当前位置:文档之家› 三角函数最值问题的解题技巧

三角函数最值问题的解题技巧

三角函数最值问题的解题技巧
三角函数最值问题的解题技巧

三角函数经典解题方法与考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=m π, m ∈N +,又s in (2co s0)=s in 2≠s in (2co s π),所以T 0=2π。 过手练习 1.下列函数中,周期为 2π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π的奇函数 D. 最小正周期为2π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304≤≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

三角函数最值问题类型归纳

三角函数最值问题类型归纳 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为 只有一种三角函数。应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=。 例1.当-≤x≤时,函数f(x)=sinx+cosx的( D ) A、最大值是1,最小值是-1 B、最大值是1,最小值是- C、最大值是2,最小值是-2 D、最大值是2,最小值是-1 分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可。 2.y=asin2x+bsinxcosx+cos2x型的函数 特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合。 解:y=sin2x+2sinxcosx+3cos2x =(sin2x+cos2x)+sin2x+2cos2x =1+sin2x+1+cos2x =2+sin(2x+) 当sin(2x+)=-1时,y取最小值2-,此时x的集合{x|x=kπ-π, k∈Z}。 3.y=asin2x+bcosx+c型的函数 特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M。 解:y=1-sin2x-2asinx-a=-(sinx+a)2+a2+1-a,

高考数学解题技巧三角函数

2018高考数学解题技巧 解答题模板2:三角函数 高考中三角函数解答题是历年高考必考内容之一,成为6道解答题中的第一题,难度一般比较小,三角函数中,以公式多而著称.解题方法也较灵活,但并不是无法可寻,当然有它的规律性,近几年的高考中总能体现出其规律性.而对三角函数的考查解法,归纳起来主要有以下六种方法:能够做好这道题也成了决定高考成败的关键,从近几年高考来看,三角函数解答题有如下几种题型 二、典型例题 弦切互化 例1.已知2tan =θ,求(1) θ θθ θsin cos sin cos -+; 解:(1)2232 121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+ = -+θθθ θθθ θθθθ; 函数的定义域问题 例2、求函数1sin 2+=x y 的定义域。 解:由题意知需01sin 2≥+x ,也即需21sin -≥x ①在一周期?? ????-23,2ππ上符合①的角为??? ???-67,6ππ,由此可 得到函数的定义域为????? ? +-672,62ππππk k ()Z k ∈ 说明:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()() 1,0log ≠>=a a x f y a 的函数,则其定义域由()x f 确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 函数值域及最大值,最小值 (1)求函数的值域 一般函数的值域求法有:观察法,配方法判别式法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。 例3、求下列函数的值域 (1)x y 2sin 23-= (2)2sin 2cos 2 -+=x y x 分析:利用1cos ≤x 与1sin ≤x 进行求解。 解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2)()[].0,4,1sin 11sin 1sin 2sin 2sin 22 22 cos -∈∴≤≤---=-+-=-+=y x x x x x x y

《与三角函数有关的最值问题》复习课教学设计

《与三角函数有关的最值问题》复习课教学设计 湖南师大第二附属中学刘海军 一.教学分析 三角函数的最值与值域问题,是历年高考重点考查的知识点之一,是对三角函数的概念、图象、性质以及诱导公式、同角三角函数间的关系、两角和与差公式的综合考查,是函数最值的一个重要组成部分.三角函数的最值与值域问题不仅与三角自身的所有基础知识密切相关,而且与前面复习过的函数、不等式、联系密切,综合性强,解法灵活,能力要求高,在复习完三角公式后,把三角函数的最值与值域作为专题复习,不仅可以帮助学生灵活运用三角公式,而且可以帮助学生掌握求最值和值域的方法,综合能力得到增强。 二.教学目标 1.知识与技能:正确理解三角函数的有关概念,掌握三角函数的基本概念、公式、图象及性质,并能综合运用这些概念,公式及性质解决实际问题. 2.过程与方法:在教学过程中,让学生学会运用数形结合思想、函数和方程的数学思想 来分析解决数学问题;培养学生的观察能力、动手能力、创新能力和归纳能力. 3.情感态度与价值观:通过例题的分析,方法的归纳,激发学生主动参与、主动探索的意识,使学生始终在动态过程中去感受知识、巩固知识、运用知识,提高45分钟的效率. 三.教学重点、难点 教学重点:求三角函数的最大、最小值. 教学难点:针对各题,会观察题中特点,正确运用相应方法求三角函数最值. 四.课型及课时安排 高三复习课,2课时:第1课时. 五.教学方法设计 综合启发教学,边教边让学生参与,学会对知识的归纳;强调教师为主导、学生为主体的互动原则,充分调动学生的积极性,发挥学生的主动性和创造性. 六.学情分析 高三学生对三角函数这部分知识比较熟悉.但学生对知识的前后联系,有效方法的选择,分析问题的内涵,综合运用知识的能力还很薄弱.学生对知识的归纳整理能力比较欠缺,所以对三角函数最值的几个基本类型需要进行归纳和整理,以便学生能够更好的掌握.

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 2 22±=±+=±故知道)c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3 cos sin -= -求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33( cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 4 3133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2= 12+n C .n m 2 2= D .22m n =

(完整版)高中数学三角函数解题技巧和公式(已整理)

关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。 例3 已知:tg α+ctg α=4,则sin2α的值为( )。

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

锐角三角函数的解题技巧

锐角三角函数的解题技巧 一、知识点回忆 (一)锐角的三角函数的意义 1、正切 在Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比,叫做∠A的正切,记作tanA. 2、正弦和余弦 如图,在Rt△ABC中,∠C=90°,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即 3、三角函数:在直角三角形中,锐角A的正切(tanA)、正弦(sinA)、余弦(cosA),都叫做∠A的三角函数. (二)同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)商数关系: (三)两角的关系 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.

(四)特殊锐角的三角函数值 (五)锐角三角函数值解法 1、用计算器 求整数度数的锐角三角函数值. 在计算器的面板上涉及三角函数的键有和键,当我们计算整数度数的某三角函数值时,可先按这三个键之一,然后再从高位向低位按出表示度数的整数,然后按,则屏幕上就会显示出结果. 例如:计算sin44°. 解: 按键,再依次按键. 则屏幕上显示结果为0.69465837. 求非整数度数的锐角三角函数值. 若度数的单位是用度、分、秒表示的,在用计算器计算三角函数值时,同样先按 和三个键之一,然后再依次按度分秒键,然后按键,则屏幕上就会显示出结果. 2、已知三角函数值,用计算器求角度

已知三角函数值求角度,要用到、键的第二功能“sin-1,cos-1,tan-1”和键.具体操作步骤是:先按键,再按键之一,再依次按三角函数值,最后按键,则屏幕上就会显示出结果. 值得注意的是:型号不同的计算器的用法可能不同。 (六)直角三角形的解法 解直角三角形既是初中几何的重要内容,又是今后学习解斜三角形,三角函数等知识的基础,同时,解直角三角形的知识又广泛应用于测量、工程技术和物理之中,解直角三角形的应用题还有利于培养学生空间想象的能力。因此,通过复习应注意领会以下几个方面的问题: 解直角三角形的重点是锐角三角函数的概念和直角三角形的解法。前者又是复习解直角三角形的难点,更是复习本部分内容的关键。 掌握锐角三角函数和解直角三角形是进行三角运算解决应用问题和进一步研究任意角三角函数的重要基础。因此,解直角三角形既是各地中考的必考内容,更是热点内容。题量一般在4%~10%。分值约在8%~12%题型多以中、低档的填空题和选择题为主。个别省市也有小型综合题和创新题。几乎每份试卷都有一道实际应用题出现。 二、重点难点疑点突破 1、(1)sinA和cosA都是一个整体符号,不能看成sin·A或cos·A. (2)是一个比值,没有单位,只与角的大小有关,而与三角形的大小无关. (3)sinA+sinB≠sin(A+B)sinA·sinB≠sin(AB) (4)sin2A表示(sinA)2,cos2A=(cosA)2 (5)0<sinA<1,0<cosA<1 2、同名三角函数值的变化规律 当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大; 余弦三角函数值随着角度的增大而减少. 三、解题方法技巧点拨 1、求锐角三角函数的值 例1、(1)在Rt△ABC中,∠C=90°,若,求cosB,tanB的值.

三角函数最值问题解法归纳

三角函数最值问题—解题9法 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常 涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这一类问 题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另 一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面 就介绍几种常见的求三角函数最值的方法: 一配方法 若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定 的函数化归为二次函数的最值问题来处理。 例1函数的最小值为(). A. 2 B . 0 C . D . 6 [分析]本题可通过公式将函数表达式化为,因含有cosx 的二次式,可换元,令cosx=t,则配方,得, 当t=1时,即cosx=1时,,选B. 例2 求函数y=5sinx+cos2x的最值 [分析]:观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。 二引入辅助角法 例3已知函数当函数y取得最大值时,求自变量x的集合。 [分析] 此类问题为的三角函数求最值问题,它可通过降次化简整理为型求解。 解:

三利用三角函数的有界性 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。 例4求函数的值域 [分析] 此为型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解。或者也可先用反解法,再用三角函数的有界性去解。 解法一:原函数变形为,可直接得到:或 解法一:原函数变形为或 例5已知函数,求函数f(x)的最小正周期和最大值。 [分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式。 解: f(x)的最小正周期为,最大值为。 四引入参数法(换元法) 对于表达式中同时含有sinx+cosx,与sinxcosx的函数,运用关系式 一般都可采用换元法转化为t的二次函数去求最值,但必须要注意换元后新变量的取值范围。 例6 求函数y=sinx+cosx+sinxcosx的最大值。 [分析]解:令sinx+cosx=t,则 ,其中

三角函数的最值问题

三角函数的最值问题 The Standardization Office was revised on the afternoon of December 13, 2020

三角函数的最值问题 三角函数最值问题散见于不同的章节,或作为问题的背景、或作为单独的数学问题、或作为解题的工具。今天,我们就求解最值的方法层面展开讨论! 一 化为单名函数的形式 例1 函数f(x)=x x x x 44sin cos sin 2cos -- ① 求f(x)得最小正周期; ② ?? ????∈2,0πx 时,求f(x)的最小值。 解: (1) x x x x x f cos sin 2sin cos )(22--= x x 2sin 2cos -= )2 22sin 222(cos 2?-=x x )4 2cos(2π+=x ∴ f(x)最小正周期是π=T (2)20π≤ ≤x ∴ ??????∈+45,422πππx ∴ 442ππ=+ x 即0=x 时最大值是1 ππ=+ 42x 即83π=x 时最小值是-2 注意 ① 辅助角公式)sin(cos sin 22?++=+x b a x b x a 的应用 ② 注意三角函数区间最值的正确取舍 二 单名函数的复合型 例2 3 1sin sin =+y x ,求x y 2cos sin -的最值

解:∵ x y sin 3 1sin -= ∴ 1sin 311≤-≤-x ∴ 3 4sin 32≤≤-x ∴ 12 11)21(sin cos sin 22--=-=x x y u ∴ 21sin =x u 的最小值为12 11- ; 32sin -=x u 的最大值为94 注意:隐含条件不可忽视! 三 关系代换x x cos sin ±与x x cos sin 例3 求函数x x x x y cos sin 1cos sin ++=的最值 解:令x x t cos sin += 则 x x t cos sin 12+= ∴ )1(2 1121 2-=+-=t t t y ∴ 22≤≤-t 且 1≠t ∴ )12(21)12(21-≤≤+-y 且 1-≠y 注意① 代换要等效 ;② 原函数中对代换量的现定! 四 限量代换 例4 求函数21x x y -+=的值域 解:函数的定义域[]1,1-∈x 令 θcos =x , πθ≤≤0 )4 sin(2sin cos π θθθ+=+=y ∴ 21≤≤-y 注意:限量代换要求对代换量进一步分析并“定性” 五 建立关系等式整体带入或转化

高中数学三角函数解题方法与技巧分析

龙源期刊网 https://www.doczj.com/doc/305506512.html, 高中数学三角函数解题方法与技巧分析 作者:王元蕾 来源:《文理导航》2017年第29期 【摘要】在高中学习期间,三角函数是相对独立又颇为重要的一块内容。分析历年来的高考试题可以发现,全国卷中涉及的三角函数的内容一般为选择题(或填空题)和一道大题。选择题的型多变,不易解答。而大题一般出现在第一道大题的位置上,较为简单。另外,数理不分家,三角函数在高中物理的叠加场大题中也发挥着关键作用。总之,加强对于高中数学三角函数内容的学习,十分必要。在本文中,我将介绍自己在高中学习过程中,对三角函数这块内容的理解以及一些解题方法、答题技巧。 【关键词】三角函数;答题技巧;高考 引言 三角函数,顾名思义,与角度和函数有关,数学上对函数的定义为:给定一个数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A),因此,角度也就是函数定义中A了。据专家、老师以及我的分析,在全国卷中,三角函数题属于低档题,而且三 角函数知识属于高中阶段的工具性知识,因此必须熟练掌握。下面我根据个人经验,从三个方面介绍三角函数的答题技巧。 1.解题时要注意灵活运用基础知识 如例2:如右图所示,在三角形ABC中,已知:tan∠B=3/4,sin∠ADC=4/5,AD长度为5米。求:AB的长度。 解析:由sina/cosa=tana、tan∠B=3/4两个条件可以得出,sina=3/4cosa,再由 sina+cosa=1,联立方程组,再观察图一三角形,可以判断正弦值为正数,可以计算出 sin∠B=3/5。又因为知道sin∠ADC=4/5,则sin∠ADB=sin(180°-∠ADC)=sin∠ADC=4/5。由正弦定理得AD/sin∠B=AB/sin∠ADB,代入数值,解得AB的长度为20/3米。 2.解题时要注重题目的隐含条件 我们都知道三角函数隶属于函数,笔者根据高一学函数时总结的经验可以发现,三角函数题(特别是给出图的题,对图中标注的条件观察不仔细而导致题做不出来)有时候会含有隐含条件,例如:奇偶性、极值、锐角三角形等。 如例3:在銳角三角形ABC中,如果tan∠B=2+√3,sin∠C=√3 /2。求∠A的余弦值。

2020年高中数学三角函数的最值问题必修4

三角形中的最值问题 山东莘县观城中学 郭银生 解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点。其实,这一部分的最值问题解决的方法只有两种,建立目标函数后,可以利用重要不等式解决,也可以利用三角函数的有界性。下面举例说明: 例1.要是斜边一定的直角三角形周长最大,它的一个锐角应是( ) A .∏ /4 B. ∏/3 C. ∏/6 D.正弦值是1/3的锐角 解:解法1.(三角函数的有界性)设斜边为c ,其一个锐角是α,周长是L,则两个直角边是csinα 和ccosα, 故 L =c+csinα +ccosα =c+1.414csin(α+∏ /4 ) ∵0<α<∏/2 ∴当α+∏ /4 =∏/2时,Lmax=c+1.414c 故选A 解法2.设两条直角边为a,b,周长为L ,则斜边c=22b a +是定值。 L=a+b+2 2b a +≤) +(222b a +22b a +=(2+1) 22b a +(当且仅当a=b 时取等号) 即三角形是等腰直角三角形,周长取得最大值时,其一个锐角是∏ /4 从而选A. 例2.已知直角三角形周长是1,其面积的最大值为 . 方法Ⅰ.(三角函数的有界性) 设该直角三角形的斜边是c ,一个锐角是A ,面积是S ,则两条直角边是csinA 和ccosA ,根据题意 csinA+ccosA+c=1,即c=A A sin sin 11++ ① S=21csinA*ccosA=41sin2A ≤4 1 (当且仅当A=∏/4时取等号)

三角函数最值问题

目录 摘要................................................................................................................................................... I I ABSTRACT ......................................................................................................................................... I II 第一章绪论.. (4) 1.1 三角函数的起源与发展 (4) 1.2 三角函数的最值问题 (4) 第二章解决三角函数最值问题的方法技巧 (6) 2.1 利用三角函数的定义、性质与函数图像解决最值问题 (6) 2.2 利用转化(或化归)思想解决最值问题 (7) 2.3 利用换元法解决最值问题 (10) 2.4 利用数形结合解决最值问题 (14) 2.5 利用不等式解决最值问题 (15) 第三章三角函数最值的简单应用 (17) 3.1 在数列中的简单应用 (17) 3.2 在不等式中的简单应用 (18) 3.3 在几何中的简单应用 (19) 3.4 在复数中的简单应用 (20) 第四章结论 (22) 参考文献........................................................................................................... 错误!未定义书签。致....................................................................................................................... 错误!未定义书签。

2021届新高考数学二轮 培优点7 三角函数中的范围、最值问题(原卷版)

培优点7 三角函数中的范围、最值问题 【方法总结】 以三角函数为背景的范围与最值问题是高考的热点,对问题的准确理解和灵活转化是解题的关键. 【典例】1 (1)若函数y =sin 2x +acos x +58a -32在? ?????0,π2上的最大值是1,则实数a 的值为________. (2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3acos C +b =0,则tan B 的最大值是________. 【典例】2 (1)(2020·烟台模拟)将函数f(x)=cos x 的图象向右平移2π3 个单位长度,再将各点的横坐标变为原来的1ω(ω>0),得到函数g(x)的图象,若g(x)在??????0,π2上的值域为???? ??-12,1,则ω的取值范围为( ) A.??????43,83 B.??????13,53 C.??????43,+∞ D.???? ??83,+∞ (2)若将函数f(x)=sin ? ????2x +π4的图象向右平移φ个单位长度,所得图象关于y 轴对称,则φ的最小正值是________. 【方法总结】 (1)求解三角函数的范围或最值的关键在于根据题目条件和函数形式选择适当的工具:三角函数的有界性,基本不等式,二次函数等. (2)求解和三角函数性质有关的范围、最值问题,要结合三角函数的图象. 【拓展训练】

1.已知函数f(x)=2sin(ωx +φ)(ω>0)的图象关于直线x =π3 对称,且f ? ?? ??π12=0,则ω的最小值为( ) A .2 B .4 C .6 D .8 2.若函数f(x)=2sin x +cos x 在[0,α]上是增函数,则当α取最大值时,sin 2α的值等于( ) A.45 B.35 C.25 D.215 3.已知函数f(x)=2sin ? ????ωx +π6中x 在任意的15个单位长度的距离内能同时取得最大值和最小值,那么正实数ω的取值范围是________. 4.已知函数f(x)=sin ? ????ωx +π3(ω>0),若f(x)在??????0,2π3上恰有两个零点,且在???? ??-π4,π24上单调递增,则ω的取值范围是________.

高中数学三角函数的解题技巧

209 二○一九年一月(下旬) 高 考 ·考试研究· 高中数学三角函数的解题技巧 山东省济宁市实验中学 薛丁方 摘 要:三角函数是高中数学学习中的主要内容,不仅在高中阶段的数学学习中具有重要地位,而且据了解,历年高考数学题中约15%的考察内容与三角函数有关。想要掌握三角函数的解题技巧,首先需要对三角函数概念、性质、公式具备足够的了解,奠定抓实基础,进而在三角函数的解题过程中总结规律,掌握灵活多变的解题方法,做到活学活用,以此提升三角函数的学习质量。本文在三角函数学习的过程中总结了以下几点经验,以供参考与批评。 关键词:高中数学;三角函数;解题技巧 一、掌握基本概念、性质定理,打好基础 三角函数的内容较为复杂,其中涉及到大量的公式与定理,而每一个三角函数公式的使用条件与定理的使用范围受到题目内容的限制,若是在三角函数学习中没有充分的掌握三角函数的概念、公式、性质,理解程度不够,记忆量不足,缺乏知识的灵活运用能力,就会在三角函数解题过程中盲目性解答,出现错用、错套等问题。基于此,笔者认为提升高中生三角函数解题能力,掌握解题技巧的关键在于打好基础。 1.概念与性质的学习是学生三角函数学习中的基础,只有真正吃透三角函数概念,掌握三角函数的性质,才能具有三角函数概念的灵活运用能力,在三角函数的解题过程中灵活应对,周期性与图像性质是我们在高中阶段三角函数学习中的常见性质,在解题中学生应具备三角函数性质的正确判断能力,通过对其性质的判断降低解题难度。如该题目为三角函数周期性类型,学生在该类问题解答中实现利用角度转换的方式,减少解题过程中的计算难度,利用该问题的类型得出解集,利用周期性三角函数在某一特定区间内的奇偶性和单调性,建立图像,利用其特性,迅速找出问题解决的方法。 2.需要重点学习三角函数公式,公式的学习效果以及应用能力的提升,可以让高中生的三角函数解题更加快速、准确。但是,高中阶段的三角函数公式涉及的内容角度,在强行记忆与三角函数有关的公式下,虽然记忆量增加,众多公式也进入的脑袋里,但是,在面对实际问题解答中如何灵活运用,成为了高中生三角函数学习过程中的又一难题。因为用一类型的三角函数公式具有一定的相似度,很多同学会容易记混、错用,因此,我们可以使用口诀记忆的方式,如“一全正,二正弦,三正切,四余弦”、“函数名不变,符号看象限”等,快速记忆,同时需要通过实际的联系,掌握不同公式之间的差异,区分其具体用法,通过总结与分析,掌握不同公式的应该规律。 二、三角函数解题技巧探究 1.利用转化法,灵活多变,解答问题 在充分了解三角函数概念、性质、定理的基础上,需要我们具有清晰的解题思路,掌握科学、简便的解题方法,以求在有限的时间内快速解答出正确的答案。转化法是我们在高中阶段三角函数学习中常用的一种方法,通过转化法在解题中的应用,可以将原本看似复杂的问题转化为简单易懂的形式,在求解,降低了三角函数问题的解答难度。举例说明: 例1已知sinα+cosα=m2,tgα+ctgα=n,求m 2与n 的关系. 此题看似较为复杂,但只要对tgα+ctgα进行适当转换,并找出sinα+cosα与sinαcosα的关系,就可以快 速解出答案.由于tgα+ctgα=1/sinαcosα,根据题目已知条件,可以得出sinαcosα=1/n,又由于sinαcosα=[(sinα+cosα)2-1]/2=m 2-1/2,因此,可以推导出m2与n 的关系式,即m 2=2/n+1. 2.利用托底法简化表达式 上述中的例题属于容易转化的类型,而在面对不易转化的题目类型时,可以采取托底法简化求解,还是结合一道例题进行具体说明. 例2已知tgα=3,求解sinα-3cosα2sinα+cosα的值. 在该题中,只有把求解表达式化简为包含tgα的形式,才能利用已知条件进行求解.根据求解表达式特点,可以将其分子和分母同时除以cosα,将其转化为tgα-3/2tgα+1,代入已知条件后,可以快速求解出, sinα-3cosα/2sinα+cosα=0.3.总结方法规律 首先,在练习的过程中应选择具有典型特征的题型,盲目性的练习不仅不会提升解题能力,还会增加学习负担。其次,针对性练习,每一种三角函数题型都有其自身的一套解题方法,学生可以采取逐个类型练习的方法,从中总结方法与规律,掌握该类型的解题技巧,再次面对此类型题的时候,就能够轻松应对。三角函数的解题方法分为很多种,除了上述提到的转化法、简化法外,还包括排除法、特殊值法、数形结合法等。通过平时练习中的总结经验、积累和归纳,有助于提升解题速度与准确率。 结语:结合上文可知,三角函数的知识内容繁杂,涉及到的公式较多,对于高中生而言具有一定的学习难度。想要掌握三角函数的解题技巧,要一步一步脚印,扎实基础,吃透三角函数的概念,充分了解不同类型公式的使用条件,具有公式的灵活运用能力,能够根据题目的类型及时判断解题方法,通过对条件以及表达式的转化、简化,梳理清晰的解题思路,避免错误理解题目内容、错用公式,总结规律与经验,以此提升高中生的三角函数解题能力,掌握符合自身学习特点的三角函数解题技巧。 参考文献 [1]例析三角函数求值题的解题技巧[J].彭万雷.华夏教师.2016(12) [2]分析高中数学三角函数解题常见误区及正确解题方案[J].宗位勇.数学大世界(下旬).2016(07)

利用三角函数求解最值问题

利用三角函数求解最值问题 一、教学目标 1、知识技能目标:以圆的内接矩形的最大面积的求法作为引例,使学生逐步探究在半 圆,四分之一圆的内接矩形相关最值问题,学会用三角函数求得内接矩形面 积的最大值,能够总结求解最值问题基本思路。 2、过程方法目标:在恰当引进自变量、建立函数关系式的过程中,不断加强图形,文 字,符号这三种数学语言的联系,培养学生讲实际问题抽象为数学问题的化 归能力。同时增强学生数形结合、分类讨论的数学思想,逐步提高学生应用 意识和创新意识。 个问题的解决,培养学生积极主动的探索精神;通过加强学生的环保意识,增强学生的社会责任感 4、教材分析: (1)教材的知识结构:本节课是一节复习课,是以三角函数中的三角公式、三角函数 的图象、三角函数的性质为必要基础。属于人教版高中《数学》第 四册(必修B)第一、三章内容。 (2)教材的地位和作用:三角函数作为一种基本的初等函数,教材中主要介绍了各种 三角公式及三角函数的图象与性质,对三角函数的具体应用涉及 较少。而新课程标准提倡在学生生活经验的基础上,教师尽可能 多地提供各种机会让他们体验数学与日常生活及其他学科的联 系,感受数学的应用价值。本课为此联系生活实际提出问题,设 计层层探究,促使学生出于证明或求解需要而思考引进自变量的 特点,通过对常量和变量的分析,让学生体会三角函数的优势所 在。 (3)对知识的处理:本节课在设计上以“创设情景、揭示矛盾(提出数学问题)—— 自主探索、展开讨论(形成数学概念)——反思总结、归纳提升(获 得数学结论)——巩固深化、学以致用(运用数学知识)”为教学 模式。本课从教材中的一道习题出发,以最常见、最熟悉的例子— 锯木料为切入点,对教学内容层层分析挖掘,促使学生思考探究, 给学生提供了观察、操作、表达等机会。同时帮助学生对所学内容 进行加工处理,使之条理化,系统化便于存储记忆,并通过解题运 用不断加深对知识本质的认识。培养了学生勇于探索、深入研究的 优秀学习品质。 (4)教学过程与方法:在教学中要注意学生的数学学习思维形成和深化过程,培养学生探 究学习、合作学习的习惯。让学生充分体会由特殊到一般的认识规律, 培养学生学会观察、分析、发现、判断、归纳证明等研究问题的方法。 5、学情与学法指导 学情分析:一方面从知识水平上看,学生刚学完三角函数的相关内容,对这一知识体系的综合运用能力没有达到一定高度,但已经具备一定的观察能力,分析能力 和解题能力;另一方面师生之间比较熟悉,课堂沟通不成问题,在进度上可 适当加快,但结构设计要符合学生的认知结构,要注重对学生观察,归纳能

相关主题
文本预览
相关文档 最新文档