当前位置:文档之家› 智能联网汽车万亿蓝海将启——国君TMT【5G+AI】系列研究深度之五

智能联网汽车万亿蓝海将启——国君TMT【5G+AI】系列研究深度之五

《车联网体系架构分析》

《车联网体系架构分析》 车联网体系结构与解决方案 背景介绍 近年来,随着汽车保有量的持续增长,道路承载容量在许多城市已达到饱和,交通安全、出行效率、环境保护等问题日益突出。在此大背景下,汽车联网技术因其被期望具有大幅度缓解交通拥堵、提高运输效率、提升现有道路交通能力等功能,而成为当前一个关注重点和热点。欧洲、美国、日本等国家和地区较早进行了智能交通和车辆信息服务的研究与应用,xx年3月大唐电信科技产业集团与启明信息技术股份有限公司携手共建车联网联合实验室,4月在重庆建立国内首个“智能驾驶与车联网实验室”等,充分表明当前国内外对车联网研究的迫切性和广泛性。 车联网与物联网 物联网是一个以互联网为主体,兼容各项信息技术,为社会不同领域提供可定制信息化服务的具有泛在化属性的信息基础平台。物联网的概念和内涵随着信息技术的发展和不同阶段人们信息化需求的不断演进,因其接入对象的广泛性、运用技术的复杂性、服务内容的不确定性以及不同社会群体理解和追求上的差异性,很难用已有概念和标准来准确完整地给出权威定义。然而,车联网概念的出现,因其服务对象和应用需求明确、运用技术和领域相对集中、实施和评价标准较为统 一、社会应用和管理需求较为确定,引起了业界的普遍关注,已

被认为是物联网中最能够率先突破应用领域的重要分支,并成为目前的研究重点和热点。 源于物联网的车联网,以车辆为基本信息单元,以提高交通运输效率、改善道路交通状况、拓展信息交互方式,进而实现智能交通管理,使物联网技术这一原本宽泛的概念在现代交通环境中得以具体体现。本文立足物联网基础理论和模型,以构建以信息技术为主导的智能交通系统为背景,对车联网的基本概念、体系结构、通信架构及其关键技术进行研究。 车联网基本概念和分类车联网概念是物联网面向行业应用的概念实现。物联网是在互联网基础上,利用射频识别(radiofrequencyidentification,rfid)、无线数据通信等技术,构造一个覆盖世界上万事万物的网络体系,实现任何物体的自动识别和信息的互联与共享。物联网不刻意强调物体的类型,更多的是强调物理世界信息的获取和交换,以实现当前互联网未触及的物与物信息交换领域。车联网是物联网概念的着陆点,将这个具体的物理世界限定到车、路、人和城市上。车联网利用装载在车辆上电子标签rfid获取车辆的行驶属性和系统运行状态信息,通过gps等全球定位技术获取车辆行驶位置等参数,通过3g等无线传输技术实现信息传输和共享,通过rfid和传感器获取道路、桥梁等交通基础设施的使用状况,最后通过互联网信息平台,实现对车辆运行监控以及提供各种交通综合服务。 从技术角度区分,车联网技术主要有电子标签技术、位置定位技术、无线传输技术、数字广播技术、网络服务平台技术。

智能网联汽车

智能网联汽车—车联网与智能汽车杂交产物 智能网联汽车是融合了自主式与网联式两类的智能汽车,也体现了未来汽车技术发展的趋势。智能网联汽车搭载着先进的传感器、控制器、执行器等装置,融合现代4G\5G网络通讯技术,实现了车与人、车、路、云的智能信息交换与共享,具备了复杂的环境感知、智能决策、协同控制等,实现更安全、高效、舒适、节能的行驶,最终,我们不用再“考驾照”了。 智能网联汽车是车联网与智能汽车的交集,也是智能处理技术与高速网络通信技术的深度融合,国内初期的智能网联大多是基于V2X协同通信的智能交通应用,在美国,他们管它叫网联汽车,欧洲称之为协作式智能交通,日本叫网联驾驶,虽说法不一,但大体一致。 网联汽车基本具备安装一个互联接入的TBOX,或者叫超级TBOX,或者智能网关的“信息终端”,允许汽车与车内和车外的其他设备共享互联,接入网络,从而共享数据信息。我们在保时捷、奥迪、奔驰品牌等高端车型中都有见过不少的智能网关,他们安装于副驾驶手套箱内嵌、中控下方等不同的位置,通常情况下,他们配备了一些加解密等特殊技术,以接入互联网,也为驾驶人提供来自互联网的协作数据。早期的凯迪拉克安吉星系统,就是这类应用初始阶段,美国汽车事故发生率不低,这套系统的目的就是实现安全驾驶及汽车发生事故的时候,为车主提供紧急救援、车辆健康报告、转弯打灯提示、数据连接功能等在现在,现阶段经过进化,都更人性化了。 但这些网联功能基本局限于一台车,或者一个品牌的同配置下的车型,现在汽车普遍装备了

实时在线导航系统,也可以通过各类连接方式连接到高带宽传输的5G智能手机,无论是驾乘、还是娱乐、社交、电商、基于位置的服务等,驾驶员都可以通过“巨屏”看到,实现管理和操作,提供的服务还包含了音乐、音频、手机应用、导航、位置援助、语音交互、停车、引擎控制、远程诊断、OTA升级等等。 那下一段的智能网联汽车,还会做到进一步的“智能化”,通过各种车载终端、智能手机、路侧设备交换至行人位置、运输出行、车辆数据、交通运行数据等,这些信息输入到自动驾驶决策与控制系统,改变现状只针对“车”的开发,配套周边环境的传感,实现真正意义上的自动驾驶。随着技术的发展,人工智能、物联网、大数据、5G通信技术的快速落地,汽车与电子、通信、互联网的深度融合,在未来汽车产业中,“智能驾驶汽车”已经成为新一轮竞争的制高点,企业、资本、市场等纷纷入坑。 在智能网联技术体系中,通过联网终端完成数据交换是完成完全驾驶决策和控制的基石。这些数据不能由单个人、单辆车或者单个系统来获得,需要通过高速无线通信技术(5G\6G)进行协同共享,那么国内华为领先的5G通信技术,同样也将带领着全球汽车产业,打造新的汽车产业格局。 从数据类型来划分,分为交通运行数据和运输出行两个大类。交通运行数据是反映道路交通管理和运行情况相关数据,包括了交通标志、交通状况、道路性能、交通控制、道路基础设施、停车场数据和气象数据等,主要来源于人、车载传感器、路侧传感设备、交通与公路等管理部门及云平台。运输出行数据是人、货、车等运输数据,包含了行人、乘用车、公交车、商用车的出行数据,主要来源于安装了网联TBOX终端的汽车及商业运输管理中心数据以

江苏省汽车客运站标准化建设体系

江苏省汽车客运站标准化建设体系 1适用范围 本体系适用于新建汽车客运站的设计和建设;改建、扩建的汽车客运站参照本体系执行 汽车客运站的建设、改建、扩建应执行国家有关规范、规定、标准。 2建设目标 江苏省汽车客运站标准化建设的内涵主要包括形象标准化、环境人本化、管理智能化、服务规范化,具体体现在: 2.1 以旅客为本的设计理念,进行功能布局。 2.2 通过形象标准化的实施,展现汽车客运站的现代气息,形成江苏省汽车客运站的整体形象。 2.3 通过全面绿化布局,形成良好的公共生态环境。 2.4全面实现无障碍理念。 2.5 全面引入现代信息技术,形成智能化管理系统。 2.6 全面引入规范化服务理念,提升服务质量。 3 站场建设 3.1 总平面要求 3.1.1 车辆进出口与旅客主要出入口应分开设置,并有效隔离。 3.1.2 车辆进口、出口通道应分开设置。 3.1.3 售票厅应采用敞开形式,并与候车厅分开设置。 3.2 站前广场要求 3.2.1 广场布局应与城市公共交通等关系良好,便于旅客换乘。 3.2.2 一、二级站的站前广场面积应≥2.0㎡×设计年度旅客最高聚集人数。 3.2.3 应明确划分社会车辆停车、旅客活动休息和绿化等区域。 3.2.4 社会车辆停车场的位置不得影响旅客的通行,与其他区域应采用绿化带明确分隔。一、二级站社会车辆停车位,应按照设计年度旅客最高聚集人数1~2个∕100人标准设置;三级站应按照1个∕100人设置。一、二级站应设置2~3个残疾人专用停车位。 3.3 售票厅要求 3.3.1 一、二级站的售票厅宜单独设立对外出入口,并与候车厅、行包托运处等关系良好。 3.3.2售票厅面积(㎡)=购票室面积+售票室面积。 3.3.2.1 售票室面积(㎡)≥ 4.0×售票窗口数。 3.3.2.2 购票室面积(㎡)≥20.0×售票窗口数。 1

车联网总结

车联网的现状及趋势 当前车联网的发展应该说还处在初级阶段,对于无人驾驶、无事故、不堵车、智能停车、智能导航等理想的交通状态相比,还有很长的路要走。因此车联网的发展要更针对当前拥有的技术和需求进行设计:一方面去掉那些现阶段难以实现的功能和华而不实的功能;另一方面应用好RFID和传感器方面的最新进展。车联网是物联网的一个应用方面,因此技术上有很多重合,如RFID和传感器,;又有其特点,是对动态信息的实时采集、处理、传输,对传感器要求更高,对海量数据的处理和分析传输是个难题。 一、车联网主体功能现在对车联网的定义表述不尽相同,但主体大致是连接车和路、人和车、车和车以及车与服务中心的一个网络,主要实现车辆的安全、有序驾驶,交通的智能管理、方便的服务等功能。 二、车联网网络架构根据各个科研单位的侧重点不同,研究的目的不同,车联网的网络架构也不相同。《车联网网络架构与媒质接入机制研究》,同济大学,2011年05月18 日,作者:须超,王新红,刘富强。文章提出面向安全应用的车联网无线网络架构及其协同通信协议栈,并对车联网自适应多信道媒质接入协议进行分析。网址如下: 我们也可以按照自己的想法设计一个网络架构,如按照物联网结构也分为感知层、网络层、应用层三层结构。也可以按照功能来设计网络架构。下图为自己设计。根据具体情况可不断调整扩展。 现阶段车联网的两个关键领域为(ITS)智能交通技术和(RFID)射频识别技术。智能交通包括传感技术、通信技术、数据处理技术和信息发布技术等;射频识别技术可应用于车辆通信、自动识别、移动定位、远距离监控

等方面。中国科学院、北京邮电大学、同济大学等几所院校在物联网领域有一定能力。 国内车联网发展资金来源主要有政府专项资金、国有大企业、民间基金三个方面,主要来自于政府支持和国有企业投资。 三、车联网相关科研院校及公司 1.目前车联网终端设备领先的是金龙客车与杭州鸿泉合作开发的G-BOS 设备,即苏州金龙智慧客车3G客车。其车载设备终端整合了数据采集、硬盘录像、车辆身份信息、可视倒车、行车记录仪、GPS导航等主要功能。获得相关专利两项:司机行为监测方法和基于3G无线网络海量实时数据采控装置。 2.同济大学在车联网的应用示范与原型系统搭配方面有实力,它提出的车联网架构包括三个方面:被服务终端(汽车、列车、路上行人等),基础设施(热点接入点、基站、卫星、交通设施等),交通管理和控制实体(交通控制中心)。 3.长安汽车与清华大学:侧重于汽车安全技术,主动安全技术,国外已较为成熟。 4.力帆汽车、长安汽车与重庆邮电大学:国内首个“智能驾驶与车联网实验室”,2011年4月11日成立。 5.车联网车载系统设备产品还有中国电信、华为的车载模块/EVDO车载模块,江苏天泽的天泽星网,潍柴动力的共轨行系统等。 6.国内的宝信软件是公路信息化整体解决方案供应商,启明信息是车载端信息系统开发商,新国都开发了自助缴费系统。

智能网联汽车与车联网

一、智能网联汽车定义、关键技术、系统构成、功能等 智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,使车辆具备复杂环境感知、智能决策、协同控制功能,能综合实现安全、节能、环保及舒适行驶的新一代智能汽车。 智能网联汽车关键技术包括环境感知技术、无线通信技术、智能互联技术、信息融合技术、人机界面技术、信息安全与隐私保护技术等;其系统一般由环境感知层、智能决策层、控制和执行层所构成。 智能网联汽车的功能: (1)交通安全:交通事故率可降低到目前的1%; (2)交通效率:车联网技术可提高道路通行效率10%,CACC系统大规模应用将会进一步提高交通效率; (3)节能减排:协同式交通系统可提高自车燃油经济性20%-30%,高速公路编队行驶可降低油耗10%-15%; (4)产业带动:智能网联汽车产业将会拉动机械、电子、通信、互联网等相关产业快速发展; (5)国防应用:无人驾驶战斗车辆; (6)交通方式的改变:减轻驾驶负担,娱乐、车辆共享,快捷出行。 车联网、智能汽车及智能交通系统的关系: (1)协同式智能车辆控制(智能网联汽车) (2)协同式智能交通管理与信息服务 (3)汽车电商、后服务、智能制造等

二、智能网联汽车、车联网相关政策 2016年7月《推进“互联网+”便捷交通促进智能交通发展的实施方案》规定:加快车联网、船联网建设,在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网的公共服务,扩大网络覆盖面。 2016年11月《关于进一步做好新能源汽车推广应用安全监管工作的通知》规定:自2017 年1月1日起对新生产的全部新能源汽车安装车载终端,通过企业监测平台对整车及动力电池等关键系统运行安全状态进行监测和管理 2017年2月《关于印发“十三五”现代综合交通运输体系发展规划的通知》规定:加快车联网、船联网等建设。在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网公共服务。建设铁路下一代移动通信系统,布局基于下一代互联网和专用短程通信的道路无线通信网。研究规划分配智能交通专用频谱。 2017年7月《国务院关于印发新一代人工智能发展规划的通知》规定:加快布局实时协同人工智能的5G增强技术研发及应用,建设面向空间协同人工智能的高精度导航定位网络,加强智能感知物联网核心技术攻关和关键设施建设,发展支撑智能化的工业互联网、面向无人驾驶的车联网等,研究智能化网络安全架构。 2017年9月,国家发改委透露,已启动国家智能汽车创新发展战略起草工作,将通过制订战略明确未来一个时期我国汽车战略方向,同时提出近期的行动计划,确定路线图和时间表。 2017年12月《国家车联网产业标准体系建设指南(智能网联汽车)》规定:到2020 年,初步建立能够支撑驾驶辅助及低级别自动驾驶的智能网联汽车标准体系。到2025 年,系统形成能够支撑高级别自动驾驶的智能网联汽车标准体系。 2017年12《促进新一代人工智能产业发展三年行动计划(2018-2020年)》,将智能网联汽车作为本次行动计划提出的第一项要大力发展的智能产品,并设定了到2020年建立可靠、安全、实时性强的智能网联汽车智能化平台,形成平台相关标准,支撑高度自动驾驶等目标。 2018年1月《智能汽车创新发展战略》(征求意见稿)规定:到2020 年大城市、高速公路的LTE-V2X 覆盖率达到90%,北斗高精度时空服务实现全覆盖;到2025 年,5G-V2X 基本满足智能汽车发展需要。

2017年智能网联汽车发展现状与趋势分析

2017年智能网联汽车发展现状与趋势分析 中国汽车工业协会——智能网联汽车是:搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车内网、车外网、车际网的无缝链接,具备信息共享、复杂环境感知、智能化决策、自动化协同等控制功能,与智能公路和辅助设施组成的智能出行系统,可实现“高效、安全、舒适、节能”行驶的新一代汽车。 工信部——智能网联汽车(Intelligent & Connected Vehicles,简称“ICV”)是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与X (人、车、路、云端等)智能信息的交换和共享,具备复杂环境感知、智能决策、协同控制等功能,可实现“安全、高效、舒适、节能”行驶,并最终实现替代人操作的新一代汽车。 智能网联汽车是新一轮科技革命背景下的新兴产业,是信息技术领域和信息化应用的重要发展方向,可以显著改善交通安全、实现节能减排、消除拥堵、提升社会效率,并拉动汽车、电子、通讯、服务、社会管理等协同发展,对促进我国产业转型升级具有重大战略意义。政府也颁布多项扶持政策积极推广智能网联汽车。其中,以《中国制造2025》和《“十三五”规划意见》最为代表。 《中国制造2025》文件为中国智能网联汽车制定了两步走的目标:到2020年,掌握智能辅助驾驶总体技术及各项关键技术,初步建立智能网联汽车自主研发体系及生产配套体系。到2025年,掌握自动驾驶总体技术及各项关键技术,建立较完善的智能网联汽车自主研发体系、生产配套体系及产业群,基本完成汽车产业转型升级。 一、智能网联汽车的体系架构 智能网联汽车(ICV)是智能交通系统(ITS)的核心组成部分,是车联网体系的一个结点。ICV通过车载信息终端实现与人、车、路、互联网等之间的无线通讯和信息交换。集中运用了汽车工程、人工智能、计算机、微电子、自动控制、通信与平台等技术,是一个集

车联网引领智能交通进入新时代

车联网引领智能交通进入新发展时代 摘要:2010年上海世博会通用汽车馆展出的“2030年上海车联网智能交通体系”一度令观众 倍感神奇,而近期随着物联网、车联网等技术的发展和应用完善,汽车制造商和智能交通设 备商的联合已经让这个曾经看上去遥不可及的车联网智能交通梦在现实中前进了一大步。而 一系列的车联网智能交通技术理念和产业构想,让人们看到了更为壮观的产业蓝图。 传统的智能交通系统(Intelligent Transportation Systems,ITS)作为解决车辆与道路间矛盾、提高道路通行能力及保障行驶安全的有效手段,在我国已得到广泛研究与应用。北京、上海、广州等大型城市先后建立了智能化交通控制与管理一体化系统,其集成了智能交通灯控制、重要路段监控、动态车辆抓拍、实时路况信息发布等多项功能。其次,具有车辆定位和智能调度功能的智能公交系统也已经在上海的多条公交线路投入使用。再次,不停车收费系统(ETC, Electronic Toll Collection System)在长三角的高速公路中已经得到全面覆盖。纵观上述应用为代表的现有智能交通系统,存在应用范围上的局限,其限于某类车辆或者特定区域车辆,并且较多地关注于交通信息采集和交通综合管理,而对车辆自身安全行驶的辅助作用不大和车载的娱乐办公系统未能起到重要作用。 随着经济、社会的发展,车辆的爆发式增长和无处不在的信息需求将车联网和智能交通紧密的结合起来,基于车联网的智能交通研究正成为世界瞩目的焦点。车辆行驶在高速公路上是车联网在提高行驶安全方面的典型应用,如果在高速公路上实现车联网,前后及相邻车道的车辆信息可通过车辆上的车载单元(On-Board Unit,OBU)通信获得,一旦周边车辆出现紧急状况,驾驶员便可根据提示及时避让,有效减少事故的发生;而通过使用安装在路边的路边单元(Road-Side Unit,RSU),交管部门就可以利用RSU一方面实时采集到车辆更详细的运行情况,提高道路管理的信息化水平,另一方面将路况信息和其他多媒体服务信息实时通报给行驶在指定路段的所有车辆,提高信息发布有效性。可以说,以车联网为核心的广义智能交通系统,具有广阔的发展前景,是未来智能交通的发展方向。 作为“国家中长期科学和技术发展规划纲要”中指定的重点攻关领域,车联网的可以提高智能交通系统服务水平、促进城市信息化系统建设,为发展和建设

车联网技术全面解析及主要解决方案盘点

车联网技术全面解析及主要解决方案盘点 车联网(IOV:Internet of Vehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。 【慧聪汽车电子网】 车联网概念解析 2004年中国提出“汽车计算平台”计划,防范汽车工业“空芯化”现象;巴西政府强制所有车辆2014年前必须安装类似“汽车身份识别”的系统并联网;欧洲、日本的ITS(智能交通系统)计划中也都有“车联网”的概念;印度甚至要求所有黄包车都装上GPS与RFID;2011年初,中国四部委联合发文,对“两客一危”运营类车辆提出了必须安装智能卫星定位装置并联网的强制性要求……这些都是车联网的雏形。 美国国家网络可信身份标识战略白皮书NSTIC则是一个里程碑,它要求所有移动终端、包括汽车都必须安装“安全ID芯片”;美国DOT进一步要求,2012年所有运营类车辆都必须遵从M911。显而易见,车联网已经不只是一个汽车业信息化的问题了,而已经上升到了国家信息安全和国家战略层面,很多国家已经开始立法实施了。 什么是车联网 车联网(IOV:InternetofVehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。它可以通过车与车、车与人、车与路互联互通实现信息共享,收集车辆、道路和环境的信息,并在信息网络平台上对多源采集的信息进行加工、计算、共享和安全发布,根据不同的功能需求对车辆进行有效的引导与监管,以及提供专业的多媒体与移动互联网应用服务。 从网络上看,IOV系统是一个“端管云”三层体系。 第一层(端系统):端系统是汽车的智能传感器,负责采集与获取车辆的智能信息,感知行车状态与环境;是具有车内通信、车间通信、车网通信的泛在通信终端;同时还是让汽车具备IOV寻址和网络可信标识等能力的设备。 第二层(管系统):解决车与车(V2V)、车与路(V2R)、车与网(V2I)、车与人(V2H)等的互联互通,实现车辆自组网及多种异构网络之间的通信与漫游,在功能和性能上保障实时性、可服务性与网络泛在性,同时它是公网与专网的统一体。 第三层(云系统):车联网是一个云架构的车辆运行信息平台,它的生态链包含了ITS、物流、客货运、危特车辆、汽修汽配、汽车租赁、企事业车辆管理、汽车制造商、4S店、车管、保险、紧急救援、移动互联网等,是多源海量信息的汇聚,因此需要虚拟化、安全认证、实时交互、海量存储等云计算功能,其应用系统也是围绕车辆的数据汇聚、计算、调度、监控、管理与应用的复合体系。 值得注意的是,目前GPS+GPRS并不是真正意义上的车联网,也不是物联网,只是一种技术的组合应用,目前国内大多数ITS试验和IOV概念都是基于这种技术实现的。笔者以为,简单基于这样的技术来发展车联网,对国家战略领先和技术创新是非常不利的,会造成整体落后国际竞争的被动局面。 什么是GID IOV最核心的技术之一是根据车辆特性,给汽车开发了一款GID(GlobalID,相对于RFID)终端。它是一个具有全球泛在联网能力的通信网关和车载终端,是车辆智能信息传感器,同时也具有全球定位和全球网络身份标识(网络车牌)功能。 GID将汽车智能信息传感器、汽车联网、汽车网络车牌三大功能融为一体,具体表现为: 车辆状态的信息感知功能:GID与汽车总线(OBD、CAN等)相连,内嵌多种传感器,可感知和监控几乎所有车辆的动态与静态信息,包括车辆环境信息和车辆状态诊断信息等; 泛在通信功能:GID具有V2V、V2I和自组网(SON、移动AdHoc、AGPS等)的能力,具有车内联网以及多制式之间的桥接与中继功能,具备全球通信、全球定位与移动漫游能力;

基于车联网的智能交通安全辅助功能研究

基于车联网的智能交通安全辅助功能研究 摘要:智能交通系统是解决当下交通问题的有效手段,而车联网技术是物联网 在智能交通系统中的典型运用。本文通过基于车联网的智能交通安全辅助系统的 构建,实现了车联网技术在智能交通系统中,尤其是车辆碰撞预警、事故上报及 救援的应用,使智能交通系统的功能更加全面,更加安全、可靠。 关键词:车联网;车辆碰撞预警;事故上报及救援 1车联网概述 车联网是指由车辆运行路线、位置以及速度等信息组成的交互网络,即通过定位系统、 射频识别以及传感器等装置,对车辆状态信息及道路环境信息进行采集,其中的状态信息包 括静态信息、动态信息以及属性信息等;将采集到的车辆信息通过互联网传输到中央处理器;最后通过计算机对信息进行分析和处理,根据不同的交通需求,对车辆的状态进行监管,以 及提供移动互联网应用,进而实现智能交通安全辅助功能,例如车辆碰撞预警、事故上报及 救援等功能。 2车联网架构分析 车联网是以车内网、车际网和车载移动互联网为基础,按照约定的通信协议和数据交互 标准,在车与车、车与路边单元、车与互联网之间进行无线通信和信息交换,以实现智能交 通管理控制、车辆智能化控制和智能动态信息服务的一体化网络,是物联网技术在智能交通 系统领域的延伸。与普通的物联网技术不同,车联网技术主要面向道路交通,为交通管理者 提供决策支持,为车与车之间提供协同控制,为交通参与者提供信息服务。车联网在系统上 具备物联网的物理结构,在功能上可满足智能交通对安全、环保和效率的要求。 具体地,为了通过车联网技术实现智能交通中车辆碰撞预警、事故上报及救援等安全辅 助功能,可构建如下的车联网系统: 2.1车辆信息采集: 通过各车辆终端处的传感器采集相应车辆的运行数据信息,例如速度数据、加速度数据、本车位置数据、运动方向信息等; 通过各车辆终端处的传感器采集相应车辆的事故信息碰撞感应信息、火灾信息、按钮报 警信息等; 实时采集交管部门和救援部门的相关车辆位置信息。 2.2网络拓扑结构: 在城市道路沿途设置网络节点,网络节点用于上述各种车辆信息的收集、处理和上传; 各网络节点均连接至远程服务中心,实现车辆运行数据信息的共享和管理。 图2车辆碰撞预警场景示意图 具体地,在碰撞概率计算时,可采用多种计算方法,例如计算车辆之间的距离、计算车 辆之间的靠近速度、前车是否有刹车/变道操作等,下面分别以车辆之间的距离、前车是否有刹车操作为例进行具体说明: 1)车辆之间的距离:获取本车和本车对应的预设范围内的其它车辆的相对位置数据;根 据该相对位置数据,确定本车与其它车辆的碰撞概率(此处,可事先根据车辆速度建立相对 位置数据与碰撞概率的对应关系);如果碰撞概率大于预设概率阈值,则触发报警操作。 2)前车是否有刹车操作:获取本车和本车对应的预设范围内的其它车辆的相对位置数据;获取本车对应的预设范围内的前方车辆是否有刹车操作;在前方车辆有刹车操作时,根据二 者的相对位置数据,确定本车与前方车辆的碰撞概率(此处,可事先根据车辆速度建立相对 位置数据与碰撞概率的对应关系,相对于前车正常行驶的情况,在前车有刹车动作时,则相 对地,应在较大的相对位置时即有较大的碰撞概率);如果碰撞概率大于预设概率阈值,则 触发报警操作。 3.2事故上报

一文看懂“车联网”的前世今生

一文看懂“车联网”的前世今生 从汽车诞生的那一天起,对于城市交通,安全和便捷始终是最重要的课题。面对城市道路中日益增长的车辆,以及与日剧增的事故风险和通行压力,城市管理者和交通领域的科研人员,利用交通信号设施来实现交通控制,并不断地推出新。19世纪60年代,英国伦敦议会大厦前的十字路口吗,安装了世界上第一盏交通信号灯(壁板式燃气交通信号灯)。它由一位警察牵动皮带进行灯色切换:红灯停,绿灯行。虽然缓解了路口的交通压力,但这第一盏交通信号灯在工作了23天后就爆炸自灭了。1914 年,美国俄亥俄州克利夫兰市(Cleveland, Ohio)开始部署电气交通信号灯用于地面交通控 制和协调,这被认为是最早的交通信号控制系统。1918年,纽约市五号街的一座高塔上出现了三色(红、黄、绿三种标志)的交通信号灯,这种经典的“配色”一直延续到现在。1926年,英国的沃尔佛汉普顿首次使用自动化控制器来控制信号灯:按照一个固定的周期切换信号灯的颜色。20世纪60年代,美国丹佛市通过模拟计算机对交通信号实现集中化的实时性控制,可以同时对道路网中各交叉路口的交通信号进行协调控制。而后,加拿大的多伦多在全市围建成了第一个全市交通信号集中控制与协调系统。至今,交通信号灯的样子几乎没有什么改变,但交通控制的理论方法和运行系统

却一直在进步。从人工操作或固定周期式的单点控制;到以协同相邻道口的周期、保证道路沿线的绿灯具有连续性的干线控制;再到持续优化整个区域交通资源(主要是信号灯的配时)的面控制,如今的交通控制技术,虽然演进出很强的自动化、智能化的特性,但同时也已经达到了性能瓶颈。采用单一的“红绿信号灯”模式进行交通控制,已经无法更有效地管理交通资源(实时性不足):红绿灯只在路口起效,其效用无法覆盖整条道路;驾驶员可能因为天气原因,以及在交通拥堵情况下看不清交通信号灯;司机容易陷入“黄灯时两难境地”(Yellow interval dilemma),即在黄灯闪烁时难以抉择是“进”还是“停”;虽然在交通网络中引进了诱导系统(提示路况信息),司机也可以使用实时反馈路况的导航系统,但对道路利用的整体效果并不明显……城市道路要容纳更多的车辆、满足更多的出行需求,就需要突破原有的技术领域,朝着更深度的信息化和智能化方向发展。“智能交通”的想法早在20世纪初就已经出现,它的诞生与城市化发展戚戚相关:城市管理者希望它能够解决城市道路日益拥堵的状态,以及所造成的经济损失。在20世界90年代,智能交通系统(ITS,Intelligent Transportation System)的概念逐渐成型。目前,ITS已经在许多发达国家获得了广泛应用,其研究推进工作呈现“三足鼎立(领先)”的局面:美国、欧洲、日本(美国智能运输协会-ITS America、欧洲道路运

智能汽车车联网系统分析

智能汽车车联网系统分析 发表时间:2019-05-22T16:16:34.133Z 来源:《基层建设》2019年第5期作者:何晓蕊[导读] 摘要:作为车辆信息化与智能化的重要体系组成部分,车联网系统不仅能够实现车辆的远程控制、远程通讯、故障报警以及电子设备相互连接等诸多功能,更具备性能强、安全性高以及反应速度极快等优点,即使车辆行驶于较为偏远的地带,只要是处于网络信号覆盖下,车联网系统则都能搜索到相应的网络连接信号。 国能新能源汽车有限责任公司天津 300301 摘要:作为车辆信息化与智能化的重要体系组成部分,车联网系统不仅能够实现车辆的远程控制、远程通讯、故障报警以及电子设备相互连接等诸多功能,更具备性能强、安全性高以及反应速度极快等优点,即使车辆行驶于较为偏远的地带,只要是处于网络信号覆盖下,车联网系统则都能搜索到相应的网络连接信号。因此,在当前我国科技信息技术持续进步发展的时代背景下,车联网系统的重要性日益凸显。文中对智能汽车车联网系统进行了分析。 关键词:智能汽车;车联网;系统 1车联网系统概述 车联网系统是车辆智能化和信息化的重要体系之一,该系统提供必要的通信网络,实现车辆的远程通信、远程控制、故障报警、紧急事故报警等安防功能。同时该系统需提供车载WIFI热点,方便用户的其他便携式电子设备连接网络。该系统需提供足够快速、安全的通信网络,并且在全国所有网络信号已覆盖的地区能搜索到网络信号。 2对当前我国汽车车联网发展实际以及难点的分析当前,车联网实现了物联网与智能化汽车的有效连接,二者进行集成,这也是信息化与工业化相结合的重要方面。在新型车联网发展中红,发展了通信、控制以及智能技术的结合,对整个汽车行业,甚至交通运行也意义重大,带动了相关产品的智能化升级,生产方式得以创新,分工更加明确,使得汽车产业突破产品的束缚,更加倾向服务方向,是新型模式的发展。同时,在新一代车联网的发展中红,信息服务得以增强,安全性提高,能效性较强,使得汽车行业实现生态式的发展,立足设计、开发和制造,实现全生命周期的创新。当前,我国的汽车市场庞大,规模扩大。结合不同耳朵主导者,模式各异。首先,是以车厂为主体的模式,其自我进行平台的搭建,提供的是物联网中前装服务。其次,是以行业为主导的模式。主体是使用者或者集成商客户。再次,是电子消费品模式。第四,是移动互联网的模式。随着车联网的不断发展,其技术难点也十分突出,如,缺乏完善的标准和规范,互通性不强,需要不断进行平台和接口的建设。另外,数据安全性需要不断增啊,加强质量体系建设,强化行业可靠性。需要无线通信技术实现不同提升,强化性能,因此,要进行体制的不断创新,加大支持力度,推进车联网技术的不断发展。 3智能汽车车联网系统分析 在整个系统中,车载终端T-BOX是重要的通信设备,实现车内网络与移动网络的有效连接,实现用户在安防、信息获取以及娱乐方面的要求。作为通信的主要通道,其主要的载体是SIM卡,实现与运营商的有效通信,完成其诸多方面的作用和功能。在安防方面,能够实现对相关终端信息的有效接收,以独立终端的主体,实现与BCM的有效互通,主要涉及一些车辆的状态以及实时故障灯,将信号进行传输,达到对车辆的远控控制。另外,借助T-BOX,能够实现对车内新的预先定义,而后发送至相应的数据背景中,也能够实现对信息的接纳,达到及时反馈的目的。娱乐方面的功能主要是借助热点,与网络进行连接,能够进行网络娱乐的共享。 3.1车载终端 车载终端主要负责智能汽车车内网与车联网或者说移动网络之间的通信的重要功能,其次兼顾完成车内的信息收集、安全防护以及车内娱乐等部分功能,作为重要车载通信设备而存在。具体来说,车载终端内置SIM卡可与移动网络运营商通信,从而接通网络通道,进而实现上述娱乐、安防功能。在信息收集方面,车载终端与移动网络之间通信时可以同时将预先定义的车内网信息发送至数据中心,同样的,车载终端也能够直接接收到来自于数据中心所发送的反馈信号或控制信号。在安防功能实现方面,车载终端可以接收其他独立终端所发出的车辆信息、故障信息以及状态信息等,在处理远程控制信号时,也能够直接将其发送至不同相关终端,以实现车辆的远程控制功能。在娱乐方面,由于车载终端内设有WIFI热点,因此,车内人员直接以移动产品进行热点链接就可以进行网络连接。 3.2手机客户端 手机客户端,即手机APP,其功能主要包括用户登录、个人中心、车况显示以及相应的远程功能,通常情况下,为了保障用户信息的安全性,数据中心与手机客户端之间的通信一般采取加密方式,并且,客户端内可以设置相应的地图信息,如此一来,驾驶员就能够直接通过手机或其他设备清晰明确车辆位置的实时信息。 3.3数据中心 作为智能汽车车联网的核心部位,数据中心不仅承担着用户信息、车辆信息中转的重要枢纽作用,更多时候也充当着不同信息存储需求满足载体,其具体功能笔者现总结如下: 3.3.1具备网络通信功能 只有具有网络通信功能,数据中心才能够与用户的手机或其他移动设备进行相互连接,此时才能够实现数据与指令的相互传输与发送。其次,当数据中心社会有网页访问端口时,用户才能够在购买智能汽车后自行注册用户。 3.3.2具备保存用户车辆信息以及用户信息的功能 用户在购买智能汽车并注册用户后,数据中心则可以对用户信息(用户名、用户手机号码、车辆VIN码以及远程控制预设密码等)进行永久保存,且这些信息在任何情况下均不能对外泄露或盗取。另外,数据中还可以通过移动网络为用户显示相应的车辆信息,而用户运用手机客户端对车辆所发送的指令也可以被记录、储存于数据中心,通常情况下,这部分信息的保存期为1年。 3.3.3具备对车辆信息的分析计算功能 当数据中心具备这一功能后,汽车用户的日常驾驶习惯以及机动车近段时间内的油耗情况则可以通过数据中心的分析处理结果适时判断并提示用户是否存在危险驾驶或油耗较高现象,其次,在实际驾车时,所存储的车辆信息处理数据也可以给予用户相应的安全驾驶与经济驾驶建议。 3.3.4具体可拓展第三方应用与接收第三方信息的的功能

浅谈车联网对智能交通的影响

浅谈车联网对智能交通的影响 车联网推动智能交通发展。作为智慧城市的重要组成部分。智能交通可以有效缓解道路拥堵,提高出行效率,并改善由于尾气排放造成的空气污染,受到ZF和民众的高度重视。但是现阶段智能交通还处于初级阶段,能够为民众提供的出行信息服务(TISS)还非常有限,且发布方式还仅局限于网站、广播电台、交通短信息、呼叫中心等传统手段。 表1:现阶段智能交通够为民众提供的出行信息服务还非常有限 日本道路交通情报中心负责进行道路交通情报的收集整理、分析和发布。中心在全国有142个分支机构,与全国所有交通管理机构实现信息在线实时传输。全国主要道路都安装了交通量微波检测器(高速公路每间隔300米一处)和图像监控设备,自动采集交通信息。中心将交通情况收集整理和分析后通过互联网、电话、广播、电视、手机短信以及车载导航系统等媒体向道路用户发布,包括交通堵塞、事故、施工、高速公路入口封闭、停车场车位、大型车车辆外廓尺寸和轴载限制、交通规制及迂回绕路、到达目的地的线路选择、运行距离和时间、异常气象和自然灾害等信息,便于司机选择正确路线,缩短运输时间到达目的降低运输成本。

图1:出现信息通过多种网络媒体向道路用户发布 图2:出现信息服务体现以人为本 TISS需要底层的指挥诱导系统提供实时海量数据;此外“大交通”互联互通需要整合机场、铁路数据以及车管所车辆信息等等。现阶段中国刚刚在发达省份的主要公路上实现设备部署,可以进行信息采集,未来还需要进行信息的汇总及处理,从而形成有效的出行服务建议。随着公路、机场、铁路的不断新建,以及汽车保有量的持续攀升,交通的数据量将越来越大,因此基于互联网模式的采集和发布将成为主流模式。 表2:“大交通”互联互通将产生海量数据

2019年智能汽车(ADAS)和车联网(V2X)的发展路径分析

2019年智能汽车(ADAS)和车联网(V2X)的发展路径分析

写在前面的 (6) 当前是无人驾驶的关键时点 (6) 智能汽车(ADAS)和车联网(V2X)分别是实现无人驾驶的内部和外部要求 (9) ADAS——车内智能的开端 (9) ADAS的原理、构成和分类 (10) 市场空间:全球市场规模众说纷纭,测算国内千亿前装规模 (12) 产业链公司发展现状及推荐标的 (15) 车联网——通向无人驾驶高级阶段的核心技术 (16) 广义车联网包含车内、车际和车云网 (16) 车际网是车联网之魂,其核心在于V2X技术 (16) 车联网市场空间:预计到2025年市场规模接近万亿级别 (19) 车联网标的推荐 (21) 展望:无人驾驶发展之路 (22) 短期关注ADAS渗透率提高带动传感器产业链发展 (23) 中期关注车联网伴生的智慧交通基础设施建设 (30) 长期关注L4级别成熟后共享汽车引领的出行方式颠覆 (38) 问题 (40) 安全问题或成为拖慢自动驾驶发展的重要因素 (41) 多传感器融合成为趋势的同时也将带来算法挑战 (41) 5G商用速度或影响车联网应用进度 (41) 标准法规制定 (42) 无人驾驶产业链标的推荐 (42) 华域汽车——龙头转型,业务结构持续优化 (42) 中国汽研——掌握核心技术,前瞻布局5G以及智能检索检测业务 (42) 德赛西威——国内车机龙头,智能驾驶推进有序 (43) 保隆科技——中国TPMS龙头,汽车电子新贵 (44) 星宇股份——好行业+好格局+好公司,具备全球车灯龙头潜质 (44) 拓普集团——智能刹车系统切入ADAS执行层 (45)

智能交通之车联网解决方案

智能交通之车联网解决方案

神州数码基于RFID的车联网解决方案 神州数码智慧城市解决方案本部 2012年3月

神州数码基于RFID的车联网解决方案简介 一、“车联网”背景 2009年8月7日,温家宝总理在江苏无锡调研时,指出“在物联网发展中,要早一点谋划未来,早一点攻破核心技术”,“在国家重大科技专项中,加快推进物联网的发展”,“尽快建立中国的‘感知中国’中心”。在温总理“感知中国”的要求下,国内各省市政府部门开始认真落实总理的要求,热情拥抱“物联网”。“车联网”是的重要组成部分和应用领域。 神州数码“车联网”解决方案是神州数码智能交通整体解决方案的核心内容之一。通过射频设别(RFID)技术,在车辆安装唯一的电子标签作为“电子车牌照”,通过安装在路桥、场站、社区等场地安装的采集器采集信息,实现车辆监控、指挥和服务。未来“电子车牌”将成为车辆的法定装备,每个车必须安装电子车牌,在卡口、十字路口、重点区域等设置识别基站,与传统车牌配合完成城市内车辆的管理,包括车辆身份的识别、超速等违章管理,重点车辆的运行轨迹跟踪以及相应的环保、收费等服务功能。

二、应用目标 射频识别技术(RFID)是连接智能交通与物联网的桥梁,是一种简单可靠的信息识别和传输手段。交通系统主要组成部分包括:人、车、路、环境、信息等,在这个系统中,物的信息生命形态将得到充分的展示,物将被赋予“智能”而成为“智能交通系统中活跃的、能动的、平等的参与者。在赋予物体信息生命的过程中,RFID技术发挥了关键的作用。它将使车等“物”开口说话,它将为智能交通中的所有物建立起“电子镜像”并能将这一镜像实时、动态、准确地映射到系统的数字化平台上去。提高车辆管理的信息化水平、推进平安城市、数字城市建设,提高人民生活质量,增强公共安全与国防安全,构筑智慧地球。 典型应用包括以下几个方面。 ●交通管理:交通指挥诱导、车辆稽查、运营秩序、拥堵收费、车辆 限行等; ●交通服务:信息整合服务、驾驶安全辅助、动态信息导航、抢修救 援、远程诊断等;

网联汽车技术的发展现状及趋势

一、智能网联汽车基本内涵 1)概念层面的理解 ①汽车是指传统意义的汽车,包含今天广义上的新能源汽车; ②网联汽车是指在汽车的基础上,彼此能通信的汽车; ③智能网联汽车是指网联汽车基础上,具备智慧(有学习、判断、决策)能力的汽车。 理解: ①汽车还是汽车,这是没有改变的部分; ②智能网联汽车是新时代的汽车,这是变的部分。 ③传统汽车由人驾驶,彼此之间没有“会话”(通信)功能,更没有判断(决策)能力。 2)术语层面的表述 智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置(注:硬件系统),并融合现代通信与网络技术,实现车与X(车、路、人、云等)智能信息交换、共享(注:对外通信系统),具备复杂环境感知、智能决策、协同控制等功能(注:软件系统),可实现安全、高效、舒适、节能行驶,并最终实现替代人来操作的新一代汽车(注:功能)。 理解: ①智能网联汽车由软件和硬件两部分组成, i)硬件细分3个部分:传感器、控制器、执行器等装置; ii)软件:在现代通信与网络技术的支持下,具有环境感知、智能决策、协同控制等功能; ②发展智能网联汽车最终目的是:实现替代人工操作的新一代汽车; ③发展智能网联汽车的基本要求:安全、高效、舒适、节能 二、智能网联汽车概念的位置关系 智能网联汽车、智能汽车与车联网、智能交通等概念间的相互关系,如图 1 所示。智能汽车隶属于智能交通,智能网联汽车是智能交通与车联网的交集。

图1 智能网联汽车是智能交通与车联网的交集 理解: ①智能网联汽车、智能汽车与车联网、智能交通是4个概念,不能混淆; ②智能交通是一个种概念,智能汽车、智能网联汽车是智能交通2个属概念, ③智能交通与车联网彼此之间有交集,这个部分是智能网联汽车。 三、发展智能网联汽车的时代意义 ①智能网联汽车是国际公认的是未来的发展方向; ②智能网联汽车的初级阶段,有助于减少30% 左右的交通事故,交通效率提升10%,油耗与排放分别降低5%; ③智能网联汽车的终极阶段,完全避免交通事故,提升交通效率30% 以上,并最终能把人从枯燥的驾驶任务中解放出来。 一句话,智能网联汽车可以提供更安全、更节能、更环保、更便捷的出行方式。 四、智能网联汽车4个发展阶段及技术特点 1)自主式驾驶辅助阶段及技术特点 自主式驾驶辅助系统是指依靠车载传感系统进行环境感知并对驾驶员进行驾驶操作辅助的系统。 (1)技术特点: 环境感知,运用传感系统技术是主要技术特点。 (2)技术分类: 有预警系统与控制系统两大类。 ①预警系统细分: i)前向碰撞预警(Forward Collision Warning,FCW);ii)车道偏离预警(Lane Departure Warning,LDW);iii)盲区预警(Blind Spot Detection,BSD);iv)驾驶员疲劳预警(Driver Fatigue Warning,DFW);v)全景环视(Top View System,TVS);vi)胎压监测(Tire Pressure Monitoring System,TPMS)等6大系统; ②控制类系统有: i)车道保持系统(Lane Keeping System,LKS);ii)自动泊车辅助(Auto Parking System,APS);iii)自动紧急刹车(Auto Emergency Braking,AEB);iv)自适应巡航(Adaptive Cruise Control,ACC)等4大系统。

相关主题
文本预览
相关文档 最新文档