当前位置:文档之家› 水箱温度控制[1](1)

水箱温度控制[1](1)

水箱温度控制[1](1)
水箱温度控制[1](1)

【摘要】

本论文主要阐述了温度控制加热器的工作原理,利用PLC对系统进行编程分析,其中介绍了许多关于温度控制系统的器件,让大家能更进一步的明白温度控制的过程及其硬件。在编程中还特别介绍了有关模拟量的转换,对PID也进行了详细的简介。

随着社会的发展需要,温度控制系统已经普遍被人们接受。温度控制在现阶段已有很多地方用到如:热水器、锅炉等。人们生活中所必须的设备都需要温度控制来解决。温度控制系统设计起来简单,用起来更方便。

关键词:编程控制系统热水器

【Abstract】

This thesis mainly describes the working principle of the heater temperature control, using PLC system programming analysis, which introduces many about temperature control system components, let everybody can further understand the process of temperature control and its hardware. In programming are particularly introduces the analogue conversion of PID a detailed introduction also.

With the development of the society needs, the temperature control system has been generally be accepted by people. Temperature control at present has many places use such as: water heater, boiler, etc. People's life must be the devices are need to temperature control to solve. Temperature control system design easy, use up more convenient.

Key words: programming Control system Water heater

目录

1水箱温度控制系统简介..........................

1.1温度控制系统作用.............................

1.2系统设计的方案................................

1.3用PLC设计的思路............................. 2水箱控制系统的硬件...........................

2.1 PLC组成和工作原理...........................

2.1.1 PLC的组成.....................................

2.1.2 PLC的工作原理...............................

2.2输入输出设备选用.............................

2.2.1 EM235温度模块............................... 2.2.2 PT-100...................................... 2.2.3 S7-200PLC及CPU模块的选择...............

2.2.4双向晶闸管...............................

2.3设计工作过程分析..........................

2.4硬件接线图................................

3 PID简介................................... 3.1 PID模块介绍.................................

3.2 PID算法..................................

3.3 PID参数的整定方法...........................

3.3.1 PID控制器的参数整定.......................

3.3.2确定控制器参数............................

3.3.3选择参数.................................. 3.4 PID回路表及回路指令...................... 3.

4.1 PID 回路表...............................

3.4.2 PID回路指令...........................

3.5 输入输出的变量转换.........................

3.5.1 回路输入的转换...............................

3.5.2 回路输出的转换............................... 4系统的软...................................

4.1 流程图....................................

4.2系统的主程序...............................

4.3系统的子程序...............................

4.4系统的中断程序.............................

1水箱温度控制系统简介

1.1温度控制系统作用

温度是自然界中和人类打交道最多的物理参数之一,无论是在生产实验场所,还是在居住休闲场所,温度的采集或控制都十分频繁和重要,而且,网络化远程采集温度并报警是现代科技发展的一个必然趋势。由于温度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温度控制系统就会相应产生。随着社会的发展需要,温度控制系统已经普遍被人们接受。温度控制在现阶段已有很多地方用到如:热水器、锅炉等。人们生活中所必须的设备都需要温度控制来解决。温度控制系统设计起来简单,用起来更方便,其中我们可以采用单片机控制、可编程控制来实现

1.2系统设计的方案

方案一:用单片机对水箱温度控制系统进行设计,单片机编程的优点在与它具有微型化、低功耗、高性能、抗干拢能力强、易配微处理器等,其缺点在与它价格昂贵,拷贝程序后不可改变等麻烦事项。

方案二:用PLC对水箱温度控制系统进行设计,PLC用途广泛在工业控制中,某些输入量(例如压力、温度、流量、转速等)是连续变化的模拟量,某些执行机构要求PLC输出模拟信号,而PLC的CPU能处理数字量。它的优点在与价格便宜有微型化、低功耗、高性能、抗干拢能力强、能多次改变自己需要的程序配套齐全、功能完善、易学易用、维护方便等。缺点在于只能处理数字量。

经过对资源的再次利用和方便性,而考虑本次设计采用可编程控制来实现。1.3用PLC设计的思路

本次设计是基于PLC水箱恒温控制系统,通过可编程控制器控制,让水箱中的水保持恒定值60°。首先要通过PT-100铂电阻来检测水温,并把检测到的温度与设定值进行比较,将其偏差值经过PID运算后控制双向晶闸管的导通角,调节加热丝的功率,从而使实际温度迅速接近给定值温度。PID参数主要受到进出水流量、水箱水温设定控制温度、室温等因素影响。水箱温度控制实物图如图1-1所示。

再设计中我会先介绍硬件部分,然后在介绍软件部分,依次向大家阐述整个编程所需要的东西。

图1.1水箱控制示意图

2水箱控制系统的硬件

2.1 PLC组成和工作原理

2.1.1 PLC的组成

PLC基本组成包括中央处理器(CPU)、储存器、输入/输出接口(缩写为I/O,包括输入接口、输出接口、外部设备接口、扩展接口等)、外部设备编程器及电源模块组成。PLC内部各组成单元之间通过电源总线、控制总线、地址总线和数据总线连接,外部则根据实际控制对象配置相应设备与控制装置构成PLC控制系统。

中央处理器由控制器、运算器和寄存器组成并集成在一个芯片内。CPU通过数据总线、地址总线、控制总线和电源总线与储存器、输入输出接口、编程器和电源相连接。

存储器是具有记忆功能的半导体电路,主要用来放存系统程序、用户程序和工作数据等。PLC中使用的存储器由只读存储器(ROM)、随机存储器(RAM)及察除只读存储器(EPROM)组成。存储器是衡量PLC性能的一个重要指标。

I/O接口,输入接口用于接收和采集两种类型的输入信号,一类是按钮、转换开关、行程开关、继电器触头等开关量输入信号;另一类是有电位器、测速发电机和各种变换器提供的连续变化的模拟量输入信号。输出接口模块是PLC与现场

设备之间的连接部件,用来将输出信号送给控制对象。其它接口用于主机单元的I/O数量不够用,可以通过I/O扩展接口电缆与I/O扩展但愿相连进行扩充。

编程器作用是将用户编写的程序下载至PLC的用户程序储存器,并利用编程器检查、修改和调试用户程序,监视用户程序的执行过程,显示PLC状态、内部器件及系统的参数等。

电源是为PLC将外部供给的交流电转换成供CPU、存储器等所需的直流电。是整个PLC的能源供给中心。PLC大都采用高质量的工作稳定信号、抗干扰能力强的开关稳定电源,大多PLC内部电源还可以向外部提供24V稳压电源。

2.1.2 PLC的工作原理

PLC采用“顺序扫描,不断循环”的工作方式,每次扫描过程集中对输入信号进行采样,输入刷新过程中当输入端口关闭时,程序在进行执行阶段时,输入端有新状态,新状态不能被读入。只有程序进行下次扫描时,新状态才被读入。一个扫描周期分为输入采样、程序执行、输出刷新。元件影响寄存器的内容是随着程序的执行变化而变化的。扫描周期的长短决定CPU执行指令的速度、指令本身占有的时间和指令数。由于采用集中采样,集中输出方式,存在输入/输出滞后的现象。

2.2输入输出设备选用

2.2.1 EM235温度模块

温度控制模块可以直接接热电偶、铂电阻等温度检测元件项链,接受来自温度传感器的信号,温度控制模块就相当于温度变送器A/D转换器将生产现场的温度信号值送给PLC经PLC处理后通过模拟量输出模块这样就可以实现温度控制系统。

EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。模拟量扩展块提供了模拟量输入/输出的功能,使用与复杂的控制现场和直接与传感器执行器相连接,具有12位的分辨率和多种输入/输出范围,并且EM235模块可直接与PT-100热电阻相连。EM235模块是组合强功率精密线性电流互感器、意法半导体(ST)单片集成变送器ASIC芯片于一体的新一代交流电流隔离变送器模块,它可以直接将被测主回路交流电流转换成按线性比例输出的DC4-20mA恒流环标准信号,连续输送到接收装置。

下面以EM235为例讲解模拟量扩展模块接线图,如图2-1。

图2-1 EM235示意图

图2-1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

2.2.2 PT-100

pt100是铂热电阻,它的阻值跟温度的变化成正比。PT100的阻值与温度变化关系为:当PT100温度为0℃时它的阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成匀速增长的。PT-100例图如图

2-2所示。

图2-2 Pt-100

电阻式温度检测器是一种物质材料组成的电阻,他会随温度升高而改变电阻值,如果它随温度的上升而电阻值也跟着上升就称为正电阻系数,如果它随温度上升反而下降就称为负电阻系数。大部分电阻式温度检测器是以金属做成的,其中以白金做成的电阻式温度检测器,最为稳定、耐酸、不会变质、相当线性等等,最受工业界采用。

PT-100温度传感器是一种以白金做成的电阻式温度检测器,属于正电阻系数,在电阻和温度变化的关系式如下:R=Ro(1+aT)其中a=0.00392,Ro为100欧姆,T为摄氏温度因此白金做成的电阻式温度检测器,又称为PT-100。

1:Vo=2.55mA*100(1+0.00392T)=0.225+T/1000。

2:量测Vo时,不可分出任何电流,否则量测值会不准。电路分析由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,由于7.2齐纳二极体的作用,使得1K电阻和5K可变电阻之电压和为6.5V,靠5K可变电阻的调整可决定电晶体的射极电流,而我们必须将集极电流调为2.55mA使得量测电压V如箭头所示为2.55+T/1000。其后的非反向放大器,输入电阻几乎无限大,几乎同时又放大10倍,使得运算放大器输出位2.55+T/100。6V齐纳二极体的作用如7.2V齐纳二极体的作用,我们利用它调出2.55V,因此电压追随器的输出电压V1亦为2.55V。其后差动放大器之输出为Vo=10(V2-V1)=10(2.55+T/100-2.55)=T/10,如果现在温室为25°C,则输出电压为2.5V。

2.2.3 S7-200PLC及CPU模块的选择

S7-200系列PLC适用于各行各业,各种场合中的检测、监测及控制的自动化。S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能/价格比。

S7-200系列出色表现在以下几个方面:极高的可靠性;极丰富的指令集;易于掌握;便捷的操作;丰富的内置集成功能;实时特性;强劲的通讯能力;丰富的扩展模块。S7-200PLC实物图如图2-3所示。

图2-3 S7-200PLC实物

S7-200系列在集散自动化系统中充分发挥其强大功能。使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制。应用领域极为广泛,覆盖所有与自动检测,自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等等。如:冲压机床、磨床、印刷机械、橡胶化工机械、中央空调、电梯控制、运动系统。

S7-200系列PLC可提供5个不同的基本型号的8种CPU供您使用

S7-200 CPU的技术指标

根据本设计的要求,S7-200系列具有极高的性能/价格比,所以我选择S7-200微型PLC。

S7-200是模块化的PLC,它主要由CPU模块、扩展模块和总线连接电缆构成。(1)CPU模块

该模块主要由CPU、电源、I/O点3部分组成,CPU主要负责程序运行等工作,模块的电源不紧影响CPU供电,还满足与CPU响亮的其它模块的用电需要。该模块本身代表一定量的开关量I/O点,如果能够满足控制要求限额可以不在扩展开关量I/O模块。本文主要采用CPU224来实现。本扩展至14输入/10输出共24个数字量I/O点。可以连接7个扩展模块,最大扩展168路数字量I/O点。13K字节程序和数据存储空间。6个独立的30kHZ高速计数器,2路独立的20kHZ 高速脉冲输出,具有PID控制器。1个RS485通讯/编程口,其具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。I/O端子很容易地整体拆卸。是具有较强控制能力的控制器。本设计需要4个开关量的输入和4个开关量的输出,采用CPU224不需扩展开关量输入输出模块。

(2)扩展模块

CPU224模块本身已集成了14点数字量输入和10点数字量输出,但由于本次设计中还需要一个模拟输入和一个模拟输出,所以需要用到模拟量扩展板EM235.每个EM235可同时扩展3路模拟量输入和1路模拟量输出通道。

(3)总线连接电缆

总线连接电缆由来把I/O模块和PLC或其他扩展模块连在一起。

2.2.4双向晶闸管

双向晶闸管是由N-P-N-P-N五层半导体材料制成的,对外也引出三个电极,其结构如图所示。双向晶闸管相当于两个单向晶闸管的反向并联,但只有一个控制极。它的结构示意图如图2-4所示。

图2-4 双向晶闸管结构示意图

双向晶闸管与单向晶闸管一样,也具有触发控制特性。不过,它的触发控制特性与单向晶闸管有很大的不同,这就是无论在阳极和阴极间接入何种极性的电压,只要在它的控制极上加上一个触发脉冲,也不管这个脉冲是什么极性的,都可以使双向晶闸管导通。

由于双向晶闸管在阳、阴极间接任何极性的工作电压都可以实现触发控制,因此双向晶闸管的主电极也就没有阳极、阴极之分,通常把这两个主电极称为T1电极和T2电极,将接在P型半导体材料上的主电极称为T1电极,将接在N型半导体材料上的电极称为T2电极。

由于双向晶闸管的两个主电极没有正负之分,所以它的参数中也就没有正向峰值电压与反向峰值电压之分,而只用一个最大峰值电压,双向晶闸管的其他参数则和单向晶闸管相同。所以它是一种理想的交流开关器。

2.3设计工作过程分析

先按下启动按钮,系统开始工作,SV1开始进冷水,等达到下限位时电动机开始搅拌,电热丝也开始加热同时温度传感器也开始传送实测温度值,当冷水温度达到60°时,SV2开始出水,当水位到达上限位时SV1停止进水,当水位低于下限位时系统报警装置启动,当报警后要按停止按钮,再按开始然后从新开始工作。

根据上面的工作原理和工作过程分析,则选了硬件和软件,也确定了输入量和输出量。如表2-5

表2-5 I/O分配表

2.4硬件接线图

3 PID简介

3.1 PID模块介绍

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的

它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个

参数(Kp , Ti 和Td )即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。

首先,PID 应用范围广。虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID 就可控制了。

其次,PID 参数较易整定。也就是,PID 参数Kp ,Ti 和Td 可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变

化引起系统动态特性变化,,PID 参数就可以重新整定。

第三,PID 控制器在实践中也不断的得到改进。

PID 控制器的原理是根据系统的被调量实测值与设定值之间的偏差,利用偏差的比例、积分、微分三个环节的不同组合计算出对广义被控对象的控制量。图3-1是常规PID 控制系统的原理图

图3-1 PID 控制系统的原理图

3.2 PID 算法

理想的PID 算法在如图3-2所示的典型的PID 回路控制系统中,有PV

为控制变量,SP 时设定值,则调节器输入偏差信号为e=SP-PV 。理想的模拟PID 控制算法为:

])()(1)([)(0

?

++

=t

D

I

P dt

t de T dt t e T t e K t u

式中,P K 为比例系数;D T 为积分时间常数;D T 为微分时间常数。

根据被控对象动态特性和控制要求的不同,上式中还可以只包含比例和积分的PI调节或者只包含比例微分的PD调节。下面主要讨论PID控制的特点及其对控制过程的影响、数字PID控制策略的实现和改进,以及数字PID控制系统的设计和控制参数的整定等问题。

在PID三种调节作用中,微分作用主要用来减少超调量。克服震荡、加快系统的动作速度、减少超调时间,用来改善系统动态特征。积分作用主要用来消除静差、提高精度、减少超调时间,用来改善系统的静态特征。比例作用可对偏差作出及时影响。若能将3种作用的强度做适合的调配,可以使PID速度加快、平稳、准确的运行,从而获得满意的控制效果。

图3-2 PID回路控制系统

3.3 PID参数的整定方法

3.3.1 PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行PID 控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式

计算得到PID控制器的参数。

3.3.2确定控制器参数

数字PID控制器控制参数的选择,可按连续时间PID参数整定方法进行。在选择数字PID参数之前,首先应该确定控制器的结构。对允许有静差的系统,可以适当选择P或PD控制器。一般来说,PI、PID和P控制器应用较多。对于有滞后的对象,往往都加入微分控制。

3.3.3选择参数

控制器结构确定后,既可以开始选择参数。参数的选择要根据受控对象的具体特性和对控制系统的性能要求进行。工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定等等。这些要求对控制系统自身性能来说,有些矛盾的。我们必须满足主要的方面的要求,兼顾其他方面适当的折中。

3.4 PID回路表及回路指令

3.4.1 PID 回路表

PLC在执行PID调节指令时,须对算法中的9个参数进行运算,为此S7-200的PID指令使用一个存储回路参数的回路表,PID回路表的格式及含义如表1所示。

3.4.2 PID回路指令

如图3-3所示PID模块

3-3 PID模块

图中的输入信息和组态信息进行PID运算比较简单,该指令有两个操作数TBL LOOP,其中TBL是回路的起始地址,操作数限用VB区域LOOP是回路信号可是0~7的整数进行PID的前提是逻辑栈项Tos必须是1,在程序中最多可用8条PID指令,PID回路指令不可以和在一起使用在一个回路中,即这些回路表不同,负责会出错。

3.5 输入输出的变量转换

因为PID由两个输入给定值SP、过程变量PV。给定值SP通常是固定的,加热器的给定值,过程变量是给定A/D转化和计算机后的被控量的实际值,如加热器的测量值。给定值与过程变量都是与被控对象有关的值,对不同的系统它的大小范围与工程单位有很大的区别,应用PLC的PID指令对这些运算之,必须将其转换成更准确的浮点实数。

同样对PID指令输出再将其送给D/A转换之前也要进行转换。

3.5.1 回路输入的转换

每个PID回路有两个输入量,即给定值(SP)和过程变量(PV)。给定值通常是一个固定的值,过程变量与PID回路输出有关,可以衡量输出对控制系统作用的大小。如在加热器控制系统中,过程变量可以是测温仪的输入(衡量温度高低)。给定值和过程变量都可能是现实世界的值,它们的大小、范围和单位都可能不一样。

因此,PID指令在对这些量进行运算以前,必须把他们转换成标准的浮点型实数

转换的第一步是把16位整数值转成浮点型实数值。下面的指令序列提供了实现这种转换的方法:

XORD AC0, AC0 //将AC0初始化清零

ITD AIW0,AC0 //将输入值转换为双整数。

DTR AC0,AC0 //将32位双整数转换为实数。

转换的下一步是把实数值进一步标准化为0.0~1.0之间的实数。下面的算式可以用来标准化给定值或过程变量:

Rnown=(Rraw/Span+Offset)

式中,Rnown为标准化的实数值; Rraw为没有标准化的实数值或原值;0ffset 为单极性时为0.0,双极性时为0.5;

Span为值域,即可能的最大值减去可能的最小值;

单极性为32000(典型值);双极性为64000(典型值)。

下面的指令把双极性实数标准化为0.0~1.0之间的实数,通常用在第二步转换之后:/R 64000.0,AC0 //累加器中的标准化值

+R 0.5,AC0 //加上偏置,使其在0.0~1.0之间 MOVR AC0,VDl00 //标准化的值存入回路表

3.5.2 回路输出的转换

回路输出值一般是控制变量。例如,在加热器控制中,可以是水热的设置。同样,输出是0.0~1.0之间的标准化了的实数值,需转换成相应的16位整数。在回路输出驱动模拟输出之前,必须把回路输出转换成相应的16位整数。这一过程是给定值或过程变量的标准化转换的逆过程。

该过程的第一步是把回路输出转换成相应的实数值,其公式如下:

Rscal=(Mn-Offset)*Span

式中,Rscal为回路输出的刻度实数值;Mn为回路输出的标准化实数值;

Offset为单极性时为0.0,双极性时为0.5Span为值域,即可能的最大值减去可能的最小值;单极性为32000(典型值);双极性为64000(典型值)。

这一过程可以用下面的指令序列完成:

MOVR VDl08,AC0 //把回路输出值移入累加器。

-R 0.5,AC0 //仅双极性有此句。

*R 64000.0,AC0 //在累加器中得到刻度值。

下一步是把回路输出的刻度转换成16位整数,可通过下面的指令序列来完成: ROUND AC0,AC0 //把实数转换为32整数

DTI AC0,LW0 //把32位整数转换为16位整数

MOVW LW0,AQW0 //把16位整数写入模拟输出寄存器

4系统的软

4.1 流程图

数字式温度控制器

数字式温度控制器 摘要:随着时代的进步和发展,单片机技术已经普及到我们的生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本设计将介绍一种基于单片机控制的数字温度控制器本温度控制器属于多功能温度控制器,可以设置上下报警温度,当温度不再设置范围内时可以报警。 关键词:单片机,数字控制,温度控制,DS18B20,AT89C51 1 总体设计方案 1.1 数字式温度控制器的设计方案论证 1.1.1方案一 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路。1.1.2方案二 在单片机电路设计中,大多使用传感器,所以用一只温度传感器DS18B20,很容易直接读取被测温度值,进行转换,就可以满足设计的要求 2.硬件部分 2.1 DS18B20温度传感器与单片机的而接口电路 传感器是可以采用电源供电方式,一脚接地,二脚作为信号线,三脚接电源,另一种是寄生电容电源供电方式 单片机端口接单线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一

个MOSFET管来完成好呢个对总线的上拉。 当DS18B20处于写存储器操作和温度A\D转换操作时。总线上拉必须有强的上拉,上拉开启时间爱你最大为10US.采用寄生电源供电方式是VDD端接地,由于单线制只有一根线,因此发送接口必须是三态的。 2.2 系统整体硬件电路 系统整体硬件电路包括传感器采集电路,温度显示电路,上下限报警调整电路,单片机主板电路

基于PLC的高低位水箱自动控制系统

课程设计任务书(A) 题目高低位水箱供水系统电气控制系统的设计(F1)学院(部) 电控学院 专业电气工程及其自动化 班级32040901 学生姓名蒋秋华 学号3204090115 6 月11 日至 6 月1 7 日共 1 周 指导教师(签字) 系主任(签字) 2012年 5 月26 日

目录 摘要 (3) 第一章引言 (4) 第二章案的论证及方案确定 (5) 第三章系统各部分的设计 (6) 3.1主电路的设计 (6) 3.2控制电路的设计 (6) 3.3梯形图的设计与分析 (7) 3.3.1手动、自动的工作方式选择 (7) 3.3.2机组的启动条件及操作使用 (7) 3.3.3备泵自投功能的实现 (8) 3.3.4信号灯的指示 (8) 3.3.5指令语言程序 (9) 第四章元器件的选择及依据 (10) 4.1 低压断路器的选择 (10) 4.2 PLC的选择 (10) 4.3 交流接触器的选择 (10) 4.4 热继电器的选择 (11) 4.5 控制按钮和旋钮的选择 (11) 4.6 指示灯的选择 (11) 4.7 端子排的选择 (11) 第五章控制柜的尺寸设计 (12) 总结 (12) 参考文献 (13) 鸣谢 (13) 附录 (13)

摘要 水箱是自动供水系统中的重要部分,在我们的生活中扮演着非常重要的角色。本设计旨在于通过所学知识,设计一个简单的高低位水箱供水系统,满足一些简单的基本功能。 为了满足该设计中提出的基本功能的要求,本次设计在主电路上采用两台电动机,且为三角形接直接启动的接法,同时采用了两个电源线圈对电机进行工作的控制,采用热继电器和低压断路器对电机进行过载和短路保护。控制电路上,为了简单灵活起见,采用课堂中所学过的三菱F1系列的PLC进行控制。再加入必需的一些压力继电器、按钮、开关、指示灯等。从而基本形成了一个简单的高低位水箱供水系统。 本次设计旨在于学习和了解设计一个系统的流程和需要注意的问题,故在本设计中,主要进行的工作是设计系统原理图,画出系统的接线图和系统平面布置图,最后再进行控制柜大小的设计。通过这些琐碎的工作,从而了解和掌握相关的设计方法和知识。 关键词:电动机PLC 原理图接线图布置图

智能型数字显示温度控制器使用说明书

XMT-2000 智能型数字显示温度控制器使用说明书 此产品使用前,请仔细阅读说明书,以便正确使用,并妥善保存,以便随时参考。 操作注意 为防止触电或仪表失效,所有接线工作完成后方能接通电源,严禁触及仪表内部和改动仪表。 断电后方可清洗仪表,清除显示器上污渍请用软布或棉纸。显示器易被划伤,禁止用硬物擦拭或触及。 禁止用螺丝刀或书写笔等硬物体操作面板按键,否则会损坏或划伤按键。 1.产品确认 本产品适用于注塑、挤出、吹瓶、食品、包装、印刷、恒温干澡、金属热处理等设备的温度控制。本产品的PID参数可以自动整定,是一种智能化的仪表,使用十分方便,是指针式电子调节器、模拟式数显温控仪的最佳更新换代产品。本产品符合Q/SQG01-1999智能型数字显示调节仪标准的要求。 请参照下列代码表确认送达产品是否和您选定的型号完全一致。 XMT□-□□□□-□ ①②③④⑤⑥ ①板尺寸(mm)3:时间比例(加热) 5:下限偏差报警 省略:80×160(横式) 4:两位PID作用(继电器输出) 6:上下限偏差报警 A:96×96 5:驱动固态继电器的PID调节⑤输入代码 D:72×72 6:移相触发可控硅PID调节 1:热电偶 E:96×48(竖式) 7:过零触发可控硅PID调节 2:热电阻 F:96×48(横式) 9:电流或电压信号的连续PID调节 W:自由信号 G:48×48 ④报警输出⑥馈电变送输出 ②显示方式 0:无报警 V12:隔离12V电压输出 6:双排4位显示 1:上限绝对值报警 V24:隔离24V电压输出 ③控制类型 2:下限绝对值报警 GI4:隔离4-20mA变送输出 0:位式控制3:上下限绝对值报警 2:三位式控制 4:上限偏差报警 2.安装 2.1 注意事项(5)推紧安装支架,使仪表与盘面结合牢固。 (1)仪表安装于以下环境 (2)大气压力:86~106kPa。2.3 尺寸 环境温度:0~50℃。 相对湿度:45~85%RH。 (3)安装时应注意以下情况 H h 环境温度的急剧变化可能引起的结露。 腐蚀性、易燃气体。 直接震动或冲击主体结构。 B l 水、油、化学品、烟雾或蒸汽污染。 b b’ 过多的灰尘、盐份或金属粉末。 空调直吹。阳光的直射。 热辐射积聚之处。 h’ 2.2 安装过程(1)按照盘面开孔尺寸在盘面上打出用来安装单位:mm 仪表的矩形方孔。型号 H×B h×b×1 h’×b’ (2)多个仪表安装时,左右两孔间的距离应大 XTA 96×96 92×92×70 (92+1)×(92+1) 于25mm;上下两孔间的距离应大于30mm。 XTD 72×72 68×68×70 (68+1)×(68+1) (3)将仪表嵌入盘面开孔内。 XTE 96×48 92×44×70 (92+1)×(44+1) (4)在仪表安装槽内插入安装支架 XTG 48×48 44×44×70 (44+1)×(44+1) 3.接线 3.1接线注意 (1)热电偶输入,应使用对应的补偿导线。 (2)热电阻输入,应使用3根低电阻且长度、规格一致的导线。 (3)输入信号线应远离仪表电源线,动力电源线和负荷线,以避免引入电磁干扰。 3.2接线端子 4.面板布置 ①测量值(PV)显示器(红) ?显示测量值。 ?根据仪表状态显示各类提示符。 ②给定值(SV)显示器(绿) ?显示给定值。 ?根据仪表状态显示各类参数。 ③指示灯 ?控制输出灯(OUT)(绿)工作输出时亮。 ?自整定指示灯(AT)(绿) 工作输出时闪烁。 ?报警输出灯1(ALM1)(红)工作输出时亮。 ?报警输出灯2(ALM2)(红)工作输出时亮。 ④SET功能键 ?参数的调出、参数的修改确认。 ⑤移位键 ?根据需要选择参数位,控制输出的ON/OFF。 ⑥▲、▼数字调整键 ?用于调整 数字,启动/退出自整定。

水箱自动控制系统设计原理图及程序

课程:创新与综合课程设计 电子与电气工程学院实践教学环节说明书 题目名称水箱水位自动控制装置 学院电子与电气工程学院 专业电子信息工程 班级 学号 学生姓名 起止日期13周周一~14周周五

水箱液位控制系统是典型的自动控制系统,在工业应用上可以模拟水塔液位、炉内成分等多种控制对象的自动控制系统。 本次课程设计思路是以单片机为控制中心,对水位传感器、电机驱动模块、按键及显示进行控制。通过按键设置水位传感器的位置,在水龙头及阀门的各种开度下,通过控制水泵工作或不工作来维持水箱二的液面高度基本维持不变。 一、设计题及即要求 1、设计并制作一个水箱水位自动控制装置,原理示意图如下: 2、基本要求:设计并制作一个水箱水位自动控制装置。 (1)水箱1 的长×宽×高为50 ×40 ×40 cm;水箱2 的长

×宽×高为40×30 × 40 cm(相同容积亦可);水箱1 的放在地面,水箱2 放置高度距地0.8-1.2m。 (2)在出水龙头各种开度状态下装置能够自动控制水箱 2 中水位的高度不变, 误差≤1cm。 (3)水箱 2 中要求的水位高度及上下限可以通过键盘任意设置; (4)实时显示水箱2 中水位的实际高度和水泵、阀门的工作状态。 3、发挥部分: (1)在出水龙头各种开度状态下装置能够自动控制水箱 2 中水位的高度不变, 误差≤0.3 cm。 (2)由无线远程控制器实现基本要求,无线通讯距离不小于10 米。远程控 制器上能够同步实现超限报警显示。 (3)其他创新。 二、设计思路: 以单片机为控制中心,对水位传感器、电机驱动模块、按键及显示进行控制。通过按键设置水位传感器的位置,在水龙头及阀门的各种开度下,通过控制水泵工作或不工作来维持水箱二的液面高度基本

数显式温度控制仪

数显式温度控制仪 周鹏 电子信息工程9911班 摘要:本次设计的数字式温度显示调节仪表以热电阻为输入信号源,通过内部配置的信号预处理与前置放大电路、控制电路、显示电路等来实现对温度的控制与调节。本设计分析了数显式温度控制仪的原理结构、工作方式,且在设计中使用了op07、ICL7107、MC7805集成芯片和LED数码显示器等元器件,具有线路简单,成本低廉,线性化精度高,理论和实验证明,其非线性误差可控制在0.5%以下。该温度控制器虽结构简单,但控温精度高,且具备超温保护功能。 关键词:传感、温度补偿放大器线性、温度控制 Abstract:This adjuster achieves the temperature measuring and adjustment, which use sensors as the inputted signal source, making use of the signal processing circuit, controlling circuit and LED circuit arranged inside, etc. Analyzing the configuration and working modes of a digital display temperature control. it used the OP07, ICL7107、MC7805 integrated electric circuit and LED digital monitor etc, It was having the advantages of simple circuit, cheap cost and the high linear accuracy. Proved by theory and experiment, the nonlinear errors can be controlled under 0.5 percent. The configuration of temperature control is simple, but it can control temperature with great accuracy, and with functions as alert and protection after exceed temperature. Key word:sensors、temperature compensation linearity, temperature control.

温控器调整方法

E5AZ-R3-38数字式温度控制器调整说明 一、接线方式: 接线柱1、2――-AC220V电源 接线柱4、6―――低温输出101、103 接线柱7、8―――高温输出101、102 接线柱9、10、11―――PT100温度传感线A\B\B 二、界面图形 三、设定方法: 1.温度设置(此部分用于常规调整) 1)在运行菜单下,设置高温值为26.0。 2)按一次菜单键,再按一次模式键,设置高温回差1.5。 3)按一次菜单键返回运行菜单。 4)按两次模式键,设置低温值为25.5。 5)按一次模式键,返回运行菜单。 2.系统设置(以下调整为系统模式设置,请不要改动) 1)菜单键+模式键同时按下3秒以上,进入保护菜单,按模式键切换 选项,依次按如下设置: 2)同时按菜单+模式1秒以上,返回运行菜单。

3.第二步:模式设置 1)按菜单3秒以上,进入初始菜单,按模式键切换选项,依次按如下 设置: ?设置温度传感器类型为1。 ?设置温度单位为℃。 ?设置最高温度限制值: ?设置最低温度限制值: ?设置ON/OFF方式为ONOF。 ?设置控制方式为标准方式。 ?设置动作方向为正方向。 ?设置报警1种类为0。 ?设置报警2种类为8。 ?设置报警3种类为0。 ?设置密码为-169,等待3秒,自动进入高级模式: ?设置 ?设置低温回差为1.5。

设置 2)按菜单键3秒以上,返回运行菜单。 4.第三步:状态设置 1)按一次模式键,进入状态设置,按上调或下调键设置为RUN。则温 控器开始工作。 2)如设置为STOP,则温控器STOP灯亮,停止工作。 TMC229-HT-DAA038数字式温度控制器调整说明 一、接线方式: 与E5AX相同,内芯可互换。 二、界面图形 三、设定方法: 1.温度设置(此部分用于常规调整) 1)在运行菜单下,设置低温值SV为24.0 2)按2次SET键,设置高温值SV2为26.0(一般要求SV2=SV1+2) 2.系统设置(以下调整为系统模式设置,请不要改动) 1)解锁:同时按SET和︽5秒,出现画面LOC-3,将3改为0后,先 按下SET不松开,再按︽后立即全部松开,解锁完毕。 2)调整:同时按下SET和︾键5秒,出现设置界面,按SET切换设置

数字式温度控制器

数字式温度控制器 产品说明 一、输入 a) 热电偶(TC):K,J,E,T,R,S,B,U,L,N,PL2,W5Re/w26Re b) 热电阻(RTD):Pt100 JPT100 c) 直流输入:DC0~5V,DC1~5V,DC0~20mA*,DC4~20mA* *需在输入端子间接250W的电阻 二、输入显示精度:(设定值SV的0.3%+1位) 三、输入范围:参照输入范围表 四、采样周期:0.5sec 过程值偏置-1999~9999℃[°F]或-199.9~999.9℃[°F](温度输入) ±全量程(电压/电流输入)全量 五、设定范围 a)设定值(SV):等同温度范围值 b)加热侧比例带(P):1—量程或0.1—量程(温度输入)*1量程的0.1~100.0%(电压输入) c)制冷侧比例带(Pc):加热侧比例的1~1000% d)积分时间(I):1—3600sec*2 e)微分时间(D):1—3600sec*3 f)限制积分动作生效范围(ARW):比例带的1—100%*4

g)加热侧比例周期1—100sec*5 h)制冷侧比例周期1—100sec*6 i)不感带:-10—10或-10.0—+10.0℃[°F](温度输入) 量程的-10.0—+10.0%(电压/电流输入)*7 *1.如果比例带设定为0℃[°F],即成ON-OFF动作 *2.如果积分时间设定为0sec,即成PD动作 *3.如果微分时间设定为0sec,即成PI动作 *4.如果限制积分动作生效范围设为0%,D动作则成OFF *5.电流输出时不需设定周期 *6.电流输出时不需设定周期 *7.如果不感带设定为负,则成重叠 六、控制动作 PID控制(ON-OFF,P,PI,PD控制) a)自动演算功能(AT) ①自调方式:限制周期法 ②AT周期:1.5 b)自主校正设定改变时,自主校正即建立 *加热/制冷PID控制动作除外 七、控制输出 a)继电器接点输出:250VAC 3A(带负荷)1a连接 *电气性:超过300,000次,额定负荷 b)电压脉冲输出:0—12VDC(负荷电阻:超过600Ω) c)电流输出:4—20mADC(负荷电阻:低于600Ω) d)闸流控制管驱动用触发器输出:零测法中容量驱动 e)闸流控制管输出:额定0.5A(环境温度低于40℃) 八、温度报警 报警点:双报警(分别设定) 报警种类:偏差报警(上限,下限,上下限,范围内)

水箱水位控制系统

2.水箱水位控制系统 系统有3个贮水箱,每个水箱有2个液位传感器,UH1,UH2,UH3为高液位传感器,“1”有效;UL1,UL2,UL3为低液位传感器,“0”有效。Y1、Y3、Y5分别为3个贮水水箱进水电磁阀;Y2、Y4、Y6分别为3个贮水水箱放水电磁阀。SB1、SB3、SB5分别为3个贮水水箱放水电磁阀手动开启按钮;SB2、SB4、SB6分别为3个贮水箱放水电磁阀手动关闭按钮。 (二)控制要求 1.上电运行时系统处于停止状态。 2.SB1、SB3、SB5在PLC外部操作设定,通过人为的方式,按随机的顺序将水箱放空。 3.只要检测到水箱“空”的信号,系统就自动地向水箱注水,直到检测到水箱“满”信号为止。水箱注水的顺序要与水箱放空的顺序相同,每次只能对一个水箱进行注水操作。 4.为减少外部控制器件,现将每个水箱的放水控制按钮改为一个(即只有SB1、SB3、SB5),分别控制每个水箱的放水开启和关闭。也即,按一下SB1,水箱1放水,再按一下SB1,水箱1停止放水;按一下SB2,水箱2放水,再按一下SB2,水箱2停止放水;按一下SB3,水箱3放水,再按一下SB3,水箱3停止放水。系统其它控制要求保持不变。 (三)I/O配置表

(四)PLC控制系统原理图(硬件电路图) (五)调试指南 1.上电时候系统处于停止状态,所有灯不亮。 2.按动SB1、SB3、SB5按钮,可随机将三个水箱放空,对应Y2、Y4、Y6的亮。 3.只要检测到水箱“空”(即低液位传感器UL1-UL3亮),系统能自动地向水箱注水,对应Y1、Y3、Y5亮,直到检测到水箱“满”信号为止(即高液位传感器UH1-UH3亮)。 4.4.水箱注水的顺序与水箱放空的顺序相同,每次只对一个水箱进行注水操作(Y1、Y3、Y5互锁)。 5.5.按一下SB1,水箱1放水(Y2亮),再按一下SB1,水箱1停止放水(Y2灭); 6.6.按一下SB2,水箱2放水(Y4亮),再按一下SB2,水箱2停止放水(Y4灭); 7.7.按一下SB3,水箱3放水(Y6亮),再按一下SB3,水箱3停止放水(Y6灭)。 8.8.先放空的水箱先进水,已通过梯形图实现。(参见梯形图步骤8)

水箱液位自动控制系统设计

目录 摘要 (1) 关键词 (1) 引言 (2) 1设计任务目的及要求 (2) 1.1 设计目的 (2) 1.2 设计要求 (2) 2系统元件的选择 (3) 2.1有自平衡能力的单容元件 (3) 2.2 无自平衡能力的单容元件 (4) 2.3单容对象的特性参数 (6) 3控制器参数的整定 (7) 3.1 参数的确定 (7) 3.2 电动机的数学模型 (9) 3.3 控制系统的数学模型 (10) 3.4 PID控制器的参数计算 (10) 4控制系统的校正 (11) 4.1 控制器的正反作用 (12) 4.2 串级控制系统 (12) 5系统的稳定性分析 (16) 5.1 系统的稳定性分析 (16)

5.2 控制系统的稳态误差 (17) 结束语 (19) 参考文献 (20) 致 (21)

水箱液位自动控制系统原理 摘要:水箱液位自动控制系统就是利用自身的水位变化进行调节和改变的系统,它自身具平衡能力,并由电动机带动下自动完成水位恢复的功能。水箱液位是由传感器检测水位变化并达到设定值时,水箱自己的阀门关闭,防止溢出,当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。 关键词:有自平衡能力、无自平衡能力、电动机、单容对象、系统稳定 引言 液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。 1 设计任务目的及要求 1.1 设计目的 通过课程设计,对自动控制原理的基本内容有进一步的了解,特别是水箱液位系统的设计。能把本学期学到的自动控制理论知识进行实践,操作。在提高动手能力的同时对常

数字式温度控制器(1).

数字式温度控制器 【摘要】本系统采用了AT89C52单片机,以它为中心,组成了能够对温度进行检测与控制的智能控制系统。本系统可以实现在一定范围内对温度的恒定控制。主要组成部分为:单片机PID控制以及运算部分,温度检测与传感器部分,LED 显示部分等。具体的器件有:高性价比的AT98C52单片机,AD590温度传感器,ADC0809A\D转换器,LED显示器,LM317T三端稳压器件,LM324等。本系统的主要功能为通过本系统可以实现对温度的人为设定和调节。使温度的控制更加的人性化和智能化,大大减少工业成本。 【关键词】温度控制单片机 A/D转换 PID算法 现如今科技已经日新月异,科技的利用已经在越来越多的领域改变人们的生活。本文介绍的数字式温度控制器能够实现对温度的检测与控制,并可以通过A\D转换芯片将温度的变化显示到LED显示屏上。主要应用的技术有PID调节,即根据系统的误差,利用比例、积分、微分计算出控制量进行控制,从而达到良好的控制技术。 本设计能精确智能的调节温度,使其用最小的功耗,发挥最大的效应。另外此产品采用蓝色背光设计和动态LED屏幕显示,具有可编程、测温和调温精确的特点。 一、单片机温度控制系统的主要组成器件及工作原理 1、主要器件 (1)AT89C52:它有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2 个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在线编程)。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。 (2)温度传感器:由于AD590精度高、价格低、不需辅助电源、线性好,常用于测温和热电偶的冷端补偿,本系统主要用于对温度的控制,故采用AD590温度传感器。它只需要一种电源(4.5~24V)即可实现温度到电流的线性变换,然后在终端使用一只取样电阻,即可实现电流到电压的转换。它使用方便,并且电流型比电压型的测量精度高。 (3)显示部件:LED是一种固态的半导体器件,它可以直接把电能转化为光能。LED的心脏是一个半导体的晶片,晶片的一端附着在一个支架上,是负极,另一端连接电源的正极,整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个“P-N 结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里

温控电路PID参数调节方法

在定值控制问题中,如果控制精度要求不高,一般采用双位调节法,不用PID。但如果要求控制精度高,而且要求波动小,响应快,那就要用PID调节或更新的智能调节。调节器就是根据设定值与实际检测到的输出值之间的误差来校正直接控制量的,温度控制中的直接控制量就是加热或制冷的功率。PID调节中,用比例环节(P)来决定基本的调节响应力度,用微分环节(D)来加速对快速变动的响应,用积分环节(I)来消除残留误差。PID调节按基本理论就是属于线性调节。但由于直接控制量的幅度总就是受到限定,所以在实际工作过程中三个调节环节都有可能使控制量进入受限状态。这时系统就是非线性工作。手动对PID进行整定时,总就是先调节比例环节,然后一般就是调节积分环节,最后调节微分环节。温度控制中控制功率与温度之间具有积分关系,为多容系统,积分环节应用不当会造成系统不稳定。许多文献对PID整定都给出推荐参数。 PID就是依据瞬时误差(设定值与实际值的差值)随时间的变化量来对加热器的控制进行相应修正的一种方法!!!如果不修正,温度由于热惯性会有很大的波动、大家讲的都不错、比例:实际温度与设定温度差得越大,输出控制参数越大。例如:设定温控于60度,在实际温度为50与55度时,加热的功率就不一样。而20度与40度时,一般都就是全功率加热、就是一样的、积分:如果长时间达不到设定值,积分器起作用,进行修正积分的特点就是随时间延长而增大、在可预见的时间里,温度按趋势将达到设定值时,积分将起作用防止过冲! 微分:用来修正很小的振荡、方法就是按比例、微分、积分的顺序调、一次调一个值、调到振荡范围最小为止、再调下一个量、调完后再重复精调一次、要求不就是很严格、 先复习一下P、I、D的作用,P就就是比例控制,就是一种放大(或缩小)的作用,它的控制优点就就是:误差一旦产生,控制器立即就有控制作用,使被控量朝着减小误差方向变化,控制作用的强弱取决于比例系数Kp。举个例子:如果您煮的牛奶迅速沸腾了(您的火开的太大了),您就会立马把火关小,关小多少就取决于经验了(这就就是人脑的优越性了),这个过程就就是一个比例控制。缺点就是对于具有自平衡性的被控对象存在静态误差,加大Kp可以减小静差,但Kp过大时,会导致控制系统的动态性能变坏,甚至出现不稳定。所谓自平衡性就是指系统阶跃响应的终值为一有限值,举个例子:您用10%的功率去加热一块铁,铁最终保持在50度左右,这就就是一个自平衡对象,那静差就是怎样出现的呢?比例控制就是通过比例系数与误差的乘积来对系统进行闭环控制的,当控制的结果越接近目标的时候,误差也就越小,同时比例系数与误差的乘积(控制作用)也在减小,当误差等于0时控制作用也为0,这就就是我们最终希望的控制效果(误差=0),但就是对于一个自平衡对象来说这一时刻就是不会持续的。就像此时您把功率降为0,铁就是不会维持50度的(不考虑理想状态下),铁的温度开始下降了,误差又出现了(本人文采不就是很好,废这么多话相信大家应该明白了!)。也就就是比例控制最终会维持一个输出值来使系统处于一个固定状态,既然又输出,误差也就不等于0了,这个误差就就是静差。

水箱液位控制课程设计-自动化

课程设计报告 设计题目:水箱液位控制系统 班级:自动化0901班 学号:20092400 姓名:刘弟文 指导教师:王姝梁岩 设计时间:2012年5月7日至5月25日

摘要 水箱液位控制系统是典型的自动控制系统,在工业应用上可以模拟水塔液位、炉内成分等多种控制对象的自动控制系统。 本次课程设计通过将电磁流量计和涡轮流量计分别作为主管道和副管道控制系统的调节阀控制水箱液位高度。首先通过测取被控液位高度过程的图像,建立了主回路的进水流量和主管道流量、进水流量和水箱(上)液位高度、副回路进水流量和水箱(上)液位、双容水箱的进水流量和水箱(下)液位之间的数学模型,从而加强了对液位控制系统的了解。然后,通过参数试凑法对PID参数的调试,实现了单容水箱液位(上)的单回路控制系统和双容水箱液位的单回路控制系统控制器的设计。最后通过MATLAB仿真实验,加深了对双容水箱滞后过程已经串级水箱液位过程和前馈控制系统的理解,对工业控制工程中对控制系统设计过程有了一定的认识。 关键词:水箱液位控制器PID参数整定串级控制前馈控制

目录 1 引言 (3) 2 课程设计任务及要求 (3) 2.1 实验系统熟悉及过程建模 (3) 2.2 实现单容水箱(上)液位的单回路控制系统设计 (3) 2.3 实现双容水箱液位(上下水箱串联)的单回路控制系统设计 (4) 2.4 实现水箱(上)液位与进水流量的串级控制系统设计 (4) 2.5 实现副回路进水流量的前馈控制 (5) 3 实验系统熟悉及过程建模 (5) 3.1 系统结构 (5) 3.2 过程建模 (6) 3.2.1 进水流量和主管道流量模型 (6) 3.2.2 进水流量和上水箱液位模型 (8) 3.2.3 副回路流量与上水箱液位数学模型 (9) 3.2.4 双容水箱串联进水流量与下水箱液位模型 (11) 4 单容水箱液位的单回路控制系统设计 (12) 4.1 结构原理 (12) 4.2 单容水箱控制器PID参数整定 (13) 4.2.1 单容水箱比例系数Kp的整定 (14) 4.2.2 单容水箱积分时间参数整定 (14) 4.2.3 单容水箱微分时间参数整定 (14) 4.3 单容水箱旁路阶跃干扰响应曲线 (15) 4.4 单容水箱副回路进水阶跃干扰响应曲线 (16) 4.5 干扰频繁剧烈变化的解决办法 (16) 5 双容水箱液位的单回路控制系统设计 (17) 5.1 双容水箱单回路控制系统原理 (17) 5.2 双容水箱控制器PID参数整定仿真实验 (18) 5.2.1 比例参数的整定 (18) 5.2.2 积分常数参数的整定 (19)

数电-可调温度控制器

数电-可调温度控制器

绍兴文理学院电子设 计竞赛 2012年6月5日 作者:郭鹏程程攀邵美才

可调温度控器 【大二组】 目录: 目录: (3) 摘要 (4) 1.方案设计与论证 (5) 2.理论计算与分析 (5) 1.加热电阻功率10%~90%连续可调部分: (6) 3.电路图 (8) 4.测试方法与测试数据 (11) 5.对测试结果分析总结 (11)

摘要 本设计利用1N4148二极管的正面压降守温度影响的特性,来检测电路加热器的温度是否超过最大值;再通过最大温度值对应的二极管正面压降与一定值压降比较,若加热器温度达到最大值,则比较器输出高电平,比较器的输出接场效应管(IRF540)来控制电路的导通与断开,同时实现加热器功率连续可调并有八档循环控制与显示。模拟小汽车乘员使用的加热座椅垫功能。 关键词 占空比;PN结;比较器;555多谐振荡器;4051;40161;4511;LM324

1.方案设计与论证 方案一: 一个八选一模拟开关CD4051控制电路输出电压改变,功率电阻两端电压八 档变化。串联滑动变阻器接入电路控制功率电阻连续变化。一个四位二进制同步计数器CD40161和一个BCD —7段锁存译码驱动器CD4511通过按键(档位控制)间断闭合使一个共阴7段数码管显示0~7数字实现八档数字显示。 方案二: 555多谐振荡器和电位器通过调节输出电压的占空比使加热电阻的功率从 10%~90%可调。一个八选一模拟开关CD4051分别对应电阻接入控制555多谐振荡器输出电平占空比使加热电阻的功率1~8档循环调节。一个四位二进制同步计数器CD40161和一个BCD —7段锁存译码驱动器CD4511通过按键(档位控制)间断闭合使一个共阴7段数码管显示0~7数字实现八档数字显示。方案二符合设计要求。 2.理论计算与分析 电路断路 调节电位器阻值 555充电时间变化 电阻超温 按键改变阻值 555充电时间变化 占空比改变 电阻功率改变 占空比改变

温控参数及调试

超高精度智能温度控制仪表 特点:本温度控制仪表为高精测量仪表,可以分度0.1反映实际温度,同时可以串联多个热电偶以获得单位容积内较为平均的温度反映值。实现了快速,稳定,高精度的温度测控,是您自动化控制的得力助手。 参数及调试步骤(暂停状态中) 按住SET键约3秒钟,进入调试状态。数码管显示参数代码0500,. (按UP/DOWN键到所需调试的参数代码),按SET进入参数内容(按UP/DOWN键到所需的参数内容),按SET键保存,参数代码自动+1,退

参数详解(以出厂值为例) 0500:当前温度值将0501设为0可显示 0501:可设定范围0-22,可显示对应参数内容 0502:设定1号输出温度上限值 0503、0504、0505:设定1号时间上限 0506:设定1号输出偏差,如:SE02设定为2000,SE06设定为100,SE03设定为0,SE04设定为20,SE05设定为0,那么当温度到达或大于2000+100=210.0度时1号输出,当温度低于于2000-100=190.0度时1号停止输出,当系统时间大于20分钟时1号一直输出。 0507、0508、0509、0510、0511:功能等同于03-06 0512、0513、0514、0515、0516:功能等同于03-06 0517:温度修正值,如:当前温度显示为-2.7,实际温度为21度,那么两者之间相差23.7度,0517应该设置为237。 0518:这是本温度控制仪表的特殊地方,可以串联多个热电偶放置在不同位置以获得单位容积内平均温度,热电偶串联方式+——+——。 本温度控制仪表设置了TTL通讯,通讯方式为2400,8bit,无校验,无停止位, 发送方式为(01 06然后将参数0-19顺序发出)为满足不同客户的特定需求,我们可以为客户特定开发专用功能 2

水箱液位单回路控制系统

水箱液位单回路控制系统 一、控制目的 根据设定的控制对象和管道配置,运用计算机和INTOUCH组态软件,设计一套监控系统,并通过调试使得水箱液位维持恒定或保持在一定的误差范围内。 二、性能要求 1、要求水箱液位恒定,液位设定值SP自行给定。 2、无扰动时,水压基本恒定,由变频器控制水泵实现。 3、扰动因数:水箱出水流量允许波动。 4、预期性能:响应曲线为衰减震荡;允许存在一定误差。调整时间尽可能短。 三、方案设计、控制规律选择 简单控制系统一般是单回路控制系统。由于其结构简单并且能够满足大多数控制质量的要求,因此在生产过程控制中得到了广泛的应用,是生产过程控制中最基本的一种控制系统。一个单回路反馈系统是由测量变送器装置、控制器、和被控对象所组成,按其被控变量类型的不同可以分为温度控制系统、压力控制系统、流量控制系统、液位控制系统等。 控制系统设计时针对某一特定生产对象进行的,当系统安装完成之后,控制效果主要取决于控制器的参数设定整定。选择合适的比例度、积分时间、微分时间是保证和提高系统控制质量的主要途径。 单回路水箱的原理,系统地输入变量为进水阀门、出水阀门的开度,输出变量为水箱液位。单回路PID控制的被控制量是水位,控制量是进水门、出水门开度。通过调节PID控制器的比例增益、积分时间、微分时间三个参数得到比较好的控制效果。 PID 调节器构成的闭环控制回路一般原理如图1 所示

图1 控制系统方框图 控制系统草稿图如图2 图2 控制规律选择:目前工业上常用的控制规律主要有:比例控制、比例积分控制和比例积分微分控制等。本方案采用比例积分微分控制。 比例控制——克服干扰能力强、控制及时、过渡时间短。是最基本的控制规律。但在终了时会存在余差,负荷变化越大余差越大。使用于滞后较小、负荷变化不大、允许被控变量存在余差的场合。 比例积分控制——在比例作用下引用积分作用,虽然会使系统的稳定性降低,但没有余差。适用于控制通道滞后较小、负荷变化不大、不允许被控变量存在余差的场合。 比例微分控制——引入了微分作用,具有超前控制作用,在被控对象具有较大滞后时,会有效的改善控制质量。但对于滞后小干扰作用频繁,含有高频噪声的系统,将可能使系统产生振荡,甚至失控。 比例积分微分控制——综合了比例、积分、微分控制规律的优点。适用于容量滞后较大、负荷变化大、控制要求高的场合。 该方案的控制目标是使水位达到平衡状态,通过控制电动调节阀改变阀门开度,来控制流量的大小,从而来控制水位。选择阀门开度为控制量,水位为被控量。控制规律选择PID控制规律。 四、测要求试:

水箱液位控制系统的设计及实物调试

自动控制系统课程设计 1、设计题目:水箱液位控制系统的设计及实物调试 2、设计目的 1、加强对自动控制原理这门课程的认识,初步认识工程设计方法。 2、通过对水箱液位控制系统的设计,进一步理解书本知识,提高实践能力,增强分析问题,解决问题的能力。 3、学习并掌握Matlab的使用方法,学会用Matlab仿真。 4、学会对仿真结果进行分析,计算,并应用到实践设计中去。 3、设计设备 1、ACCC—Ⅰ型自动控制理论及计算机控制技术实验装置 2、数字式万用表 3、示波器 4、MATLAB软件 4、设计任务 (1)复习有关教材、到图书馆查找有关资料,了解水箱液位控制系统的工作原理。 (2)总体方案的构思 根据设计的要求和条件进行认真分析与研究,找出关键问题。广开思路,利用已有的各种理论知识,提出尽可能多的方案,作出合理的选择。画出其原理框图。 (3)总体方案的确定 可从频域法、跟轨迹法分析系统,并确定采用何种控制策略,调整控制参数。(4)系统实现 搭建系统上的硬件电路,实现开环控制,记录实验数据。引入闭环控制,将设计好的控制策略实现其中,根据实际响应效果调整参数直至最优,并记录数据

5、设计要求 1.分析系统的工作原理,进行系统总体设计。 2.选择系统主电路各元部件,进行主电路设计,并完成系统调试。 3.构成开环系统,并测其动态特性。 4.测出各环节的放大倍数及其时间常数。 5.分析单闭环无差系统的动态性能。 6.比较开环时和闭环时的动态响应。 7.构成水箱液位闭环无静差系统,并测其动态性能指标和提出改善系统动态性能的方法,使得系统动态性能指标满足s t s t s r 5.0,2.0%,5%<<≤σ。 6、MATLAB 软件仿真 6.1 软件仿真部分设计要求 1、参考文献【1】完成对电机的数学建模,拉普拉斯变换后得到系统的传递函数; 2、带入表中的水箱液位系统参数,求出系统的开环传递函数; 3、绘制出系统的开环传递函数的单位阶跃响应,分析系统的单位阶跃响应,得到相关性能指标; 4、分步骤实现系统的PID 校正,分别进行比例控制(P )校正,比例微分控制(PD )校正,比例积分控制(PI )校正和比例积分微分控制(PID )校正; 5、运用《自动控制原理》知识分析系统的性能特征,从阶跃响应性能指标,频域特性等角度分析系统校正前和校正后的性能; 6、设计后的系统满足如下性能指标:s t s t s r 5.0,2.0%,5%<<≤σ; 7、改变输入信号,将阶跃信号分别换成方波信号,信号的周期设置为4s ,幅值为5V 。 6.2 模型建立 1. “水箱系统”的液位控制工艺过程原理图 参考文献【1】,可以得到水箱液位控制系统的工艺过程原理图如图6.2.1所示

XMTD-2000智能型数字显示温度控制器使用说明书

XMTD-2000智能型数字显示温度控制器使用说明书概述 XMTD-2000智能数字显示温控仪表是我厂新推出的新一代温控仪表。本产品采用性能优异的单片微机作为主控部件,具有精度高、数字显示、轻触键盘操作、停电数据保存永久、抗干扰性能强、外形美观等特点。 XMTD-2000温控仪可广泛应用于轻工机械层压机,包装、印刷、纺织、造纸、等行业。选用时靖仔细确认是否符合您的要选的型号XMT□—□□-□-□ 传感器分度号测量范围 F:0~10000C K:0~4000C E:0~3000C 输入代码:1:热电隅 外形尺寸:E:72*72 技术参数及安装 1安装注意事项: 仪表安装环境要求: ①大气压力:86—106Kpa。 ②环境温度:0—500C。 ③相对湿度:45—85RH%。 安装时注意以下情况: ①环境温度的急变可能引起的结露。 ②腐蚀性及易燃气体的有可能侵害。 ③直接震动或冲击机的主体。 ④水、油、化学器、烟雾或蒸气的污染等。 ⑤过多的尘埃、盐雾或其它的金属粉末等。 ⑥空调的直吹。 ⑦阳光的直射。 ⑧热辐射的积聚之处等。 2安装过程 ⑴按照盘面的开孔尺寸在盘面上开出来安装仪表的方孔,如多个仪表安装时请将左右两只仪表的距离大于25mm,上下两只仪表的距离应大于30㎜。 ⑵将仪表嵌入盘面的开孔内, ⑶将仪表安装槽内插入安装支架。 ⑷推紧安装支架,使仪表与盘面结合牢固,再拧紧螺钉。 3主要技术性能 ①测量精度:0.5%±1dig; ②电源电压:220VAC; ③环境温度:0—500C; ④应用模糊PID技术控制;

⑤开孔尺寸(㎜):KCY-E型为:68*68 接线方式 1接线的注意事项: ⑴热电隅输入,应该使用对应的补偿导线。 ⑵输入信号线应远离仪表的电源线、动力电源线、负荷线。以避免产品信号的干扰。 2、接线端子图: XMTD-2000的仪表接线 1、各功能的调出顺序: ◇仪表通电后,上排显示INP,下排显示分度号,表示输入类型;经4秒后,上排显示量程上限,下排显示量程下限,表示测量范围;再经4秒,上排显示测量值,下排显示设定值,此时仪表进入正常工作状态。 ◇各参数设定: 按“SET”键,上排显示TH(上限温度设定值),按∧或∨键,使下排显示为所需要的值; 再按“SET”键,上排显示DT(延时时间设定值),按∧或∨键,使下排显示为所需要的值; 再按“SET”键,上排显示TL(下限温度设定值),按∧或∨键,使下排显示为所需要的值; 再按“SET”键,上排显示AT(报警时间设定值),按∧或∨键,使下排显示为所需要的值; 再按“SET”键退回到标准模式。 ◇控制参数的设定: 按“SET”键4秒种以上,一排显示控制参数的提示符(见参数表),按∧或∨键,使下排显示为所需要的值; 再按“SET”键,上排依次显示各参数的提示符,按∧或∨键,使各控制参数为所需要的值; 再按“SET”键4秒种以上,回到标准模式。 ◇注意:若红色显示的下面出现000说明热电隅接反了,如果上面出现000则说明热电隅开路或温度超过测量范围值了。 2、各功能的使用 ◇在停止状态,仪表上排显示测量值,下排显示“STP”。 ◇冷启动时开始加热,加热指示灯亮,仪表上排显示温度测量值,下排显示TH的数值。当测量值大于TH值时,停止加热,加热指示灯灭。 ◇延时指示灯亮,仪表开始延时,上排显示延时时间,下排显示DT的数值。当延时时间大于DT值时,延时指示灯灭。 ◇风机启动,降温指示灯亮,开始降温过程,仪表上排显示温度测量值,下排显示SPL的数值。当测量值小于TL的数值时,风机停止,降温指示灯灭。 ◇蜂鸣器开始鸣叫,报警指示灯亮,开始报警过程,上排显示报警时间,下排显示AT的数值。当报警时间大于AT的值时,蜂鸣器停止,报警指示灯灭。

PLC水箱水位控制

实用标准文案 自动化系统集成与调试 实训报告 本课程为自动化集成与调试,实际上就是让我们用PLC控制水箱打水。由于实训前接触过类似的程序与硬件,所以做起来相对简单。第一周实训,一开始长江老师让我们重新复习之前所学。我们组并没有急着开始做项目,而是认真的检查电源,传感器,变频器等硬件是否完好。然后再由徐同学与李同学完成硬件的接线,张组长则与吴同学完成程序的编写。 一、接线图: S7-300模拟量输入输出模块、S7-300数字量输入输出模块、传感器以及变频器的接线(注意:用灰色细线将变频器3号端子接PLC数字量输出端子,变频器7号端子接PLC的M端,变频器9号端子接PLC模拟量输出端子,变频器10号端子接PLC模拟量COM端;用红、蓝、黑三种粗线将水箱抽水泵和变频器的U、V、W、PE端子对应接好)。

二、项目要求: 我们所做的项目如下 (一)项目一、PLC控制变频器打水 本项目总任务是通过PLC、变频器控制水泵打水。 任务一、G110变频器参数设置及快速调试 任务二、PLC控制变频器打水的组态、编程及仿真 任务三、S7-300模拟量输出模块与接线 任务四、现场实际调试与运行 (二)项目二、水箱液位的测量 本项目总任务是通过PLC、变频器控制实现水箱液位的测量 任务一、水箱液位测量的组态、编程及仿真 任务二、现场接线 任务三、现场实际调试与运行 (三)项目三、水箱液位两位式调节 本项目总任务是通过PLC、变频器、传感器监测水位控制水泵打水,当测量值大于高限值,变频器停止,水泵停止打水;当测量值小于低限值,变频器启动,水泵打水,当测量值在高限值与低限值之间时,变频器保持原状态。 任务一、水箱液位两位式调节的组态、编程及仿真运行

相关主题
文本预览
相关文档 最新文档