当前位置:文档之家› 课题 二阶与三阶行列式,全排列及其逆序数,n阶行列式的定义,对换

课题 二阶与三阶行列式,全排列及其逆序数,n阶行列式的定义,对换

课题  二阶与三阶行列式,全排列及其逆序数,n阶行列式的定义,对换
课题  二阶与三阶行列式,全排列及其逆序数,n阶行列式的定义,对换

课题1 二阶与三阶行列式;全排列及其逆序数;

n 阶行列式的定义;对换.

1、二阶行列式

把二元线性方程组11112212112222

a x a x

b a x a x b +=??+=? (1)

的四个系数按它们在方程组(1)中的位置,排成二行二列的数表

1112

2122

a a a a

(2)

其运算表达式11221221a a a a -称为数表(2)的二阶行列式,

记为

11

12

1122122121

22

a a D a a a a a a =

=- (3) 理解:(1)数(1,2;

1,2)ij a i j ==称为行列式(3)的元素

或元,即行列式(3)的元素可表为(1,2;1,2)ij a i j ==,

其中i 为行标,j 为列标。元素ij a 位于该行列式(3)的第i 行

第j 列或称为行列式(3)的第(,

)i j 元.

(2)把11a 到22a 的联线称为主对角线,12a 到21a 的联线称为副对角线,二阶行列式等于各元素主对角线之积减去副对角线各元素之积.

(3)行列式表示按某种法则运算的结果.

利用行列式的概念,二元线性方程组(1)的求解过程

可写为

11

1221220a a D a a =

≠,1

121222b a D b a =,11

1

2222

a b D a b =. 所以 11D x D =,2

2D x D

=.

自学P 2例1. 2、三阶行列式

定义:设有9个数排成3行3列的数表

11

1213

21

222331

3233

a a a a a a a a a

(4)

记为

1112

13

2122

2311223312233131

32

33

a a a D a a a a a a a a a a a a ==+ 132132132231112332122133a a a a a a a a a a a a +---. (5)

(5)式称为数表(4)所确定的行列式.

例1 计算三阶行列式

2

22

111a b

c a b c

.

解 原式=2

22222bc

ca ab ba cb ac ++---

=()()()a b b c c a ---. □ 自学P 3例2。

例2 求解方程

2

111

23049x x =.

解 方程左端的三阶行列式可化为 222

3418921256

x x x x x

x ++---=-+, 由

2

560x x -+=,解得 2x =或3x =. □

3、全排列及其逆序数

逆序数:对于n 个不同的元素,先规定各元素之间有一

个标准次序(通常规定由小到大为标准次序),然后由这n 个元素所组成的任一排列中,当某两个元素的先后次序与标准次序不同时,得到一个逆序,所有这些逆序的总数称为这个排列的逆序数,用字母t 表示.

逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列.

例3 求排列32514的逆序数.

解 规定标准次序为123450.于是在排列32514中,首位元素3的逆序数是0,第2位元素2的逆序数是1,第3位元素5的逆序数是0,第4位元素1的逆序数是3,末位元素4的逆序数是1. 所以它的逆序数为

t =0+1+0+3+1=5. □

例4 按自然数从小到大为标准次序,求下列排列的逆序数.

13(21)24(2

n n - 解 在这个排列中有2n 个元素,其中前n 个元素组成的

排列13

(21)n - 的逆序数是0.第1n +位元素2与它前面

除元素1外的其它1n -个元素都构成逆序对,故它的逆序数是1n -.同理,第2n +位元素4的逆序数是1n +,…, 末位元素2n 的逆序数是0. 所以它的逆序数为

t =1

(1)(2)0(1)2

n n n n -+-++=- . □

根据逆序数,三阶行列还可以改写为

123111213

21222312331

32

33

(1)t p p p a a a a a a a a a a a a =-∑ (6) 其中,1p 、2p 、3p 在1~3中任取三个不同的数,t 为排列123p p p 的逆序数,∑表示对123123(1)t

p p p a a a -取代数

和.

4、n 阶行列式的定义

我们把(6)式推广到一般情形,得到n 阶行列式的定义

定义:设有2

n 个数,排成n 行n 列的数表

11121212221

2n n

n n nn

a a a a a a a a a

1211

12121222121

2(1)n n n t p p np n n nn

a a a a a a D a a a a a a =

=-∑ .

称为n 阶行列式,简记为det()ij a ,其中数ij a 为行列式D 的

(,)i j 元.

例5 证明n 阶主对角行列式

1

2

12n n

λλλλλλ=

.

证明

(1,2,,)

i i n λ= 为行列式的(,)i i 元,于是记为 i ii a λ=,所以

1

11

2

22

n

n n

a a a λλλ=

111212(1)(1)t t

nn n a a a λλλ=-=- ,

其中t 为排列12n 的逆序数,显然t =0. □

练习1 证明n 阶副对角行列式

1

(1)2

2

12(1)

n n n n

λλλλλλ-=-

.

例6 证明行列式

11

2122

11221

20

nn n n nn

a a a D a a a a a a =

= .

证明 由于当

j i >时,0ij a =,所以在D 中不为0的

元素i

ip a ,其下标必有i p i ≤,即11p ≤,22p ≤,

…,n p n ≤.从而1

1p =,22p =,…,n p n =.

所以

12n p p p =12…n ,此时,0t =.

所以 D 11221122(1)

t

nn nn a a a a a a =-= . □

注:主对角线以下(上)的元素都为0的行列式称为上(下)三角形行列式,它的值等于主对角线所有元素的积. 练习2 证明上三角形行列式

1112

1

222

11220

n n nn nn

a a

a a a

D a a a a =

=

.

5、对换

(1)定义 在排列中,将任意两个元素对调,其余的元素不动,这种作出新排列的手续叫做对换. (2)关于对换的几个重要结论

结论1 一个排列中的任意两个元素对换,排列改变奇偶性.

结论2 奇排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数.

结论3 行列式依副对角线翻转、旋转180°

所得到行列式的值不变.

6、作业 P 25-27 1、2(2)(4)(6)、5(1).

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法 2.1 定义法 适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性. 例1 计算行列式 00400300200 1000. 解析:这是一个四级行列式,在展开式中应该有244=! 项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑 1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有 41322314a a a a ,而()64321 =τ,所以此项取正号.故 0 04003002001000 =()()241413223144321=-a a a a τ. 2.2 利用行列式的性质 即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法 上、下三角形行列式的形式及其值分别如下:

nn n n n a a a a a a a a a a a a a 2211nn 333223221131211000000=,nn nn n n n a a a a a a a a a a a a a 221132 1 33323122211100 00 00=. 例2 计算行列式n n n n b a a a a a b a a a a ++= + 21 211211n 1 11 D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形. 解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得 1 21n 11210000D 0 n n n a a a b b b b b += = . 2.2.2 连加法 这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.

(完整版)三阶行列式的计算

三阶行列式 称左式的左边为三阶行列式,右边的式子为三阶行列式的展开式。 目录 1 基本概念 2 计算方法 1 基本概念 2 计算方法 1 基本概念 对于三元线性方程组,如上图利用加减消元法,为了容易记住其求解公式,但要记住这个求解公式是很困难的,因此引入三阶行列式的概念。 记称上式的左边为三阶行列式,右边的式子为三阶行列式的展开式。 2 计算方法 标准方法是在已给行列式的右边添加已给行列式的第一列、第二列。我们把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线称为次对角线。这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的三个对角线上的数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。 例如 a1 a2 a3 b1 b2 b3 c1 c2 c3 结果为a1·b2·c3+b1·c2·a3+c1·a2·b3-a3·b2·c1-b3·c2·a1-c3·a2·b1(注意对角线就容易记住了)这里一共是六项相加减,整理下可以这么记: a1(b2·c3-b3·c2) + a2(b3·c1-b1·c3) + a3(b1·c2-b2·c1) 此时可以记住为: a1*a1的代数余子式+a2*a2的代数余子式+a3*+a3的代数余子式 某个数的代数余子式是指删去那个数所在的行和列后剩下的行列式。 行列式的每一项要求:不同行不同列的数字相乘 如选了a1则与其相乘的数只能在2,3行2,3列中找,(即在b2 b3 中找) c2 c3 而a1(b2·c3-b3·c2)+a2(b1·c3-b3·c1)+a3(b1·c2-b2·c1)是用了行列式展开运算:即行列式等于它每行的每一个数乘以它的代数余子式之和某个数的代数余子式是指删去那个数所在的行和列后剩下的行列式。

【对应线代】行列式计算7种技巧7种手段

行列式计算7种技巧7种手段 【说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 2 12n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 2 1 2 n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 1111121111121221 222 22212221 1 2 1 2 n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a ==∏ 技巧4:行列式具有分行(列)相加性 11121111211112111 22 1 2121 2 1 2 1 2 n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

计算N阶行列式若干方法

网上搜集的计算行列式方法总结, 还算可以. 计算n 阶行列式的若干方法举例 闵 兰 摘 要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n 阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n 阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。 关键词:n 阶行列式 计算方法 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100200 10 000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 1122 11!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式n ij D a =的元素满足

,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明 由ij ji a a =-知ii ii a a =-,即 0,1,2, ,ii a i n == 故行列式D n 可表示为 1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a =

【原创】行列式计算7种技巧7种手段

行列式计算7种技巧7种手段 编者:Castelu 【编写说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一.7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 212n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 21 2n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 111112111112122122222212221 121 2n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a == ∏ 技巧4:行列式具有分行(列)相加性 11121111211112111221 21 21 2 1 21 2n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 00100 2001000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质T A A =,

1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。 原则上,每个行列式都可利用行列式的性质化为三角形行列式。但对于阶数高的行列式,在一般情况下,计算往往较繁。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。 例1 计算行列式1 1231337952 4 213571464 410 10 2 D -----=-----. 解 这是一个阶数不高的数值行列式,通常将它化为上(下)三角行列式来计算. 23 42 2131 4151 323411231 11231 1-12-31 00102020410 204-1 020*********-10-20215302153001-120 2 2 2 2 2 2 2 2 -2 r r r r r r r r r r r r D +---?+------------------

n阶行列式的计算方法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1定义法 (1) 2利用行列式的性质 (23) 化三角形行列式 (3) 4行列式按一行(列)展开 (4) 5 升阶法 (5) 6 递推法 (6) 7 范德蒙德行列式 (7) 8 拉普拉斯定理 (7) 9 析因法 (8) 小结 (10) 参考文献 (11)

n阶行列式的计算方法 学生姓名:孙中文学号:20120401217 数学与计算机科学系数学与应用数学专业 指导老师:王改霞职称:讲师 摘要:行列式是高等代数中最基本也是最重要的内容之一,是高等代数学习中的一个难点.本文主要探讨一般n阶行列式的计算方法和一些特殊的行列式求值方法.如:化三角形法、拉普拉斯定理法、升阶法等.总结了每种方法的行列式特征. 关键词:行列式;定义;计算方法 Abstract: Determinant is one of higher algebra the most fundamental and important content, is a difficult point in Higher Algebra Learning. This paper mainly discusses the general order determinant of calculation method and some special determinant evaluation method. Such as: triangle method, method of Laplace theorem, ascending order method. This paper summarizes the determinant of the characteristics of each method. Keywords: Determinant ;Definition ;Calculation method 引言 行列式是高等代数的一个非常重要的内容,同时它也是非常复杂的.它的计算方法多种多样.在我们本科学习中只解决了一些基本的有规律的行列式.当遇到低阶行列式时,我们可以根据行列式的性质及其定义便能计算得出结果.但对于一些阶数较大的n阶行列式来说,用定义法就行不通了,本文根据各行列式的特征总结了一些对应方法. 1定义法 n阶行列式计算的定义:

n阶行列式的计算方法

n阶行列式的计算方法 姓名: 学号: 学院: 专业: 指导老师: 完成时间:

n阶行列式的计算方法 【摘要】 本文主要针对行列式的特点,应用行列式的性质,提供了几种计算行列式的常用方法。例如:利用行列式定义直接计算法,根据行列式性质化为三角形列式法,按一行(列)展开以及利用已知公式法,数学归纳法与递推法,加边法,利用多项式性质法,拉普拉斯定理的应用。但这几种方法之间不是相互独立,而是相互联系的.一个行列式可能有几种解法,或者在同一个行列式的计算中将同时用到几种方法以简便计算。这就要求我们在掌握了行列式的解法之后,灵活运用,找到一种最简便的方法,使复杂问题简单化。 【关键词】 n阶行列式行列式的性质数学归纳法递推法加边法

Some methods of an n-order determinant calculation 【Abstract】In this paper, considering the characteristics of determinant, it provides several commonly used methods to calculate the determinant by applying the properties of the determinant . For example :The direct method of calculation by using the determinant definition . The method of changing the determinant into a triangular determinant According to the properties of the determinant. The method of expanding the determinant by line (column) .using the known formula , the mathematical induction, recursive Method , adding the edge method, using the properties of polynomial , the application of Laplace theorem. These methods are not independent of each other ,but interrelated. There is probably that a determinant has several solutions, or in the calculation of the same determinant there will be used several methods to calculate simply. This requires us to grasp several solution of the determinant,and to find the easiest ways after, so simplify complex issues . 【Key words】n-order determinant the property of the determinant the mathematical induction adding the edge method

最新几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 1112121 22 212 n n n n nn a a a a a a a a a 等于所有取自不同行不同列的个n 元素的乘积12 12n j j nj a a a (1)的代数和,这里12 n j j j 是 1,2, ,n 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j 是偶排列时,(1)带正号,当 12n j j j 是奇排列时,(1)带有负号.这一定义可写成 () () 121212 1112121 22 21212 1n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里 12 n j j j ∑ 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.

2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()1 2323111100 1 0001 n n n a a D a a a a a =≠. 解 将第一列减去第二列的 21a 倍,第三列的3 1a 倍第n 列的 1 n a 倍,得 1 223 111110 000 000 n n n a a a a D a a ?? -- - ?? ? = 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b c =时可以化为上面列举的爪形来计算,当b c ≠时则用拆行(列)法[9]来计算. 例2 计算行列式

第一章 第一节 n阶行列式的定义和性质(2)

第一章 行列式 行列式的概念是在研究线性方程组的解的过程中产生的. 它在数学的许多分支中都有着非常广泛的应用,是常用的一种计算工具。特别是在本门课程中,它是研究后面线性方程组、矩阵及向量组的线性相关性的一种重要工具。 §1.1 n 阶行列式定义和性质 一、 二、三阶行列式定义的引出 1. 二阶行列式 例1:二阶线性方程组 ?? ?=+=+2 2221211 212111b x a x a b x a x a 且021122211≠-a a a a . 解:利用加减消元可求得122122 112121 1211221221 11221221 , .b a a b a b b a x x a a a a a a a a --==-- 取 2112221122 21 1211a a a a a a a a D -== ,21222122 2 1211b a a b a b a b D -== , 得 .,2 21 1D D x D D x = = 定义1 二阶行列式 由22个数排成2行2列所组成下面的式子(或符号) 2112221122 21 1211a a a a a a a a -= 称为二阶行列式,行列式中每一个数称为行列式的元素,数ij a 称为行列式的元素,它的第一个下标i 称为行标,表明该元素位于第i 行,第二个下标j 称为列标, 表明该元素位于第 j 列.位于第i 行第j 列的元素称为行列式的),(j i 元。 2阶行列式由2 2个数组成,两行两列;展开式是一个数或多项式;若是多项式则必有2!2=项,且正负项的各数相同。 应用:解线性方程 例2:解方程组.328 3221 21 ???-=-=+x x x x 解 D 2 132-=13)2(2?--?=,7-=1D 233 8--=)3(3)2(8-?--?=,7-= 1112112121 21 2 a b D a b b a a b = =-

行列式计算的若干种方法讲解

中南民族大学 毕业论文(设计) 学院: 数学与统计学学院 专业: 统计学年级:2008 题目: 行列式计算的若干方法 学生姓名: 曹金金学号:08067005

指导教师姓名: 汪宝彬职称:讲师 2012年4月30日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果.除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品.本人完全意识到本声明的法律后果由本人承担. 作者签名: 年月日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1 引言 (2) 2.1排列 (2) 2.2行列式的定义 (2) 2.2.1 二阶、三阶行列式 (2) 2.2.2 n阶行列式的定义 (3) 2.2.3 几种特殊的行列式的定义 (3) 2.3 行列式的基本性质 (5) 3几种常见的行列式的计算方法 (6) 3.1利用行列式定义直接计算 (6) 3.2 利用行列式的性质计算 (6) 3.3 三角化法 (7) 3.4 降阶法 (8) 3.5利用范德蒙德行列式求解 (10) 3.6 数学归纳法 (11) 3.7 拆项法 (12) 3.8析因子法 (13) 3.9 加边法(升阶法) (13) 3.10递推公式法 (14) 3.11超范德蒙行列式法 (15) 3.12利用分块计算行列式 (16) 4 结论 (16) 致谢 (17) 参考文献 (17)

行列式计算的若干方法 摘要:在线性代数中,行列式的求解是非常重要的. 本文首先介绍行列式的定义与性质;然后通 过实例给出了计算行列式的几种方法.从文中可以看出,选择合适的计算方法可有效的计算行列式. 关键词:行列式;性质;计算方法 Some Methods of Determinant Calculation Abstract: Determinant plays an important role in the linear algebra. In this paper we first introduce the definition and properties of determinant. Then several methods of the calculation are given by some examples. It can be seen from the paper that choose the appropriate calculation method can efficiently compute the determinant. Key words: determinant; property; the calculation methods

线性代数特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1 221222,11,21,1 1,11 2 ,1 (1)2 12,11 000000 0000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L L L L M M M M M M M M M N L L L L 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????= =? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????= =-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算— —适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

n阶行列式的定义

第二节 n 阶行列式的定义 介绍线性代数的思想方法及其要点,关于行列式定义的说明以及学习中要特别注意之处 内容要点: 从三阶行列式讲起,应如何定义行列式,对于更高阶行列式定义的启发于思考。 一、排列与逆序 定义1 由自然数1,2,…,n 组成的不重复的每一种有确定次序的排列,称为一个n 级排列(简称为排列)。 例如,1234和4312都是4级排列,而24315是一个5级排列. 规定自然数的排列由小到大的次序为标准次序。 定义2 在一个n 级排列)(21n s t i i i i i 中, 若数,s t i i > 则称数t i 与s i 构成一个逆序.一个n 级排列中逆序的总数称为该排列的逆序数, 记为).(21n i i i N 根据上述定义,可按如下方法计算排列的逆序数: 设在一个n 级排列n i i i 21中,比),,2,1(n k i k =大的且排在k i 前面的数由共有k t 个, 则 k i 的逆序的个数为k t , 而该排列中所有自然数的逆序的个数之和就是这个排列的逆序数. 即 .)(1 2121∑== +++=n k k n n t t t t i i i N 定义3 逆序数为奇数的排列称为奇排列, 逆序数为偶数的排列称为偶排列. 二、n 阶行列式的定义 定义4 由2n 个元素),,2,1,(n j i a ij =组成的记号 nn n n n n a a a a a a a a a 2 1 22221 11211 称为n 阶行列式, 其中横排称为行, 竖排称为列, 它表示所有取自不同行、不同列的n 个元素乘积n nj j j a a a 2121的代数和, 各项的符号是: 当该项各元素的行标按自然顺序排列后, 若对应的列标构成的排列是偶排列则取正号; 是奇排列则取负号. 即 ∑ -=n n n j j j nj j j j j j N nn n n n n a a a a a a a a a a a a 21212121)(212222111211)1( 其中∑ n j j j 21表示对所有n 级排列n j j j 21求和. 行列式有时也简记为det )(ij a 或||ij a ,这里 数ij a 称为 元素,称 n n nj j j j j j N a a a 212121) () 1(- 为行列式的一般项. 注: (1) n 阶行列式是!n 项的代数和, 且冠以正号的项和冠以负号的项(不算元素本身所带的符号)各占一半; (2) n nj j j a a a 2121的符号为) (21) 1(n j j j N -(不算元素本身所带的符号); (3) 一阶行列式 ,||a a =不要与绝对值记号相混淆.

n阶行列式的求法

计算n 阶行列式的若干方法举例 闵 兰 摘 要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n 阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n 阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。 关键词:n 阶行列式 计算 方法 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100 20010000 n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---= . 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式n ij D a =的元素满足 ,,1,2,,,ij ji a a i j n =-=

则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即 0,1,2,,ii a i n == 故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)00 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a = 解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,

几种特殊类型行列式及其计算

1行列式的定义及性质 1.1定义[3] n级行列式 a 11 a12 (1) a 21 I-a22… a a 2n a a n1 a n2…a nn n元素的乘积的屜…a% (1)的代数和,这里jj…j n是1,2/ ,n的一个排列,每一项(1)都按下列规则带有符号:当jj…j n是偶排列时,⑴带正号,当j l j2…j n 是奇排列时,(1)带有负号.这一定义可写成 an a12 a1n a 21 a22 (2) I-a=无(-1F 山压)?…a nj j1 j2…j n a n1 a n2 a nn 这里V 表示对所有n级排列求和. j1 j2 ■ j n 1.2性质[4] 性质1.2.1行列互换,行列式的值不变. 性质1.2.2某行(列)的公因子可以提到行列式的符号外. 性质1.2.3如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4两行(列)对应元素相同,行列式的值为零. 性质1.2.5两行(列)对应元素成比例,行列式的值为零. 性质1.2.6某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7交换两行(列)的位置,行列式的值变号. 等于所有取自不同行不同列的个

2行列式的分类及其计算方法 2.1箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均 为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算?即利用对 角元素或次对角元素将一条边消为零. 例1计算n 阶行列式 a 1 1 ■ ■ .L 1 1 a 2 0 0 D n = 1 0 a 3… 0 (&2&3…a n 式0) 1 0 … a n 2.2两三角型行列式 这类行列式的特征是对角线上方的元素都是 c,对角线下方的元素都是b 的行列式,初看, 这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b 二 c 时可以化为上面列举的爪形来计算,当 b = c 时则用拆行例)法 [9] 来计算. 例2计算行列式 将第一列减去第二列的 丄倍,第三列的丄倍…第n 列的 a 2 a 3 倍,得 1 a i - a 2 1 1 a 2 0 a 3 0 0 a n n =''a i i =2 n *1 ' ■- i=2 丄 a i 丿

第一章 n阶行列式

线性代数讲稿 讲稿编者:王杰 使用教材:《线性代数》 教学参考:《线性代数典型题分析解集》

第一章 n 阶行列式 §1.2 排列及其逆序数 1.排列:n 个依次排列的元素. 例如, 自然数1,2,3,4构成的不同排列有4!=24种. 1234, 1342, 1423, 1432, 1324, 1243 2134, 2341, 2413, 2431, 2314, 2143 3124, 3241, 3412, 3421, 3214, 3142 4123, 4231, 4312, 4321, 4213, 4132 例1 互异元素n p p p ,,,21 构成的不同排列有!n 种. 解 在n 个元素中选取1个 n 种取法 在剩余1-n 个元素中选取1个 1-n 种取法 在剩余2-n 个元素中选取1个 2-n 种取法 ……………… ………… 在剩余2个元素中选取1个 2种取法 在剩余1个元素中选取1个 1种取法 ------------------ 总共!n 种取法 2.标准排列:n 个不同的自然数从小到大构成的排列. n 个不同的元素按照某种约定次序构成的排列. 3.逆序数: (1) 某两个数(元素)的先后次序与标准次序不同时, 称这两个数(元素) 之间有1个逆序. (2) 排列n p p p 21中逆序的总和称为排列的逆序数, 记作)(21n p p p τ. 算法:固定),,2(n i =, 当i j <时, 满足的“”的个数记作(称为的逆序数), 那么. 例2 排列6372451中, . 例3 排列, 求逆序数. 解 记作 , , , …,

4.奇偶性:排列 奇数时, 称为奇排列; 偶数时, 称为偶排列. 5.对换: 相邻对换: 一般对换: 定理1 排列经过1次对换, 其奇偶性改变. 证先证相邻对换:(1) (2) :对换后增加1, 不变, 故; :对换后不变, 减少1, 故. 所以与的奇偶性相反. 再证一般对换:(1) (2) (3) (1)(2)经过次相邻对换 (2)(3)经过次相邻对换 (1)(3)经过次相邻对换, 所以与的奇偶性相反. 推论奇排列标准排列, 对换次数为奇数. 偶排列标准排列, 对换次数为偶数. §1.3 阶行列式的定义 1.二阶: 2.三阶: (1) 乘积中三个数不同行、不同列: 行标(第1个下标):标准排列123 列标(第2个下标):是1,2,3的某个排列(共6种) (2) 正项:123, 231, 312为偶排列 负项:132, 213, 321为奇排列 于是, . 3.阶:个数, 称 为阶行列式, 它表示数值 , 其中, 求和式中共有项. 例3 计算, . 解中只有一项不显含0, 且列标构成排列的逆序数为, 故.

行列式的计算技巧与方法汇总(修改版)

行列式的计算技巧与方法汇总(修改版)

————————————————————————————————作者:————————————————————————————————日期: 2

行列式的若干计算技巧与方法 内容摘要 1. 行列式的性质 2.行列式计算的几种常见技巧和方法 2.1 定义法 2.2 利用行列式的性质 2.3 降阶法 2.4 升阶法(加边法) 2.5 数学归纳法 2.6 递推法 3. 行列式计算的几种特殊技巧和方法 3.1 拆行(列)法 3.2 构造法 3.3 特征值法 4. 几类特殊行列式的计算技巧和方法 4.1 三角形行列式 4.2 “爪”字型行列式 4.3 “么”字型行列式 4.4 “两线”型行列式 4.5 “三对角”型行列式 4.6 范德蒙德行列式 5. 行列式的计算方法的综合运用 5.1 降阶法和递推法 5.2 逐行相加减和套用范德蒙德行列式 5.3 构造法和套用范德蒙德行列式 3

1 1.2 行列式的性质 性质1 行列互换,行列式不变.即 nn a a a a a a a a a a a a a a a a a a n 2n 1n2 2212n12111nn n2n12n 2221 1n 1211 . 性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即 nn n2 n1in i2i1n 11211 k k k a a a a a a a a a k nn a a a a a a a a a n2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即 111211112111121112212121 2 1212.n n n n n n n n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a K K K M M M M M M M M M M M M K K K M M M M M M M M M M M M K K K 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即 k a a a ka ka ka a a a a a a nn n n in i i in i i n 21 2121112 11nn n n in i i in i i n a a a a a a a a a a a a 212121112 11 =0. 性质5 把一行的倍数加到另一行,行列式不变.即

相关主题
文本预览
相关文档 最新文档