用 3调试方法及其注意事项 三实验收尾及总结报告 1处理实验数据 2 实验总结

一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 (1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度 (2)分类:(S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S

居里温度的测定_实验报告

钙钛矿锰氧化物居里温度的测定 物理学院 111120160 徐聪 摘要:本文阐述了居里温度的物理意义及测量方法,测定了钙钛矿锰氧化物样品 在不同实验条件下的居里温度,最后对本实验进行了讨论。 关键词:居里温度,钙钛矿锰氧化物,磁化强度,交换作用 1. 引言 磁性材料的自发磁化来自磁性电子间的交换作用。在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。但是随着温度升高,原子热运动能量增大,逐步破坏磁性材料内部的原子磁矩的有序排列,当升高到一定温度时,热运动能和交换作用能量相等,原子磁矩的有序排列不复存在,强磁性消失,材料呈现顺磁性,此即居里温度。 不同材料的居里温度是不同的。材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。因此,深入研究和测定材料的居里温度有着重要意义。 2.居里温度的测量方法 测量材料的居里温度可以采用许多方法。常用的测量方法有: (1)通过测量材料的饱和磁化强度的温度依赖性得到曲线,从而得到降为零时对应的居里温度。这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及等。 (2)通过测定样品材料在弱磁场下的初始磁导率的温度依赖性,利用霍普金森效应,确定居里温度。 (3)通过测量其他磁学量(如磁致伸缩系数等)的温度依赖性求得居里温度。 (4)通过测定一些非磁学量如比热、电阻温度系数、热电势等随温度的变化,随后根据这些非磁学量在居里温度附近的反常转折点来确定居里温度。 3. 钙钛矿锰氧化物 钙钛矿锰氧化物指的是成分为(R是二价稀土金属离子,为一价碱土金属离子)的一大类具有型钙钛矿结构的锰氧化物。理想的型(为稀土或碱土金属离子,为离子)钙钛矿具有空间群为的立方结构,如以稀土离子作为立方晶格的顶点,则离子和离子分别处在体心和面心的位置,同时,离子又位于六个氧离子组成的八面体的重心,如图1(a)所示。图1(b)则是以离子为立

温度检测与控制实验报告材料

实验三十二温度传感器温度控制实验 一、实验目的 1.了解温度传感器电路的工作原理 2.了解温度控制的基本原理 3.掌握一线总线接口的使用 二、实验说明 这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。 1.DALLAS最新单线数字温度传感器DS18B20简介 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压围,使系统设计更灵活、方便。 DS18B20测量温度围为 -55°C~+125°C,在-10~+85°C围,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。 DS18B20部结构 DS18B20部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接 着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验 码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样 就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 232221202-12-22-32-4 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 S S S S S 262524这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的

温度测量与控制电路

《电子技术》课程设计报告 题目温度测量与控制电路 学院(部)电子与控制工程学院 专业电子科学与技术 班级 学生姓名郭鹏 学号 13 指导教师(签字) 前言 随着数字时代的到来,人们对于温度的测量与控制的要求越来越高,用传统的水银或酒精温度计来测量温度,不仅测量时间长、读数不方便、精度不够高而且功能单一,已经不能满足人们在数字化时代的要求。于是我们提出,测温电路利用温度传感器监测外界温度的变化,通过放大器将温度传感器接收到的信号进行放大,放大到比较有利于我们测量的温度范围,然后利用A/D转换器实现模拟信号到数字信号的转换,最后通过编程让FPGA实现8位二进制数与BCD码之间的转化,实现温度的显示;并利用比较器来实现对放大电压信号的控制,从而实现对温度的控制;再者还加载了报警装置,使它的功能更加完善,使用更加方便。

本设计是采用了温度的测量、信号放大、A/D转换、温度的显示、温度的控制、报警装置六部分来具体实现上述目的。 目录 摘要与设计要求 (4) 第一章:系统概述 (5) 第二章:单元电路设计与分析 (5) 1) 方案选择 (5) 2)设计原理与参考电路 (6) 1 放大电路 (6) 2 低通滤波电路 (7) 3 温度控制电路 (8) 4 报警电路 (9) 5 A/D转换器 (10)

6 译码电路 (11) 第三章:系统综述、总体电路图 (14) 第四章:结束语 (15) 参考文献 (15) 元器件明细表 (15) 收获与体会,存在的问题等 (16) 温度测量与控制电路 摘要: 利用传感器对于外界的温度信号进行收集,收集到的信号通过集成运算放大器进行信号放大,放大后的信号经过A/D转换器实现模拟信号与数字信号间的转换,再通过FPGA编程所实现的功能将转换后的数字信号在数码管上显示出来,实现温度测量过程。放大的信号可以与所预定的温度范围进行比较,如果超出预定范围,则自动实现声光报警功能,实现温度控制过程。 关键字:温度测量温度控制信号放大 A/D转换声光报警 设计要求: 1. 测量温度范围为200C~1650C,精度 0.50C; 2. 被测量温度与控制温度均可数字显示; 3. 控制温度连续可调; 4. 温度超过设定值时,产生声光报警。

基于单片机的温度测量控制系统设计

基于单片机的温度测量控制系统设计

目录 1引言 (2) 1.1问题的提出…………………………………………………………… (2) 1.1.1什么是温度控制…………………………………………………………… (2) 1.2设计目的…………………………………………………………… (2) 2设计方案 (3) 2.1硬件设计方案…………………………………………………………… (3) 2.2软件设计方案…………………………………………………………… (3) 3硬件设计 (5) 3.1主控制部分AT89S51的设计方案 (5) 3.2温度采集模块…………………………………………………………… (7) 3.3显示模块…………………………………………………………… (7) 4软件设计 (9) 4.1温度采集…………………………………………………………… (9) 4.2键盘输入…………………………………………………………… (10) 4.3 LCD显

示…………………………………………………………… (11) 5总结 (12) 6参考文献 (15) 附录1设计原理图 (14) 附录2设计程序 (15)

1引言 1.1问题的提出 温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。 1.1.1什么是温度控制 温度控制系统由温控器和热电偶组成,热电偶检测温度并转换成电信号传给温控器,温控器根据所设定的温度发出控制信号,温度高于设定温度上限停止加热系统或开启降温系统,低于设定温度下线停止降温系统或开启加热系统。 1.2设计目的 本设计以AT89C51单片机为核心的温度控制系统的工作原理和设计方法。温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。由键盘输入预设温度,比较实际环境温度与预设温度再由单片机做出相应的处理已以达到温度控制的目的。

DS18B20温度测量与控制实验报告

课程实训报告 《单片机技术开发》 专业:机电一体化技术 班级: 104201 学号: 10420134 姓名:杨泽润 浙江交通职业技术学院机电学院 2012年5月29日

目录 一、DS18B20温度测量与控制实验目的…………………… 二、DS18B20温度测量与控制实验说明…………………… 三、DS18B20温度测量与控制实验框图与步骤…………………… 四、DS18B20温度测量与控制实验清单…………………… 五、DS18B20温度测量与控制实验原理图………………… 六、DS18B20温度测量与控制实验实训小结………………

1.了解单总线器件的编程方法。 2.了解温度测量的原理,掌握DS18B20 的使用。

本实验系统采用的温度传感器DS18B20是美国DALLAS公司推出的增强型单总线数字温度传感器。 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。DS18B20测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然 保存。 DS18B20 内部结构 DS18B20 内部结构主要由四部分组成:64 位光刻ROM、温 度传感器、非挥发的温度报警触发器TH 和TL、配置寄存器。 DS18B20 的管脚排列如下: DQ 为数字信号输入/输出端;GND 为电源地;VDD 为外接 供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM 中的64 位序列号是出厂前被光刻好的,它可以 看作是该DS18B20 的地址序列码。64 位光刻ROM 的排列是: 开始8 位(28H)是产品类型标号,接着的48 位是该DS18B20 自身的序列号,最后8 位是前面56 位的循环冗余校验码 (CRC=X8+X5+X4+1)。光刻OMR 的作用是使每一个DS18B20 都各不相同,这样就可以实现一根总线上挂接多个DS18B20 的目 的。 DS18B20 中的温度传感器可完成对温度的测量,以12 位转化为例:用16 位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S 为符号位。 这是12 位转化后得到的12 位数据,存储在18B20的两个8 比特的RAM 中,二进制中的前面5 位是符号位,如果测得的温度大于0,这5 位为0,只要将测到的数值乘于0.0625 即可得到实际温度;如果温度小于0,这5 位为1,测到的数值需要取反加 1 再乘于0.0625 即可得到实际温度。

温湿度检测控制系统

1 前言 温度和湿度的检测和控制是许多行业的重要工作之一,不论是货品仓库、生产车间,都需要有规定的温度和湿度,然而温度和湿度却是最不易保障的指标,针对这一情况,研制可靠且实用的温度和湿度检测与控制系统就显得非常重要。 温湿度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用。在生产中,温湿度的高低对产品的质量影响很大。由于温湿度的检测控制不当,可能使我们导致无法估计的经济损失。为保证日常工作的顺利进行,首要问题是加强生产车间温度与湿度的监测工作,但传统的方法过于粗糙,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。目前,在低温条件下(通常指100℃以下),温湿度的测量已经相对成熟。利用新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发。但人们对它的要求越来越高,要为现代人工作、科研、学习、生活提供更好的更方便的设施就需要从数字单片机技术入手,一切向着数字化,智能化控制方向发展。 对于国外对温湿度检测的研究,从复杂模拟量检测到现在的数字智能化检测越发的成熟,随着科技的进步,现在的对于温湿度研究,检测系统向着智能化、小型化、低功耗的方向发展。在发展过程中,以单片机为核心的温湿度控制系统发展为体积小、操作简单、量程宽、性能稳定、测量精度高,等诸多优点在生产生活的各个方面实现着至关重要的作用。 温湿度传感器除电阻式、电容式湿敏元件之外,还有电解质离子型湿敏元件、重量型湿敏元件(利用感湿膜重量的变化来改变振荡频率)、光强型湿敏元件、声表面波湿敏元件等。湿敏元件的线性度及抗污染性差,在检测环境湿度时,湿敏元件要长期暴露在待测环境中,很容易被污染而影响其测量精度及长期稳定性。 2002年Sensiron公司在世界上率先研制成功SHT10型智能化温度/温度传感器,体积与火柴头相近。它们不仅能准确测量相对温度,还能测量温度和露点。测量相对温度的围是0~100%,分辨力达0.03%RH,最高精度为±2%RH。测量温度的围是-40℃~

温度测量与控制-课程设计

赣南师院物理与电子信息学院感测技术课程设计报告书 题目:温度测量与控制 姓名: 班级: 指导老师: 时间: 一、系统功能 本温度控制器可以实现以下的功能:

(1)采集温度,并通过LED数码管显示当前温度。LED数码管显示温度格式为四位,精确度可达±0.1℃。例如:25℃显示为025.0。 (2)通过按键可自由设定温度的上下限,并能在LED数码管显示设定的温度上下限值。 (3)通过控制三极管的导通与否来控制继电器的关断,继而控制外部加热(电烙铁升温)和制冷(小型电风扇降温)装置,使环境温度保持设定温度范围内。(4)具有温度报警装置。当温度高于上限值,红灯亮起;或者低于下限值,黄灯亮起,并发出报警声。 二、系统原理框图 2.1 系统总体方案 该温度控制器的系统总体方框图如图1所示。该系统主要包含DS18B20温度采集电路、输入控制电路、晶振复位电路、数码管显示电路、继电器控制电路,等外围电路组成。 图1 系统总体方框图 2.2 系统原理图

图2 系统原理图 三、传感器的选用和介绍 综合各方面考虑,本设计我们选择的温度传感器是DS18B20。 3.1 DS18B20的主要特性 DS18B20的主要特性如下。 1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电。 2)在使用时不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内。 3)独特的单线接口方式:DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通信。 4)测温范围:-55℃~+125℃,在-10~+85℃时精度为±0.5℃。 5)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温。 6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温。 7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最

温度测量及控制实验

温度测量及控制实验 一、实验目的 1、了解热电阻或热电偶等温度传感器的工作原理和与工作特性; 2、学习PID控制方法和原理,加深对各式温度传感器工作特性的认识。 二、实验原理 PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正温度系数热敏电阻传感器,具有抗振动、稳定性好、准确度高、耐高压等优点。其电阻和温度变化的关系式如下:R=R0(1+αT) 其中α=0.00392,R0为100Ω(在0℃的电阻值),T为摄氏温度 依据1821年塞贝克发现的热电现象,即:当两种不同的导体或半导体接成闭合回路时,如果它们的两端接点的温度不同,则在该回路中就会产生电流。这表明回路中存在电动势,称为塞贝克温差电势,简称热电势。 K型热电偶是以镍铬合金为正极,镍硅合金为负极的两导体的一端焊接而成的。这两根导体的焊接端称为K型的热电极,其焊接端为热端,非焊接端为冷端。在进行温度测量时,将插入被测的物体介质中,使其热端感受到被测介质的温度,其冷端置于恒定的温度下,并用连接导线连接电气测量仪表。由于两端所处的温度不同,在回路中就会产生热电势,在保持冷端温度不变的情况下,产生的热电势只随其热端温度而变化。因此,用电气测量仪表测得热电势的数值后,便可求出对应的温度数值。由于这种合金具有较好的高温抗氧化性,可适用于氧化性或中性介质中。K型热电偶能测量较高温度,可长期测量1000度的高温,短期可测到1200度。 1.系统框图 控制系统的主要工作过程是:用户在人机界面上设置目标温度及各个控制参数,热电偶测量被控对象的温度信号,经过EM231热电偶模拟量输入模块转换为标准的数字量,PLC作出相应的数字处理,并进行PID控制的运算。在固态继电器输出方式下通过输出过程映像寄存器发出PWM波来驱动固态继电器控制加热器工作。在调压模块输出方式下通过模拟量输出模块EM232驱动调压模块控制加热器工作。

温度测量控制系统的设计与制作

安阳师范学院 课程设计报告 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计和制作学号:101102041 学生姓名:刘亚敏 指导老师:李建法 日期:2011/12/14

目录 一、模拟电子技术课程设计的目的和要求...................... - 1 - 二、课程设计名称及设计要求................................ - 1 - 三、总体设计思想.......................................... - 1 - 四、系统框图及简要说明.................................... - 1 - 五、单元电路设计(原理、芯片、参数计算等)................ - 2 - 六、总体电路:............................................ - 6 - 七、仿真结果:............................................ - 6 - 八、实际测量数据分析...................................... - 7 - 九、设计感想.............................................. - 7 - 附录1:元器件清单......................................... - 8 - 附录2:参考文献........................................... - 8 -

最新长安大学电子课程设计(温度测量与控制)

长安大学 电子技术课程设计 (温度测量与控制电路) 专业电气工程及其自动化 班级32040901 姓名李朝 指导教师田莉娟 日期2011年6月30日

前言 温度测量与控制电路广泛应用于生产生活中的各个方面,特别是在工业生产中,温度自动控制已经成为一个相当成熟的技术。本次课程设计给我们创造了良好的学习机会:一是查阅资料将自己所学的数字电子技术,模拟电子技术,以及传感器的相关知识综合运用,二是系统了解温度监测特别是工业上的温度控制的详细过程,为日后的学习和工作增长知识,积累经验。 在确定课设题目,经仔细分析问题后,实现温度的测量与控制方法很多,大致可以分为两大类型,一种是以单片机为主的软硬件结合方式,另一种是用简单芯片构成实现电路。由于单片机知识的匮乏,我们决定用后者实现。共同确定了总的电路结构,将设计分为三部分,李朝负责温度传感部分,谌新力负责温度显示和温度范围控制部分,肖阳负责温度控制执行电路和声光报警部分。温度传感部分由热电偶构成的温度传感器,数字显示和设定控制部分由模数转换器AD574A、281024 CMOS EEPROM、锁存器74LS175等组成,声光报警和温控加热降温执行电路主要用时基芯片555构成的多谐振荡器和单稳态电路组成。在确定了单元电路的设计方案后,我们在总结出总体方案框图的基础上,应用Multisim11.0仿真软件画出了各单元模块电路图,最后汇总电路图。 由于缺少实践经验,并且知识有限,所以本次设计中难免存在缺点和错误,敬请老师批评指正。 李朝 2010年6月20日

目录 温度测量与控制电路 (4) 摘要 (4) 一、系统综述和总体方案论证与选择 (5) 二、单元电路设计 (6) (一)温度传感模块 (6) (2)冷接点温度补偿方法的选择 (11) (3)滤波方法的讨论 (16) (4)电路的改进 (17) (5)仿真模拟 (18) (二)声光报警 (20) (三)温度控制执行 (21) 三、结束语 (21) 四、参考文献 (22) 五、元器件明细 (23) 六、收获体会 (31) 七、鸣谢 (32) 八、【附录】 (32) 评语 ..................................................................................................... 错误!未定义书签。

(完整版)红外测温实验报告

红外测温方法 1.温度测量的基本概念 温度是度量物体冷热程度的物理量。在生产生活和科学实验中占有重要的地位。是国际单位之中的基本物理量之一。从能量角度来看,温度是描述系统不同自由度的能量发布状况的物理量。从热平衡角度来看,温度是描述热平衡系统冷热程度的物理量。从微观上看,温度温度标志着系统内部分子无规则运动的剧烈程度。温度高的物体分子平均动能大,温度低的无题分子平均动能小。早期人们凭感觉出发,凭感觉到的冷热程度来区别温度的高低,这样的出来的结果不准确。研究表明,几乎所有的物质性质都与温度有关。例如尺寸,体积,密度,硬度,弹性模量,破坏强度,电导率,导磁率,光辐射强度等。利用这些性质及其随温度变化规律可进行温度测量。也就是说,温度只能通过物体随温度变化的某些特征来间接测量。而用来测量温度的尺标称为温标。它规定了温度的读数起点(零点)和基本单位。目前国际上用的较多的是华氏温标,摄氏温标,热力学温标和国际实用温标。 2. 红外测温原理,方法和适用范围 2.1红外测温原理 物体处于绝对温度零度以上时,因为其内部带电粒子的运动,以不同波长的电磁波的形式向外辐射能量。波长涉及紫外,可见,红外光区。物体的红外辐射量的大小几千波长的分布与它的表面温度有着十分密切的关系。因此,通过物体自身红外辐射能量便能准确的确定其表面温度。这就是红外辐射测温所应用的原理。 2.2红外测温仪结构 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内置的算法和目标发射率校正、环境温度补偿后转变为被测目标的温度值。除此之外还应考虑目标和测温仪的环境条件,如温度,气压,污染和干扰等因素对其性能的影响和修正方法。 2.3红外测温仪器的种类 红外测温仪对于原理可分为单色测温仪和双色测温仪。对于单色测温仪,在例行测温时,检测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视场干扰测温读数,造成误差。相反,如果目

相关主题
文本预览
相关文档 最新文档