当前位置:文档之家› 2018年度高考圆锥曲线部分小题解析

2018年度高考圆锥曲线部分小题解析

2018年度高考圆锥曲线部分小题解析
2018年度高考圆锥曲线部分小题解析

圆锥曲线2018年高考小题解析

一、 考点分析

1. 点、直线、斜率和倾斜角之间的关系;

2. 直线与圆的位置关系判断,以及圆内弦长的求法;

3. 掌握椭圆、双曲线、抛物线基础内容,特别是参数之间的计算关系以及独有的性质;

4. 掌握圆锥曲线内弦长的计算方法(弦长公式和直线参数方程法);

5. 通过研究第二定义,焦点弦问题,中点弦问题加深对图形的理解能力;

6. 动直线过定点问题和动点过定直线问题;

7. 定值问题;

8. 最值问题。 二、 真题解析

1. 直线与圆位置关系以及圆内弦长问题

1.【2018全国1文15】直线1y x =+与圆22230x y y ++-=交于,A B 两点,则

||AB =___________

解析:2222230(1)4x y y x y ++-=?++=,圆心坐标为(0,1)-,半径2r =

圆心到直线1y x =+的距离d =||AB ==2.【2018全国2理19文20】设抛物线2:4C y x =的焦点为F ,过F 且斜率为

(0)k k >的直线l 与C 交于,A B 两点,||8AB =

(1)求l 的方程;

(2)求过点,A B 且与C 的准线相切的圆的方程。

解析:(1)直线过焦点,因此属于焦点弦长问题,可以利用焦点弦长公式来求 根据焦点弦长公式可知22||8

sin p

AB θ

=

=

,则sin 2θ=,tan 1θ= 则l 的直线方程为1y x =-

(2)由(1)知AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为

2(3)y x -=--,即5y x =-+

设所求圆的圆心坐标为00(,)x y ,则

0022

0005

(1)(1)162

y x y x x =-+??

?-++=

+?? 解得0000311

2-6

x x y y ==???

?==??或

因此所求圆的方程为2222(3)(2)1(11)(+6)1x y x y -+-=-+=或

通过这个题目注意一个在抛物线中不常用的结论:在抛物线中以焦点弦为直径的圆与准线相切,证明过程如下:

在上图中过焦点的直线与抛物线交于,A B 两点,取AB 的中点M ,三点分别

向准线作垂线,垂足分别为,,C D N ,因为1

()2

MN AC BD =+,,AC AF BD BF ==,

所以11

()22

MN AF BF AB =+=,所以AB 为直径的圆与准线相切。

3.【2018北京理10】在极坐标中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.

解析:cos sin (0)a a x y a ρθρθ+=>?+= 222cos (1)1x y ρθ=?-+=

直线与圆相切时1d r =

==

,解得1a =+4.【2018天津理12】已知圆2220x y x +-=的圆心为C

,直线1232

x y ?=-+???

?=-??(t 为

参数)与该圆相交于,A B 两点,则ABC ?的面积为___________.

解析:222220(1)1x y x x y +-=?-+=

12232

x x y y ?=-+???+=?

?=-?? 圆心(1,0)到直线20x y +-=

的距离为2

d =

,所以||AB == 所以11||22

ABC S AB d ?=

= 5.【2018天津文 12】在平面直角坐标系中,经过三点(0,0),(1,1)(2,0)的圆的方程为__.

解析:(0,0),(1,1)两点的中垂线方程为10x y +-=,(0,0),(2,0)两点的中垂线方程为

1x =,联立10

1

x y x +-=??

=?解得圆心坐标为(1,0),半径1r = 所以圆的方程为22(1)1x y -+=

6.【2018江苏选修 C 】在极坐标中,直线l 的方程为sin()26

π

ρθ-=,曲线C 的方程

为4cos ρθ=,求直线l 被曲线C 截得的弦长。

解析:sin(

)2406

x π

ρθ-=?-=

224cos (2)4x y ρθ=?-+=,设直线与圆相交于,A B 两点

圆心(2,0)到直线40x --=的距离212

d ==

||AB ==

2. 椭圆,双曲线,抛物线中基础性的计算问题

7.【2018全国1 文4】已知椭圆222:14

x y C a +=的一个焦点为(2,0),则C 的离心率为

___________.

解析:2,2c b ==所以2228a b c =+=,

2

c e a =

==

8.【2018全国2 理5 文6】双曲线22

221x y a b

-=,则其渐近线方程为___.

解析:22

23c e a ==,则令223,1c a ==则22b =,所以渐近线方程为

b

y x a

=±=

9.【2018全国3 文10】已知双曲线22

22:1x y C a b

-=,则点(4,0)到C

渐近线的距离为_________.

解析:c

e a

=

=0bx ay -= 所以点(4,0)到渐近线的距离为

4b d c =

=

令1c a ==,则

41,b

b d c

====

=

因为求的是比值,因此没必要求出,b c 具体的数字,因为无论,b c 是多少,其比值都是相同的。

10.【2018北京 文10】已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截

得的线段长为4,则抛物线的焦点坐标为_________.

解析::1l x =,代入到24y ax =得y =4=,1a =(a 只能为正数)

11.【2018北京文 12】若双曲线2221(0)4

x y a a -=>的离心率为2,则a =_______.

解析:22222

222

452,4

c a b a b e a a a ++=====,解得4a = 12.【2018天津理 7】已知双曲线22

221x y a b

-=的离心率为2,过右焦点且垂直于x 轴

的直线与双曲线交于,A B 两点,设,A B 到双曲线的同一条渐近线的距离分别为

12,d d ,且126d d +=,则双曲线的方程为_______________.

解析:如上图,12d d +为右焦点F 到渐近线b

y x a

=

的距离的2倍,故

126d d =+=,又因为2c

e a

=

=,解得223,9a b == 所以双曲线的方程为

22

139

x y -= 13.【2018江苏8】在平面直角坐标系xoy 中,若双曲线22

221(0,0)x y a b a b

-=>>的右

焦点(,0)F c ,则其离心率的值是_________.

解析:双曲线的渐近线为0bx ay -=,

d b ===

所以2e === 14.【2018浙江2】双曲线2

213

x y -=的焦点坐标是_________. 解析:222223,1,4a b c a b ===+=,且焦点在x 轴上,所以焦点坐标为(2,0),(2,0)-

15.【2018上海1】设P 为椭圆22

153

x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为__________.

解析:25,a a ==,P

到该椭圆的两个焦点的距离之和为2a =16.【2018上海6】双曲线2

214

x y -=的渐近线方程为__________. 解析:224,1a b ==,所以渐近线方程为1

2

b y x x a =±=±

17.【2018全国1 理8】设抛物线2:4C y x =的焦点为F ,过点(2,0)-且斜率为

23

的直线与C 交于,M N 两点,则FM FN ?u u u u r u u u r

=__________.

解析:(1,0)F ,过点(2,0)-且斜率为23的直线方程为24

33

y x =+,设

1122(,),N(,)M x y x y ,联立

22121245405,42433y x x x x x x x y x ?=??-+=?+==?=+

??

所以1212()18FM FN x x x x ?=-+++=u u u u r u u u r

18.【2018江苏 12】在平面直角坐标系xoy 中,A 为直线:2l y x =上在第一象限

内的点,(5,0)B 以AB 为直径的圆C 与直线l 交于另一点D 。若0AB CD ?=u u u r u u u r

,则

点A 的横坐标为__________.

解析:因为AD BD ⊥,所以||BD 为点B 到直线2y x =

的距离,所以

BD ==ABD ?

为等腰直角三角形,所以AB ==

设(,2)A m m

=,且0m > 解得3m =

3. 圆锥曲线的离心率问题

19.【2018全国2 理12】已知12,F F 是椭圆22

22:1x y C a b

+=的左右焦点,A 是C 的

左顶点,点P 在过点A 12PF F ?为等腰三角形,

12120F F P ?∠=,则C 的离心率为________.

解析:如上图,

212222,60,PF F F c PF Q F Q c PQ ?==∠=?==

所以(2)P c

,因为(,0)A a -

所以1

264

AP K e c a =

=?=+ 20.【2018全国2 文11】已知12,F F 是椭圆C 的两个焦点,P 是C 上的一点,若

12PF PF ⊥,且2160PF F ?∠=,则C 的离心率是________.

解析:因为12||2F F c =,12PF PF ⊥且2160PF F ?∠=,则21||,||PF c PF ==

所以12||||(12PF PF c a +==,解得1c

e a

=

= 21.【2018全国3 理11】设12,F F 是双曲线22

22:1x y C a b

-=的左右焦点,O 是坐标原

点,过1F 作C 的一条渐近线的垂线,垂足为P ,若1|||PF OP =,则双曲线的

离心率为_______.

解析:由题意知:2:()a PF y x c b

=--

联立()a y x c b b y x a ?

=--????=??,解得2a x c ab y c ?=????=??,即2(,)a ab P c c

222

2221|||()()6[()()]a ab a ab PF OP c c c c c

=?++=+

解得e =22.【2018北京理14】已知椭圆2222:1(0)x y M a b a b +=>>,双曲线22

22:1x y N m n

-=.

若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正

六边形的顶点,则椭圆M 的离心率为___________;双曲线的N 的离心率为____.

解析:如上图,点P 在椭圆上,也在以12F F

为直径的圆上,所以

12211290,30,F PF PF F PF c PF ??∠=∠===,

所以12(12PF PF c a +==

,解得

1e =

在上图中,260QOF ?∠=,所以

2b

e a

=?= 4. 最值和范围问题

23.【2018 全国3 理6文8】直线20x y ++=分别于x 轴,y 轴交于,A B 两点,点

P 在圆22(2)2x y -+=上,则ABP ?面积的取值范围是___________.

解析:(2,0),(0,2),(2)A B P θθ--+,

(2,2),(4)AB AP θθ=-=+u u u r u u u r

此处用到了三角函数方法和向量法求三角形面积的公式

24.【2018北京理7】在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线

20x my --=的距离,当,m θ变化时,d 的最大值为__________.

解析:题目中如果是按照常规的点到直线距离来算,则要同时面对两个变量,点P 在

单位圆上,则d 最大时等于圆心(0,0)到直线的距离加半径,这样就可以不用考虑

θ的变化对最值的影响。

(cos ,sin )P θθ是圆221x y +=上的点,所以

13d =+

25.【2018浙江17】点(0,1)P ,椭圆22

(1)4

x y m m +=>上两点,A B 满足2AP PB =u u u r u u u r ,则当m =_______时,点B 横坐标的绝对值最大。

分析:若设B 点横坐标为0x ,则题目转化为当m 为何值时,0x 最大

因此可将0x 和m 放在同一个等式中且将0x 单独分离到一边,含有m 的式子放到

另一边,此时含有0x 的部分类似于关于m 函数的值域,因此题目的关键是找到一个包含m 和0x 的等式,,A B 两点的坐标通过共线产生关联,且,A B 均在椭圆上,因此将,A B 两点坐标代入椭圆方程,消去y 即可得到关于m 和0x 的等式。

解析:设00(,)B x y ,因为2AP PB =u u u r u u u r

,则00(2,32)A x y --

联立2

20022

0002

200

44-(32)34(32)4

x y m x y y m x y m

?+=????-=??+-=??消去 解得034

m

y +=

所以2203()44x m m ++=,化简得22

0(5)164

m x --+= 所以当5m =时,0x 取得最大值。

26.【2018浙江21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线

2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在C 上。

(1) 设AB 中点为M ,证明:PM 垂直于y 轴;

(2) 若P 是半椭圆2

2

1(0)4

y x x +=<上的动点,求PAB ?面积的取值范围。 解析:(1)设2200112211(,),(,),(,)44

P x y A y y B y y

AP 中点满足:2

2

102014(

)4()22

y x y y ++= BP 中点满足:2

2

202024:(

)4()22

y x y y BP ++=

所以12,y y 是方程2

2

0204()4()22

y x y y ++=即22000

280y y y x y -+-=的两个根,所以12

02

y y y +=,故PM 垂直于y 轴。

(2)由(1)可知212012002,8y y y y y x y +=?=-

所以222

1200013||()384

PM y y x y x =+-=-

,12||y y -=

因此,3

2212001||||4)2PAB

S PM y y y x ?=?-=- 因为2

2

0001(0)4

y x x +=<,所以2200004444[4,5]y x x x -=--+∈ 因此,PAB ?

面积的取值范围是]4

5. 距离型问题

27.【2018全国1理11】已知双曲线2

2:13

x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,M N ,若OMN ?为直角三角形,

则||MN =________.

解析:如上图所示,可得MN k =MN

所在直线方程为2)y x =-

联立2)y x M y x ?=-?

??=??

联立2)

3(,23y x N y x ?=-?

??=-??

解得||3MN =

6.定值问题

28.【2018全国3 理16】已知点(1,1)M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与抛物线交于,A B 两点,若90ABM ?∠=,则k =________.

解析:用到结论:在抛物线中以焦点弦为直径的圆与准线相切 所以1N M y y ==,设0(,1)N x ,根据焦点弦斜率公式可得

000

12

2AB ON AB AB p k k k k x x x ?=

??=?=

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22221x y a b -=(a>0,b>0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于 ( C ) (A)3 (B)2 (C)5 (D )6 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D ). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A.2 B.3 C.5 D .10 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线 AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A . 3 B .22 C.13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D.直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 2 5 D.5 2

2018年高考真题汇编——理科数学(解析版)10:圆锥曲线

2018高考真题分类汇编:圆锥曲线 一、选择题 1.【2018高考真题浙江理8】如图,F 1,F 2分别是双曲线C :2 2 221x y a b -=(a,b >0)的左、 右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平 分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是 A. 23 B 6 2 D. 3【答案】B 【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组??????? =-+=0,b y a x b x c b y 得点 Q ),(a c bc a c ac --,联立方程组??????? =++=0 ,b y a x b x c b y 得点P ),(a c bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222b c a x b c b c y --=-,令0=y ,得)1(22b a c x +=,所以c b a c 3)1(22=+,所以2222222a c b a -==,即2223 c a =,所以26=e 。 故选B 2.【2018高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线 x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )

()A 2 ()B 22 ()C 4 ()D 8 【答案】C 【解析】设等轴双曲线方程为)0(2 2 >=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得412162 2 =-=-=y x m ,所以双曲线方 程为42 2 =-y x ,即14 42 2=-y x ,所以2,42==a a ,所以实轴长42=a ,选C. 3.【2018高考真题新课标理4】设12F F 是椭圆22 22:1(0)x y E a b a b +=>>的左、右焦点,P 为 直线32a x =上一点,12PF F ?是底角为30o 的等腰三角形,则E 的离心率为( ) ()A 12 ()B 23 ()C 34 ()D 45 【答案】C 【解析】因为12PF F ?是底角为30o 的等腰三角形,则有 P F F F 212=,,因为 2130=∠F PF ,所以 0260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F == ,即c c c a =?=-22 1 23,所以c a 223=,即43=a c ,所以椭圆的离心率为4 3=e ,选C. 4.【2018高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。若点M 到该抛物线焦点的距离为3,则||OM =( ) A 、22 B 、23 C 、4 D 、5 【答案】B 【解析】设抛物线方程为2 2y px =,则点(2,2)M p ±Q 焦点,02p ?? ??? ,点M 到该抛物线焦点的距离为3,∴ 2 2492p P ? ?-+= ?? ?, 解得2p =,所以44223OM =+?=.

高三文科数学圆锥曲线综合复习讲义

高三文科数学圆锥曲线综合复习讲义 一、基础知识【理解去记】 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。若P(x, y)是椭圆上的任意一 点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.补充知识点: 几个常用结论: 1)过椭圆上一点P(x 0, y 0)的切线方程为: 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;3)过焦点F 2(c, 0)倾斜角为θ的弦的长为 θ 2222 cos 2c a ab l -=。 6.双曲线的定义,第一定义: 满足||PF 1|-|PF 2||=2a(2a<2c=|F 1F 2|, a>0)的点P 的轨迹; 第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。 7.双曲线的方程:中心在原点,焦点在x 轴上的双曲线方程为

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

2018年全国卷理科数学十年真题分类汇编 圆锥曲线

圆锥曲线 一.基础题组 1. 【2014课标Ⅰ,理4】已知为双曲线:的一个焦点,则点到的一条渐近线的距离为( ) A. B. 3 C. D. 【答案】A 2. 【2013课标全国Ⅰ,理 4】已知双曲线C :(a >0,b >0), 则C 的渐近线方程为( ). A .y = B .y =C .y = D .y =±x 【答案】C 【解析】∵,∴.∴a 2=4b 2,.∴渐近线方程为. 3. 【2012全国,理4】设F 1,F 2是椭圆E :(a >b >0)的左、右焦点,P 为直线 上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A . B . C . D . 【答案】C F C )0(32 2 >=-m m my x F C 3m 3m 322 22=1x y a b -514x ± 13x ±1 2 x ±2c e a ==2222 22 54c a b e a a +===1=2b a ±1 2 b y x x a =± ±22 221x y a b +=32 a x = 12233445

【解析】设直线与x轴交于点M,则∠PF2M=60°,在Rt△PF2M中,PF2=F1F2=2c,, 故,解得,故离心率. 4. 【2011全国新课标,理7】设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为( ) A B C. 2 D.3 【答案】B 【解析】 5. 【2009全国卷Ⅰ,理4】设双曲线(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于() 3 2 a x= 2 3 2 a F M c =- 2 2 3 1 2 cos60 22 a c F M PF c - ?=== 3 4 c a = 3 4 e= 1 2 2 2 2 = - b y a x

高考数学圆锥曲线综合题题库1 含详解

1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设1F 、2F 分别是 椭圆22 154 x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ?的最大值和最小值; (Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由. 解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴=== 设P (x ,y ),则1),1(),1(2 221-+=--?---=?y x y x y x PF 35 1 1544222+=-- +x x x ]5,5[-∈x , 0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ?有最小值3; 当5±=x ,即点P 为椭圆长轴端点时,21PF PF ?有最大值4 (Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不 存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k 直线l 的方程为)5(-=x k y 由方程组22 22221(54)5012520054 (5)x y k x k x k y k x ?+ =?+-+-=??=-? ,得 依题意220(1680)0k k ?=-><< ,得 当5 5 55< <- k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则4 5252,455022 2102221+=+=+=+k k x x x k k x x .4 520)54525()5(22200+-=-+=-=∴k k k k k x k y 又|F 2C|=|F 2D|122-=??⊥?R F k k l R F

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

高考数学圆锥曲线历年高考真题

浙江省高考数学圆锥曲线真题 22 04. 若椭圆 x 2 y 2 ab 1(a > b > 0)的左、右焦点分别为 F 1、F 2, 线段 F 1F 2被抛物线 y 2=2 bx 的焦点 分成 5∶ 3的两 段 , 则此椭圆的离心率为 16 (A) 1167 05.过双曲线 2 x 2 a 4 17 (B) 17 2 b y 2 1(a b 4 (C)45 (D) 255 5 0,b 0) 的左焦点且垂直于 x 轴的直线与双曲线相交于 M 、 N 两点 , 以 MN 为直径的圆恰好过双曲线的右顶点 则双曲线的离心率等于 07. 已知双曲线 2 x 2 a 2 y 2 1(a 0,b b 2 0) 的左、右焦点分别为 F 1,F 2, P 是准线上一点 , PF 1 PF 2,|PF 1| |PF 2| 4ab , 则双曲线的离心率是 B ) 3 (C ) 2 (D ) 3 △ ABP 的面积为定 则动点 P 的轨迹是A . 圆 B . 椭圆 C . 一条直线 D . 两条平行直线 09. 2 x 过双曲线 2 a 2 y b 2 1(a 0,b 0) 的右顶 点 条渐近线的交点分别为 B,C uuur .若 AB 1 uuur BC , 2 A . 2 B .3 C 08.如图 , AB 是平面 的斜.线.段. ) B A P 第 10 题) A 作斜率为 1的直线 , 该直线与双曲线的两 则双曲线的离心率 是 ( ) .5 D . 10 A 为斜足 , 若点 P 在平面 内运动 , 使得 点 A (0,2) 。若线段 FA 的中点 B 在抛物线上 2 10. (13)设抛物线 y 2 2px (p 0) 的焦点为 F, 则 B 到该抛物线准线的距离为 近线与以 C 1 的长轴为直径的圆相交于 A, B 两点 ( ) 13 2 B . a 2= 13 1 D . A .a 2= C .b 2= b 2=2 2 2 2 11. 设 F 1, F 2分别为椭圆 x 2 3 y 2 1的 左、 右焦点 22 x y 2 11. 已知椭圆 C 1: 2 2 =1 (a > b > 0)与双曲线 C 2: x 2 ab 则点 A 的坐标是 _______ 2 y 1有公共的焦点 , C 2 的一条渐 4 若 C 1 恰好将线段 AB 三等分 , 则 uuur uuuur 点 A, B 在椭圆上. 若 F 1A 5F 2B ,

2018年高考理科数学通用版三维二轮专题复习专题检测:(二十二) 第20题解答题“圆锥曲线的综合问题”专练

专题检测(二十二) 第20题解答题“圆锥曲线的综合问题”专练 1.(2018届高三·广东五校协作体诊断考试)若椭圆 x2a2+y2b2 =1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成了3∶1的两段. (1)求椭圆的离心率; (2)过点C (-1,0)的直线l 交椭圆于不同两点A ,B ,且AC ―→=2 CB ―→,当 △ AOB 的面积最大时,求直线l 的方程. 解:(1)由题意知,c +b 2=3? ???? c -b 2, 所以b =c ,a 2=2b 2, 所以e =c a = 1-? ?? ??b a 2=22. (2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =ky -1(k ≠0), 因为AC ―→=2CB ―→ ,所以(-1-x 1,-y 1)=2(x 2+1,y 2), 即y 1=-2y 2, ① 由(1)知,椭圆方程为x 2+2y 2=2b 2. 由????? x =ky -1,x2+2y2=2b2 消去x , 得(k 2+2)y 2-2ky +1-2b 2=0, 所以y 1+y 2=2k k2+2 , ② 由①②知,y 2=-2k k2+2,y 1=4k k2+2, 因为S △AOB =12|y 1|+1 2 |y 2|, 所以S △AOB =3·|k| k2+2=3·1 2 |k| +|k|

≤3· 12 2 |k|·|k|= 324 , 当且仅当|k |2=2,即k =±2时取等号, 此时直线l 的方程为x - 2y +1=0或x + 2y +1=0. 2.已知椭圆C :x2a2 + y2b2 =1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆上任意一点,直线TA ,TB 的斜率之积为-3 4 . (1)求椭圆C 的方程; (2)设O 为坐标原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP ―→ · OQ ―→+MP ―→·MQ ―→的取值范围. 解:(1)设T (x ,y ),由题意知A (-4,0),B (4,0), 设直线TA 的斜率为k 1,直线TB 的斜率为k 2, 则k 1=y x +4,k 2=y x -4 . 由k 1k 2=-34,得y x +4·y x -4=-3 4 , 整理得x2 16+y212 =1. 故椭圆C 的方程为x2 16+y2 12 =1. (2)当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2), 联立方程??? ?? x216+y2 12=1, y =kx +2 消去y , 得(4k 2+3)x 2+16kx -32=0.

新人家A版高考数学一轮复习:圆锥曲线的综合问题

圆锥曲线的综合问题 [知识能否忆起] 1.直线与圆锥曲线的位置关系 判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0). 若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0?直线与圆锥曲线相交; Δ=0?直线与圆锥曲线相切; Δ<0?直线与圆锥曲线相离. 若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题 设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1 -x 2|或 1+1 k 2|y 1-y 2|. [小题能否全取] 1.(教材习题改编)与椭圆x 212+y 2 16=1焦点相同,离心率互为倒数的双曲线方程是( ) A .y 2- x 23=1 B.y 23 -x 2 =1 C.34x 2-3 8 y 2=1 D.34y 2-3 8 x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2 b 2=1(a >0,b >0), 则????? a 2+ b 2= c 2, c a =2,c =2, 得a =1,b = 3. 故双曲线方程为y 2- x 2 3 =1. 2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 2 4=1的位置关系是( ) A .相交 B .相切 C .相离 D .不确定 解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直

2018高考题圆锥曲线

(2018 全国二卷)19.( 12 分) 设抛物线C : y 2 4x 的焦点为F,过F 且斜率为k(k 0)的直线I 与C 交于A ,B 两点,|AB| 8 . (1)求I 的方程 (2)求过点A , B 且与C 的准线相切的圆的方程. (2018全国三卷)20. (12分) (1)证明:k 1 ; 2 ⑵设F 为C 的右焦点,P 为C 上一点,且F P FA F B 0 .证明:FA , 2 已知斜率为k 的直线I 与椭圆c :- 4 2 7 1交于A , B 两点,线段AB 的中点为 ujur FP ,

FB成等差数列,并求该数列的公差.

(2018北京卷)(19)(本小题14分) 已知抛物线C: y2=2px经过点P (1, 2).过点Q (0, 1)的直线I与抛物线C有两个不同的交点A, B,且直线PA交y轴于M ,直线PB交y轴于N. (I )求直线I的斜率的取值范围; (2018天津卷)(19)(本小题满分14分) 2 2 设椭圆笃笃1 (a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为 a b —,点A的坐标为(b,0),且FB AB 6j2 . 3 (I)求椭圆的方程; (II)设直线I: y kx(k 0)与椭圆在第一象限的交点为P,且I与直线AB 交于点Q. AQ 5名sin AOQ (O为原点),求k的值. PQ (2018江苏卷)18.(本小题满分16分)

如图,在平面直角坐标系xOy 中,椭圆C过点(禺),焦点F1(加皿。), 圆O的直径为F1F2. (1)求椭圆C及圆O的方程; (2)设直线I与圆O相切于第一象限内的点P. ①若直线I与椭圆C有且只有一个公共点,求点P的坐标; ②直线I与椭圆C交于A,B两点.若△ OAB的面积为纽6, 7 求直线I的方程. (2018浙江卷)21.(本题满分15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C: y2=4x上存在不同的两点A, B满足PA PB的中点均在C

高考数学总复习圆锥曲线综合

第六节 圆锥曲线综合 考纲解读 1.掌握与圆锥曲线有关的最值、定值和参数范围问题. 2.会处理动曲线(含直线)过定点的问题. 3.会证明与曲线上的动点有关的定值问题. 4.会按条件建立目标函数,研究变量的最值及取值范围问题,注意运用数形结合法和几何法求某些量的最值. 命题趋势研究 从内容上看,预测2015年高考主要考查两大类问题:一是根据条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质,其热点有:①以客观题的形式考查圆锥曲线的基本概念和性质;②求平面曲线的方程和轨迹;③圆锥曲线的有关元素计算、关系证明或范围确定;④涉及圆锥曲线对称变换、最值或位置关系的有关问题. 从形式上看,以解答题为主,难度较大. 从能力要求上看,要求学生具备一定的数形结合、分析问题和解决问题及运算能力. 知识点精讲 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下: (1)变量----选择适当的量为变量. (2)函数----把要证明为定值的量表示成变量的函数. (3)定值----化简得到的函数解析式,消去变量得到定值. 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,再证明该定值与变量无关; (2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值. 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决,这是几何法. (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值.求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等,这就是代数法. 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的作用(把定义作为解题的着眼点). (2)重视曲线的几何特征特别是平面几何性质与方程的代数特征在解题中的作用. (3)重视根与系数的关系在解题中的作用(涉及弦长、中点要用根与系数的关系). 四、求参数的取值范围 据已知条件及题目要求等量或不等量关系,再求参数的范围. 题型归纳及思路提示 题型150 平面向量在解析几何中的应用 思路提示 解决平面向量在解析几何中的应用要把几何特征转化为向量关系,并把向量用坐标表示.常见的应用有如下两个方面. (1)用向量的数量积解决有关角的问题.直角?0a b =,钝角?0a b <(且,a b 不反向),

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

2020年高考圆锥曲线部分大题解析

1.【2018浙江21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线 2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在C 上。 (1) 设AB 中点为M ,证明:PM 垂直于y 轴; (2) 若P 是半椭圆2 2 1(0)4 y x x +=<上的动点,求PAB ?面积的取值范围。 解析:(1)设2200112211(,),(,),(,)44 P x y A y y B y y AP 中点满足:2 2 102014( )4()22 y x y y ++= BP 中点满足:2 2 202024:( )4()22 y x y y BP ++= 所以12,y y 是方程2 2 0204()4()22 y x y y ++=即22000 280y y y x y -+-=的两个根,所以 12 02 y y y +=,故PM 垂直于y 轴。 (2)由(1)可知212012002,8y y y y y x y +=?=- 所以222 1200013||()384 PM y y x y x =+-= - ,12||y y -= 因此,3 2212001||||4)24 PAB S PM y y y x ?=?-=- 因为2 2 0001(0)4 y x x +=<,所以2200004444[4,5]y x x x -=--+∈ 因此,PAB ? 面积的取值范围是

1. 距离型问题 2.【2018全国3 理20】已知斜率为k 的直线l 与椭圆22 :143 x y C +=交于,A B 两点,线段AB 的中点为(1,)(0)M m m > (1)证明:1 2 k <- ; (2)设F 为C 的右焦点,P 为C 上一点且0FP FA FB ++=,证明:,,FP FA FB 为等差数列,并求出该数列的公差。 解析:(1)由中点弦公式22OM b k k a ?=-,解得34k m =- 又因为点M 在椭圆内,故302m << ,故1 2 k <- (2)由题意知2,2FA FB FM FP FM +==-,故(1,2)P m - 因为点P 在椭圆上,代入可得3,14m k = =-,即3||2 FP = 根据第二定义可知,1211||2,||222 FA x FB x =- =- 联立22 212121114371402,4287 4 x y x x x x x x y x ?+=???-+=?+==? ?=-+?? 即121 ||||4()32 FA FB x x +=- += 故满足2||||||FP FA FB =+,所以,,FP FA FB 为等差数列 设其公差为d ,因为,A B 的位置不确定,则有

高考数学圆锥曲线及解题技巧

椭圆与双曲线的性质 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆 的焦点角形的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应 于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除 去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

高考数学圆锥曲线分类大全理

2011-2018 新课标(理科)圆锥曲线分类汇编
一、选择填空
【2011 新课标】7. 设直线 l 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,l 与 C 交于 A,B
两点, AB 为 C 的实轴长的 2 倍,则 C 的离心率为( B )
(A) 2
(B) 3
(C)2
(D)3
【2011 新课标】14. 在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F1, F2 在 x 轴上,
离心率为
2 。过 l 的直线 2
交于 A, B 两点,且 △ABF2 的周长为 16,那么 C 的方程为
x2 y2 1

16 8
【2012 新课标】4. 设 F1F2 是椭圆 E :
x2 a2
y2 b2
1(a
b 0) 的左、右焦点,P 为直线 x
3a 2

一点, F2PF1 是底角为 30o 的等腰三角形,则 E 的离心率为( C )
【解析】
F2PF1 是底角为 30o 的等腰三角形 PF2
F2F1
2(3 a c) 2c e c 3
2
a4
【2012 新课标】8. 等轴双曲线 C 的中心在原点,焦点在 x 轴上,C 与抛物线 y 2 16 x 的准线
交于 A, B 两点, AB 4 3 ;则 C 的实轴长为( C )
【解析】设 C : x2 y2 a2 (a 0) 交 y 2 16 x 的准线 l : x 4 于 A(4, 2 3) B(4, 2 3) 得: a2 (4)2 (2 3)2 4 a 2 2a 4
【2013 新课标 1】4. 已知双曲线 C:xa22-yb22=1(a>0,b>0)的离心率为 ,则 C 的渐近线方程 为( C )
A、y=± x
(B)y=± x
(C)y=± x
(D)y=±x
【解析】由题知, c a
5 2
,即
5 4
=
c2 a2
=
a2 b2 a2
,∴ b2 a2
=1 4
,∴
b a
=
1 2
,∴ C
的渐近线方程
为 y 1 x ,故选 C . 2
【2013 新课标 1】10、已知椭圆xa22+yb22=1(a>b>0)的右焦点为 F(3,0),过点 F 的直线交椭圆于
A、B 两点。若 AB 的中点坐标为(1,-1),则 E 的方程为 (
D
)
x2 y2 A、45+36=1
x2 y2 B、36+27=1
x2 y2 C、27+18=1
x2 y2 D、18+ 9 =1
【解析】设 A(x1, y1), B(x2 , y2 ) ,则 x1 x2 =2, y1 y2 =-2,

相关主题
文本预览
相关文档 最新文档