当前位置:文档之家› 咪唑类离子液体的合成及其在分析化学中的应用_董社英

咪唑类离子液体的合成及其在分析化学中的应用_董社英

咪唑类离子液体的合成及其在分析化学中的应用_董社英
咪唑类离子液体的合成及其在分析化学中的应用_董社英

分析化学在现实生活中的应用1

分析化学在现实生活中的应用我们的生活离不开物质。如何让物质能更加美好我们的生活呢?掌握一点化学知识其实是非常实用的方法。无论是生产、生活,还是环境保护、能源与资源的利用、医药卫生与人体健康等与化学有着广泛的关系。因此,生活中有许多化 学知识需要我们去认识。 “民以食为天”,我们先来看看吃里的化学吧。 油条是我国传统的早餐食品之一,它的历史非常悠久。当大家吃着香脆可口的油条时,是否会想到油条制作过程中的化学知识呢? 先来看看油条的制作过程:首先是发面,用鲜酵母或老面(酵面)与面粉一起加水揉和,使面团发酵到一定程度后,再加入适量纯碱、食盐和明矾进行揉和,然后切成厚1厘米,长10厘米左右的条状物,把每两条上下叠好,用窄木条在中间压一下,旋转后拉长放入热油锅里去炸,便成了一根香、脆的油条。 在发酵过程中,由于酵母菌在面团里繁殖分泌酵素(主要是分糖化酶和酒化酶),使一小部分淀粉变成葡萄糖,又由葡萄糖变成乙醇,并产生二氧化碳气体。同时,还会产生一些有机酸类,这些有机酸与乙醇作用生成有香味的酯类。反应产生的二氧化碳气体使面团产生许多小孔并且膨胀起来。有机酸的存在,就会使面团有酸味,加入纯碱,就是要把多余的有机酸中和掉,并能产生二氧化碳气体,使面团进一步膨胀起来;同时,纯碱溶于水发生水解,后经热油锅一炸,由于有二氧化碳生成,使炸出的油条更加疏松。 从上面的反应中,也许大家会担心,在制作油条时不是使用了氢氧化钠吗?含有如此强碱的油条,吃起来怎么会可口呢?然而其巧奥妙之处也在于此。当面团里出现游离的氢氧化钠时,原料中的明矾就立即跟它发生了反应,使游离的氢氧化钠经成了氢氧化铝。氢氧化铝的凝胶液或干燥凝胶,在医疗上用作抗酸药,能中和胃酸、保护溃疡面,用于治疗胃酸过多症、胃溃疡和十二指肠溃疡等。常见的治

气相色谱在分析化学中的应用

《仪器分析》课程论文 学院:南昌师范学院 专业:化学教育 年级:2015级 姓名:曾欠妹 论文题目:气相色谱在分析化学中的应用指导老师:万全玉 日期:2016年12月04日 学号:2015382121

气相色谱在化学分析中的应用 摘要 气相色谱法其实就是一种分离技术,色谱法是指用气体作为流动相的色谱法,常应用于分析化学中检测物质的成分,它所具有的三大优点是高分力效能、高检测性能、分析快速。色谱法的原理是让混合物各组分在两相间流动,让它们相互作用,其中有一相是不流动的,称为固定相,而另外一相是带着混合物中各组分一起流过此固定相的,我们它称为流动相,当混合物中各组分在流过固定相时就会与其相互作用,由于不同物质组分与其的作用也会不同,经过一定时间的相互作用之后,不同的组分在流动相中停留的时间也是不同的,所以各组分出来的时间就会不同,这样就可以把它们分离开来了。在分析化学中会经常使用气相色谱的定性、定量分析方法来测定物质的组成及含量。 关键词:气相色谱法、气相色谱仪、应用

目录 一、引言 (1) 二、气相色谱的发展 (1) 三、气相色谱仪 (1) 3.1气相色谱仪的构造 (1) 3.2气相色谱仪的原理 (2) 四、气相色谱分析的应用 (2) 4.1乙醇溶液的气相色谱分析 (2) 五、结语 (3)

一、前言 气相色谱经过多年的发展历程,现在已经是一项比较成熟的重大科学技术了。气相色谱法可以分为两种,一种是气—液色谱法,另一种是气—固色谱法。其中气—液色谱法的固定相是液体,一般是涂在固体担体上或毛细管壁上的,而气—固色谱法的固定相是固体吸附剂。近年来,气相色谱仪也在不断的被完善,精密度也越来越高,越来越智能化,在分析化学中的应用也非常广泛了,可以用气相色谱法来分析乙醇溶液。 二、气相色谱法的发展 历史上最早的气相色谱仪是1947年由色谱学家jaroslav janlik发明的。 1950年,Marin和James使用硅藻土助虑剂做载体,硅油为固定相,用气体流动相对脂肪酸进行精细分离,这就是气—液色谱的起源。 1952年,Marin和James他们有连续发表过三篇论文,都叙述了用气相色谱分离低碳数脂肪酸、挥发性胺和吡啶类同系物的方法,这标志着气—相色谱从此正式进入了历史舞台。同年,他们也发明了第一台气相色谱检测器。 1954年,Ray发明了热导池检测器。 1955年,第一台商品化气相色谱仪诞生。 1957年,Golay创立了毛细管色谱柱理论,并且还制备了第一根毛细管色谱柱。 1958年,Mcwillian和Harley同时发明氢火焰离子化检测器,而Lovelock发明氩电离检测器。 1960年,Lovelock发明电子俘获检测器。 20世纪60年代末,Vogt发明混合型进样系统。 1966年,Brody发明火焰光度检测器。 1974年,Kolb和Bischof提出电加热的氮磷检测器。 1977年,Grob发明冷柱头进样方法。1979年,Dandenean和Zerenner发明弹性石英毛细管。20世纪90年代,出现电子流量控制器,通过计算机实现压力和流量自动控制的电子程序压力流量控制系统。 三、气相色谱仪 3.1气相色谱仪的构造 气相色谱仪一般有五大部分组成的:①载气系统,是由气源、气体净化和气体流速控制部件组成。载气一般为氮气,氢气和氦气。②进样系统,有进样器、汽化室两部分。③色谱

化学计量学在分析化学的应用

化学计量学在分析化学中的应用 倪永年编著 科学出版社 索书号:54.6/24 馆藏号:022604 内容介绍: 本书根据作者多年来在化学计量学领域中的教学实践与科学研究的经验,对化学计量学的一些基本理论及原理进行了深入浅出的阐述,并对化学计量学在分析化学中的实际应用作了较详细的叙述和介绍。 本书共分12章,内容包括统计基础、化学实验设计与优化方法、分析信号处理、多元校正分析、因子分析及相关技术、化学模式识别、人工神经网络及遗传算法等常用的化学计量学方法的原理,以及化学计量学在电分析化学、动力学分析、电位滴定分析及分光光度分析中的应用。 本书的目的是使读者阅读之后能更好地掌握化学计量学的基础知识,并有更多的机会应用化学计量学方法来解决科研和教学中的实际问题。 本书目录: 第一章化学计量学的历史、现状及教学 1.1 化学计量学的主要内容及方法 1.2 化学计量学的教学 参考文献 第二章统计基础 2.1 分析质量判据和统计检验 2.2 显著性检验 2.3 一元校正和相关性分析 2.4 检测限 附表A2 统计中常用临界值分布表 参考文献 第三章化学试验设计与优化方法 3.1 正交试验设计 3.2 均匀试验设计 3.3 析因设计 3.4 单纯形优化法 3.5 响应曲面设计 附表A3 常用正交设计表和均匀设计表 参考文献 第四章分析信号处理 4.1 分析信号的卡尔曼滤波 4.2 分析信号的平滑和求导 4.3 分析信号的Hadamard变换 4.4 傅里叶变换 4.5 小波变换 参考文献 第五章多元校正分析 5.1 多元线性回归

5.2 多元非线性回归 5.3 岭回归 5.4 多元线性回归法用于多组分分析 5.5 通用标准加入法 5.6 主成分分析 5.7 主成分回归 5.8 偏最小二乘法 5.9 三维主成分分析 参考文献 第六章因子分析及其相关技术 6.1 概述 6.2 因子旋转 6.3 方差最大旋转 6.4 目标转换因子分析法用于因子旋转 6.5 基于曲线分辨的方法 6.6 迭代目标转换因子分析法 6.7 渐进因子分析 6.8 固定窗口渐进因子分析 6.9 启发渐进特征投影法 6.10 广义秩消失因子分析法 6.11 残差双线性分解法 参考文献 第七章化学模式识别 7.1 聚类分析 7.2 相似系数和距离 7.3 测量数据预处理和特征选取 7.4 聚类分析算法 7.5 基于主成分分析的投影判别法 7.6 有管理模式识别 参考文献 第八章人工神经网络及遗传算法 8.1 神经元 8.2 线性学习机和感知器网络 8.3 多层向前网络 8.4 MLF网络的训练和测试 8.5 其他网络函数 8.6 人工神经网络在化学领域中的应用 8.7 遗传算法 8.8 遗传算法在分析化学中应用 参考文献 第九章电分析化学 9.1 化学计量学在无机离子测定中的应用9.2 化学计量学在有机电分析化学中的应用参考文献

咪唑类酸性离子液体催化剂的制备及其表征

咪唑类酸性离子液体催化剂的制备及其表征 【摘要】本文用一步合成法制备了三种咪唑类Br?覫nsted酸性离子液体:[Hmim]CH3COO、[Hmim]H2PO4、[Hmim]C4H7O2,收率分别为85.5%、79.0%、87.0%,并通过FT-IR对三种离子液体进行了表征,对其结构及性质进行了初步的研究。 【关键词】咪唑;酸性离子液体;FT-IR 0 概述 离子液体,是由一系列杂环阳离子和多种阴离子组合而成[1]。在电化学业、重金属离子提取、相转变催化、重合、增溶作用以及在酶反应中做低挥发的有机溶剂等领域有着潜在的商业应用[2]。离子液体虽然为离子组成,但其组成可调变,故称为“设计溶剂”(designed solvents)。采用一步合成法制备离子液体,操作简便,没有副产物,产品易分离,纯化[3-4]。离子液体可用波谱学、物理学方法和电化学等手段对其进行表征。通过IR图谱的分析,可以证实产物(特别是阳离子部分)是否正确[5]。本文合成三种咪唑类离子液体[Hmim]CH3COO、[Hmim]H2PO4、[Hmim]C4H7O2,并采用光谱法对其结构及性质进行了初步的研究。 1 实验部分 1.1 试剂 N-甲基咪唑(wt≥98%,浙江省宁海市凯乐化工公司)、冰醋酸(化学纯,上海凌峰化学试剂有限公司)、磷酸(分析纯,国药集团化学试剂有限公司)、正丁(分析纯,上海化学试剂有限公司)等。 1.2 离子液体催化剂制备 [Hmim]CH3COO的制备 称量摩尔比为1:1的N-甲基咪唑8.21g和醋酸6.01g于250ml三口烧瓶中,加入少量水作溶剂,旋转搅拌,将温度控制在80℃,反应进行6h,得到淡黄色液体。将得到的淡黄色液体进行减压蒸馏,控制减压蒸馏的真空度为0.07MPa,顶部温度为92℃,蒸馏时间为3h,即得到咪唑醋酸盐离子液体[Hmim]CH3COO。 [Hmim]C4H7O2的制备 称量摩尔比为1:1的N-甲基咪唑8.21g和正丁酸8.82g于250ml三口烧瓶中,加入少量水作溶剂,加热并搅拌,反应温度控制在80℃,反应7h,得到黄色液体。将得到的液体进行减压蒸馏,控制真空度为0.05MPa,顶部温度为75℃

(完整版)分析化学在生产、生活和科研中的应用例子

分析化学在生产、生活和科研中的应用例子1、测定三聚氰胺在乳制品中的含量 方法:高效液相色谱法测定原料乳与乳制品中三聚氰胺含量。 原理:用三氯乙酸溶液 - 乙腈提取试样,经阳离子交换固相萃取柱净化后,用高效液相色 谱测定,外标法定量。 试剂与材料:甲醇、乙腈、 25%~28%的氨水、三氯乙酸、柠檬酸、辛烷磺酸钠、甲醇水 溶液(含 50mL甲醇和 50mL水)、三氯乙酸溶液( 1%)、氨化甲醇溶液( 5%)、离子对试剂缓冲液(由柠檬酸和辛烷磺酸钠配制)、三聚氰胺标准(CAS108-78-01,纯度>99.0%)、三聚氰胺标准储备液( 1mg/mL)。所有试剂均为分析纯,水为 GB/T 6682 规定的 一级水。阳离子交换固相萃取柱、定性滤纸、海砂、微孔滤膜、氮气(纯度≥ 99.999%) 仪器和设备:高效液相色谱( HPLC)仪、分析天平、离心机、超声波水浴器、固相萃取 装置、氮气吹干仪、涡旋混合器、 50mL具塞塑料离心管、研钵。、 样品处理 提取:液态奶、奶粉、酸奶、冰淇淋和奶糖等。称取 2g(精确至 0.01g)试样于 50mL具塞 塑料离心管中,加入 15mL三氯乙酸溶液和 5mL乙腈,超声提取 10min,再振荡提取 10min 后,以不低于 4000r/min 离心 10min。上清液经三氯乙酸溶液润湿的滤纸过滤后,用三氯乙酸溶液定容至 25mL,移取 5mL滤液,加入 5mL水混匀后做待净化液。②奶酪、奶油和巧克力等。 称取 2g(精确至 0.01g)试样于研钵中,加入适量海砂(试样质量的 4 倍~ 6 倍)研磨成干 粉状,转移至 50mL具塞塑料离心管中,用 15mL三氯乙酸溶液分数次清洗研钵,清洗液转 入离心管中,再往离心管中加入 5mL乙腈,超声提取10min,再振荡提取 10min 后,以不低 于 4000r/min 离心 10min。上清液经三氯乙酸溶液润湿的滤纸过滤后,用三氯乙酸溶液定容 至 25mL,移取 5mL滤液,加入 5mL水混匀后做待净化液。若样品中脂肪含量较高,可以 用三氯乙酸溶液饱和的正己烷液 - 液分配除脂后再用 SPE柱净化。 净化:将待净化液转移至固相萃取柱中。依次用 3mL水和 3mL甲醇洗涤,抽至近干 后,用6mL氨化甲醇溶液洗脱。整个固相萃取过程流速不超过 1mL/min。洗脱液于 50℃下 用氮气吹干,残留物(相当于 0.4g 样品)用1mL流动相定容,涡旋混合1min,过微孔滤膜后,供HPLC测定。 高效液相色谱测定:用流动相将三聚氰胺标准储备液逐级稀释得到的浓度为 0.8 、2、20、40、80μg/mL的标准工作液,浓度由低到高进样检测,以峰面积 -浓度作图,得到标准曲线回归 方程。定量测定待测样液中三聚氰胺的响应值应在标准曲线线性范围内,超过线性范围则应 稀释后再进样分析。空白实验除不称取样品外,均按上述测定条件和步骤进行。本方法的 定量限为 2mg/kg。在添加浓度 2mg/kg~10mg/kg 浓度范围内,回收率在 80%~110%之间, 相对标准偏差小于 10%。在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术 平均值的 10%。 2、测定硫化氢在空气中的含量 方法:吸光光度法 原理:硫化氢被碱性锌氨络盐溶液吸收后,在酸性溶液中释放出硫离子,在三氯化铁存 在下,与对氨基二甲基苯胺生成亚甲基蓝。其颜色深浅与硫离子含量成正比例进行比色定

离子液体的制备教学文稿

离子液体的制备

一.3.1 咪唑类离子液体的制备(制备氧化锆) 3.1.1 溴化1-辛基-3-甲基咪唑([C8mim]Br)的合成及纯化 这种离子液体的合成反应可表示为: C8H17Br + C4H6N2 → [C8mim]Br 实验步骤:在圆底烧瓶中加入100 g新蒸馏的N-甲基咪唑和300 mL三氯乙烷,在强烈搅拌下,在60℃滴加236 g新蒸馏的正溴辛烷,滴加时间超过2 h,滴加完毕后在83℃下回流约3 h,反应现象是先浑浊后变为橙黄色粘稠的液体,经分液漏斗分离出离子液体, 并用三氯乙烷洗涤数次后, 在65℃真空干燥48 h除去残余的溶剂和水,即可得到最终产品。 3.1.2 1-辛基-3-甲基咪唑四氟硼酸盐([C8mim][BF4])的合成及纯化 该离子液体的制备反应可表示为: [C8mim]Br + NaBF4 → [C8mim][BF4] + NaBr 实验步骤:将160.6 gNaBF4溶于550 mL水中,再加入202.6 g[C8mim]Br,搅拌48 h,而后用二氯甲烷萃取,有机层多次用水洗涤,直到在被除去的水相中滴加AgNO3溶液没有黄色沉淀出现为止。先蒸去二氯甲烷溶剂,再在65℃真空干燥48 h用以除去残余的溶剂和水。 3.1.3 溴化1-十二烷基-3-甲基咪唑([C12mim]Br)的合成及纯化 该离子液体的制备反应可表示为: C12H 25Br + C4H6N2 → [C12mim]Br 实验步骤:在圆底烧瓶中,加入75 g新蒸馏的N-甲基咪唑和250 mL三氯乙烷,在强烈搅拌下,在60℃滴加250 mL新蒸馏的正溴十二烷,滴加时间超过2 h,滴加完毕后在83℃再回流3 h,反应现象是先浑浊后变为橙黄色粘稠的液体。然后蒸出溶剂三氯乙烷,得到此离子液体极其粘稠,[C12mim]Br在65℃真空干燥48 h用以除去残余的溶剂和水。

咪唑盐离子液晶

中国科学: 化学 2010年第40卷第8期: 1072 ~ 1079 SCIENTIA SINICA Chimica https://www.doczj.com/doc/347321526.html, https://www.doczj.com/doc/347321526.html, 《中国科学》杂志社SCIENCE CHINA PRESS 论文 1-烷基-3-甲基咪唑溴化盐离子液体的 晶体结构及性能 魏西莲①?, 魏增斌①, 傅式洲①, 刘杰①, 孙德志①, 尹宝霖①, 王大奇①, 王素娜①, 王慧①, 吴明周①, 李干佐②? ①聊城大学化学化工学院, 聊城 252059 ②山东大学胶体与界面化学教育部重点实验室, 济南 250100 ?通讯作者, E-mail: weixilian@https://www.doczj.com/doc/347321526.html,; coliw@https://www.doczj.com/doc/347321526.html, 收稿日期: 2009-05-17; 接受日期: 2009-08-19 摘要以不同链长溴代烷烃和N-甲基咪唑反应得到1-烷基-3-甲基咪唑溴化盐, 用元素分析和核磁共振对化合物进行了表征. 室温下用溶剂蒸发法得到了单晶, 并用X射线单晶衍射法测定了晶体结构, 该晶体属于三斜晶系, 空间群为P-1. 化合物采用双分子层结构, 水分子参与结构的形成, 整个化合物由交叉的线性烷基链、咪唑头基、溴离子和水分子组成, 溴离子和水分子之间较强的氢键作用在(010)方向上形成了一个无限的O?H···Br氢键链. 用偏光显微镜、差示扫描量热(DSC)技术研究了其液晶行为, 证明其一水合物为近晶相热致液晶. 液晶区域的温度范围较宽说明水分子起到稳定作用. 关键词 离子液体晶体晶体结构 液晶性能 热力学性能 1 引言 近年来, 各类离子液体尤其是由N,N′-二烷基咪唑阳离子与阴离子构成的咪唑类离子液体以其独特的物理化学性质和在众多领域的巨大应用潜能而引起广泛的关注和研究兴趣[1, 2]. 这类长链两亲离子盐不仅具有表面活性, 而且在有机溶剂中也可以形成晶体而被称为离子液体晶体[3]. 作为一类新型材料, 它们的液晶也不同于通常的液晶, 它结合了离子液体和热致液晶的特点, 可作为离子传导材料[4]、有机反应中的定向溶剂[5]、功能纳米材料模板[6]以及有序膜的组成[7]等. 而晶体结构的特性对这些材料的应用是至关重要的, 因此近年来对其结构特征的研究也引起了人们极大的兴趣[8~17]. 国内对此类研究还见未报道. 一些短链的1-烷基-3-甲基咪唑盐的晶体已有部分报道[18~20]. 对于长链的咪唑盐类, Gordon等[21]和Roche等[22]先后报道了[C12-mim][PF6]、[C14-mim][PF6]和[C16-mim][PF6]的晶体结构, Abdallah等[23]测定了季盐离子液晶体的结构数据. 2002年Hardacre等[24]用小角X射线散射(SAXS)和DSC详细探讨了[C n mim]X (n=12~18, X=Cl, Br, OTF, TFI)的液晶行为, 并根据层间距等参数预测出晶体中存在着三维氢键和双层结构模型. 随即在2004年[25]制备出[C18-mim]Cl·H2O和 [C14-dmim]Cl·H2O的晶体, 证实了所预测的结构模型, 并指出由于氯离子和水分子之间形成了较强的氢键而使得长链烷基咪唑氯化盐在常温下是以一水合氯化盐的形式而稳定存在. 2008年Getsis和Mudring[26]考察了[C n mim]Br·H2O (n=12, 14)和无水化合物晶体的热力学及光学特征. 以上研

分析化学 配位滴定方式及其应用

4.7 配位滴定方式及其应用 在配位滴定中,采用不同的滴定方式,不仅可以扩大配位滴定的应用范围,而且可以提高配位滴定的选择性。 4. 7. 1直接滴定法 这种方法是用EDTA 标准溶液直接滴定待测金属离子。采用直接滴定法必须满足下列条件: ①被测粒子浓度M c 及其与EDTA 形成的配合物的条件稳定常数MY K '的乘积应满足准确滴定的要求,即lgc MY K '≥6。 ②被测离子与EDTA 的配位反应速率快。 ③应有变色敏锐的指示剂,且不发生封闭现象。 ④被测离子在滴定条件下,不会发生水解和沉淀反应。 直接滴定法操作简单,一般情况下引入的误差较少,因此只要条件允许,应尽可能采用直接滴定法。表4-6列出了EDTA 直接滴定一些金属离子的条件。 表4-6 EDTA 直接滴定的一些金属离子 金属离子 pH 指示剂 其他条件 +3i B 1 XO 3HNO +3Fe 2 磺基水杨酸 50~60℃ +2Cu 2.5~10 PAN 加乙醇或加热 8 紫脲酸铵 +2n Z 、+2d C 、+ 2Pb 和稀土元素 5.5 XO 9~10 EBT +2Pb 以酒石酸为辅助配 位剂 +2Ni 9~10 紫脲酸铵 氨性缓冲溶液,50~60℃ +2Mg 10 EBT +2Ca 12~13 钙指示剂 例如水硬度的测定就是直接滴定法的应用。水的总硬度是指水中钙、镁离子的含量,由镁离子形成的硬度称为镁硬,由钙离子形成的硬度称为钙硬测定方法如下:现在pH ≈10的氨缓冲溶液中以EBT 为指示剂,用EDTA 测定,测得的是+2Ca 、+ 2Mg 的总量,另取同样 试液加入NaOH 调节pH >12,此时此时+ 2Mg 以2)(OH Mg 沉淀形式被掩蔽, 用钙指示剂,

化学计量学在分析化学中的应用

化学计量学在分析化学中的应用 摘要:化学计量学是化学量测的基础理论与方法学,运用数学、统计学、计算机科学以及其他相关学科的理论与方法,优化化学量测量过程,并从化学量测数据中最大限度地获取有用化学信息的科学。化学计量学很多研究内容都涉及分析化学基础性问题,如样品的采样理论、分析方法的灵敏度、检出限等。在本文主要从最优化方法、多元校正分析法、模式识别法、化学定量构效关系等方面对化学计量学在分析化学中的应用进行了综述。阐明了化学计量学在分析化学中的作用及广阔的应用前景。 关键词:化学计量学分析化学应用 1.引言 19世纪70年代,瑞典科学家S.Wold首次提出“化学计量学”,随后化学计量学在我国发展有二十余年,已然成为分析化学的一个重要分支。它主要运用数学、统计学、计算机科学以及其他相关学科的理论与方法,优化化学量测过程,并从化学量测数据中最大限度地提取有用的化学信息。 20世纪80年代,在分析测试或化学量测中,人们第一次发现,取得数据甚至大量数据已不是最困难的一步。最难解决的瓶颈问题是这些数据的解析及如何从中提取所需的有用化学信息[1]。计算机的出现推动了化学计量学的发展,化学家、分析化学家利用可在计算机上实现许多强有力的数学方法,包括一些相关学科发展的数据与信号处理新方法,从多维化学量测数据中提取有用的相关化学信息。 其方法贯穿了分析量测中“采样-测量-数据处理”的各个部分,包括采样理论、实验设计、选择和优化实验条件、单变量和多变量信号处理以及数据分析[2]。 2.化学计量学在分析化学中的应用 2.1最优化方法

在化学实验中,经常使用最优化方法,分为局部最优和全局最优。而在化学研究的实践中,很多目标函数非常复杂,采用简单的局部最优方法很难奏效[3]。常用的全局优化算法有模拟退火法、遗传算法、人工神经网络等。这里主要介绍人工神经网络。 现代生物学研究在不断研究人脑组织后,提出了人工神经网络这一概念。人工神经网络( Artificial Neural Network,简称ANN)是用模拟生物神经元的某些基本功能元件(即人工神经元) [5],按各种不同的联结方式组成的一个网络。人工神经网络是十分复杂的网络,它是由大量简单的处理单元连接而成的,并且可以模拟大脑的行为。人工神经网络(ANN)能够对数据模式进行有效地分类与解析,它比较适合处理结果与原因关系不确定的非线性测量数据,许多化学问题都是由于这种不确定性产生的,所以它成功地应用于很多化学领域[6]。人工神经网络由神经元模型构成,这种由许多神经元组成的信息处理网络具有并行分布和结构。每个神经元具有单一输出,并且能够与其他神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个权系数。 目前人工神经网络在谱图分析、药物分子药效预测和蛋白质结构预测方面的应用已有报道[7]。此外,ANN还促进了仪器联机与实验室自动化,并卓有成效地控制或指导生产,提高和保证了生产质量。 2.2多元校正分析法的应用 多元校正与分辨一直就是分析化学计量学研究的主要内容。随着多元分析不断开发和逐步崛起,研究目标及对象越来越复杂,要求分析工作者给出快速准确的定性、定量及结构分析的结果。 多元校正法则是对现代分析仪器所提供大量的量测数据进行解析的数学统计方法[8]。多元分析校正一直都是化学计量学的主体部分,主要研究如何从量测数据中提取化学体系的定性与定量分析信息,这一领域业已形成了化学计量学极

咪唑离子液体

咪唑离子液体 离子液体是由阴阳离子组成,其中阳离子有几种类型,主要部分是咪唑环的则称为咪唑类离子液体,如图为1,3-二甲基咪唑阳离子,侧链可以是不同碳链的,也可以是1,2,3三取代的,这些阳离子组成的离子液体都称为咪唑类离子液体 根据离子液体的酸碱性可把离子液体分为Lewis酸性、Lewis碱性、Br?nsted酸性、Br?nsted 碱性和中性离子液体。广义的酸性离子液体就是指可以提供质子或者得到电子的离子液体 反应类型 1934年,英国曼彻斯特Bragg研究小组的年轻物理学者J. F. Keggin在实验室中合成出H3 PW12O40 ·5H2O,他把该物质粉末的X射线衍射实验的结果与计算值进行比较,提出了具有划时代意义的Keggin结构模型(1: 12系列A型) 。40年后,即1974年,再次测定证明Keggin结构是正确的。1953年,Dawson首次用X射线衍射法测定了K6 [ P2W18O60 ] ·14H2O的结构,结果表明其为三斜晶系。Strandbery在对Na6 [ P2Mo18O60 ] ·24H2O的结构进行测定后指出: Na6 [ P2Mo18O60 ] ·24H2O和K6 [ P2W18O60 ] ·14H2O具有相同的结构构型。此后一些有关2: 1868系列杂多化合物的结构相继被测定出来,它们都具有与K6 [ P2W18O60 ] ·14H2O相类似的骨架。后人为纪念Dawson,称2: 18系列杂多化合物为Dawson结构杂多化合物。早在1937年, J. A.Anderson就已经推测出1: 6型杂多化合物的结构,如: [ IMo6O24 ]6 - ,其中 I( Ⅶ) :Mo = 1: 6,但直到1974年才被最终确定下来,故称1: 6系列杂多化合物为Anderson结构杂多化合物,但第一个真正的Anderson结构化合物被认为是1948 年Evans报[ FeMo6O24 ]6 - 。1953 年,Wangh首次合成了(NH4 ) 6 [XMo9O12 ] (X =Ni4 + ,Mn4 + ) ; 1960年B rown. D. H 报道了1: 9BeW9的合成;上世纪70年代以后,相继合成了以P、Si、As为杂原子的钼的杂多化合物和以P、Si、As、Ge、Sb为杂原子的钨的杂多化合物,后人称此类化合物为Wangh结构( 1: 9系列)杂多化合物。此外还有Silverton (1: 12系列B型)结构,它们与Keggin、Dawson、Anderson以及同多酸的Lindqvist结构(M6O19结构)一起被称为多酸的6种基本结构[ 2 ] 。由于多酸化合物中原子数目较多,结构复杂,传统的描述方法是把它们的结构看成是以金 属为中心的MOn多面体通过共有角氧和边氧形成的组合。由于受测试手段的限制,到1971年,能够进行结构解析的多酸晶体只有14种(其中单晶12种) 。从20世纪80年代开始,随着四圆X射线衍射仪的普及,迄今已确定了100多种多酸结构,其中Keggin结构和Dawson结构是两种常见的基本结构[ 4 ] 。 (1) Keggin结构(1: 12系列A型)具有Keggin结构的杂多阴离子结构通式为[ XM12 O40 ]n - (X = P、Si、Ge、As等,M =Mo、W) 。四面体的XO4位于分子结构的中心,相互共用角氧和边氧的12 个八面体MO6包围着XO4。Keggin结构杂多阴离子共有α、β、γ、δ和ε型5种异构体(2) Dawson结构(2: 18系列)

咪唑类离子液体在中药有效成分提取中的应用

Pharmacy Information 药物资讯, 2019, 8(3), 43-48 Published Online May 2019 in Hans. https://www.doczj.com/doc/347321526.html,/journal/pi https://https://www.doczj.com/doc/347321526.html,/10.12677/pi.2019.83005 Application of Imidazole Ionic Liquids in Extracting Active Ingredients in Traditional Chinese Medicine Yalan Wang1, Suya Gao1,2*, Miaojie Yang1, Tian Cao1, Yuze Mao1, Dali Tao1, Tangna Zhao1, Jiawen Li1,Rui Wang1, Jiaojiao Wang1 1College of Pharmacy, Xi’an Medical University, Xi’an Shaanxi 2Institute of Medicine, Xi’an Medical University, Xi’an Shaanxi Received: Mar. 29th, 2019; accepted: Apr. 10th, 2019; published: Apr. 17th, 2019 Abstract Ionic liquid is new type of green organic solvent. Compared with traditional volatile organic sol-vents, it has many advantages such as good solubility, non-combustible and non-explosive, good controllability, good stability, good safety and environmental protection, and so on. In particular, imidazoles are easy to be synthesized and convenient to be used. In recent years, they have been widely used in chemical industry and medicine. In this paper, the application and advantage of imidazoles ionic liquids are reviewed in extracting effective ingredients from traditional Chinese medicine to provide reference for expanding the application scope of imidazole ionic liquids and optimizing the extraction process of effective components in traditional Chinese medicine. Keywords Imidazole Ionic Liquids, Extraction Method, Active Ingredients, Application 咪唑类离子液体在中药有效成分提取中的应用 汪亚兰1,高苏亚1,2*,杨妙洁1,曹甜1,毛宇泽1,陶大利1,赵瑭娜1,李佳雯1,王睿1,王皎皎1 1西安医学院药学院,陕西西安 2西安医学院药物研究所,陕西西安 收稿日期:2019年3月29日;录用日期:2019年4月10日;发布日期:2019年4月17日 *通讯作者。

分析化学部分名词解释

1.分析化学:分析化学是发展和应用各种理论、方法、仪器和策略以获取有关物质在相对 时空内的组成和性质的信息的一门科学,又被成为分析科学。 2.定性分析的任务是鉴定物质由哪些元素、原子团或化合物所组成;定量分析的任务是测 定物质中有关成分的含量;结构分析的任务是研究物质的分子结构、晶体结构或综合形态。 3.滴定分析法 要求: a. 反应必须具有确定的化学计量关系,即反应按一定的反应方程式进行。这是定 量计算的基础。 b. 反应必须定量的进行。 c. 必须具有较快的反应速率。对于反应速率慢的反应,有时可加热或加入催化剂 来加速反应的进行。 d. 必须有适当简便的方法确定滴定终点。 4种滴定方法: (1)直接滴定法 满足上述要求的反应,都可以用直接滴定法,即用标准溶液直接滴定待测物质。 (2)返滴定法 当反应很慢,或者反应不能立即完成的时候,可先准确的加入过量的标准溶液,使其与试液中的待测物质或固体试样进行反应,反应完成后再用另一种标准溶液滴定(3)置换滴定法 当反应不按一定反应式进行或伴有副反应时,不能采用直接滴定法。可先用适当试剂与待测组分反应,使其定量地置换为另一种物质,再用标准溶液滴定这种物质,这种成为…… (4)间接滴定法 不能滴定剂直接反应的物质,有时可以通过另外的化学反应,以滴定法间接进行测定【P11】 4.基准物质:能用于直接配置标准溶液或标定溶液准确浓度的物质成为基准物质。 常用的基准物质有纯金属和纯化合物。 应符合下列要求: a.试剂的组成与化学式完全相符(比如结晶水的含量) b.试剂的纯度足够高(质量分数99.9%以上) c.性质稳定,不易于空气中的氧气及二氧化碳反应,亦不吸收空气中的水分。 d.试剂参加滴定反应时,应按反应式定量进行,没有副反应。 5.滴定度:滴定度是指每毫升滴定剂相当于被测物质的质量(g或mg) 6.熔融法是指将试样与酸性或碱性固体熔剂混合,在高温下让其进行复分解反应,使欲测 组分转变为可溶于水或酸的化合物。不溶于水、酸或碱的无机试样一般可采用这种方法分解。根据熔剂的性质可分为酸溶法和碱熔法两种。 7.真值:某一物理量本身具有的客观存在的真实数值。 8.系统误差: 系统误差是由某种固定的原因造成的,具有重复性、单向性。理论上,系统误差的大小、正负是可以测定的,所以系统误差又称可测误差。 分类: (1)方法误差 (2)仪器和试剂误差

化学分析在药品中的应用

化学分析在药品中的应用 分析化学是研究物质化学组成和结构信息的科学,分析化学的任务主要是鉴定物质的化学组成,测定物质有关组成的含量及确定物质的化学结构。分析化学对于其他自然科学学科、工农业生产及人类活动,如生物学、工程学、医学、公共健康、环境分析以及国土安全和食品安全都起着至关重要的作用,被誉为国民经济和科学技术发展的“眼睛”。药品作为一种特殊商品,其质量直接影响用药的效果和安全,关系到国民的生命安全和健康水平。因而各国政府对药品的研究开发、生产、储存、运输和使用都有严格的法律法规和管理制度,并通过颁布和实行国家药典等方式对药物质量进行全面监督管理。分析化学为药物的分析检测提供了理论手段和方法,化学分析作为分析化学重要的组成部分,在研究、分析药物的药效和毒性方面起着重要的作用,在鉴定药品、控制药品质量、研究新药、分离和测定中草药中有效成分,药因调查和诊断有着重要的应用。 在测定药品中有效组分和具有毒副作用组成含量时,常常使用到各种分析方法。为了保证分析测试结果的可靠性和准确性,必须要有分析方法的标准化和规范化。对新建立的分析方法应按照一定程序和要求以证求其可靠性和可行性,这是保证分析质量的必要环节,也是所建立的方法能否被同行重复和验证,发表以后能被他人应用,有应用价值的基础。美国药典从1990版起增加了附录“法定方法的有效法”,其目的就是把药品检验方法的建立和改进标准化,以保证方法的准确可靠。1990年,由日本,美国和欧盟三方政府药品注册部门注册部门和制药行业发起组织了人用药物注册技术要求国际协调会(ICH)。ICH颁发了多个有关药品质量及稳定性。标准方法验证等内容的指导性文件。目前,这些文件已成为国际公认的对医药品分析方法进行验证的指导性规则。我国依据ICH的相关文件,并结合中国国情制定了《中华人民共和国药典》(简称《中国药典》)。 《中国药典》中经常涉及检测药品的炽灼残渣,称取一定量被检药品,经过高温炽灼,除去挥发性物质后,称量剩下的非挥发性无机物,称取炽灼残渣,由于称量的是被测物质,因此属于直接挥发法,是挥发质量法的一种。中药灰分的测定也采用挥发质量法。灰分是控制中药材质量的检验项目之一,是中草药纯度检查的重要指标。原生药、浸出物的灰分一般分别为10%左右和5%以下。挥发重量法的另一部分是间接挥发法。《中国药典》中的药物水分或挥发成分干燥失重法即为间接挥发法。 滴定分析法是化学分析中最常用方法,具有操作简便,分析速度快,测定准确度高等特点。在药物的分析中有着很重要的应用。滴定分析法包括:络合滴定法、酸碱滴定法、氧化还原滴定法、沉淀滴定法。 酸碱滴定法作为滴定分析中的一部分,主要以水溶液中的质子转移反应为基础的滴定分析方法。酸碱滴定法应用范围极其广泛,凡CaKa>10-8的酸性物质和C b K b>10-8的碱性物质均可用酸和碱的标准溶液直接滴定。药用氢氧化钠的测定就应用了这个原理。因为药用氢氧化钠易吸收空气中的CO2形成NaOH和Na2CO3的混合物,因此我们常用以甲基橙和酸碱滴定法。因为人体血液中95%以上的CO2是以HCO3-离子形式存在,临床上测定HCO3-离子浓度可帮助诊断血液中酸碱指标,具体操作是:在血浆中加入过量HCl标准溶液,使和HCO3-离子反应而生成CO2,并使CO2逸出,然后用酚红为指示剂,用NaOH标准溶液滴

咪唑类离子液体分析测试方法汇总

咪唑类离子液体分析测试方法汇总 (1)反相高效液相色谱法测定离子液体及其中的高沸点有机物姜晓辉,孙学文,赵锁奇,等. 反相高效液相色谱法测定离子液体及其中的高沸点有机物[J]. 分析测试技术与仪器,2006,12(4):195-198 摘要: 建立了反相键合相液相色谱分析离子液体咪唑类离子液体[bmim]PF6、[bmim]BF4、吡啶类离子液体[bupy]BF4的纯度及其中高沸点有机物的方法.以缓冲溶液控制流动相pH值,显著改善了峰形.保留时间定性,外标法定量. 关键词: 离子液体;高沸点有机物;高效液相色谱法 离子液体[1]也称室温融盐,是近年来新兴的溶剂.一些有关离子液体相平衡的基础数据[2~4],主要是通过紫外分光光度法[5]和折射率法测得的[6],这两种方法各有一定的局限性.另外,如何测定离子液体的纯度,目前也尚无简便可靠的方法.本文建立了在离子液体与杂质,高沸点有机物与离子液体完全分离的情况下测定离子液体及其中的高沸点有机物含量的高效液相色谱分析方法,比现有的两种方法具有更高的准确度,更短的分析时间. 参考文献: [1] Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis[J]. Chem Rev, 1999, 99:2 071-2 083. [2] Blanchard L A, Hancu D, Beckman E J,etal. Green processing using ionic liquids and CO2[J]. Nature(London), 1999, 399: 28-29. [3] Huddleston J G, Willauer H D, Swatloski R P,et al. Room temperature ionic liquids as novel media for 'clean' liquid2liquid extraction[J]. Chem Commun,1998, (16): 1 765-1 766. [4] Blanchard L A, Hancu D, Beckman E J,etal. Green processing using ionic liquids and CO2[J]. Nature(London), 1999, 399: 28-29. [5] Lynnette A Blanchard, Joan F Brennecke. Recovery of organic products from ionic liquids using supercritical carbon dioxide[J]. Ind Eng Chem Res,2001; 30: 287-437. [6] 叶天旭,张予辉,刘金河,等.烷基咪唑氟硼酸盐离子液体的合成与溶剂性质研究[J].石油大学学报(自然科学版), 2004,28(4):105-107. (2)反相高效液相色谱法直接测定离子液体中咪唑杂质含量 薛洪宝,马春辉,刘庆彬,等. 反相高效液相色谱法直接测定离子液体中咪唑杂质含量[J]广东化工,2006,33(12): 83-85 [摘要]研究了高效液相色谱法测定离子液体中的杂质(4-甲基咪唑)含量的测定方法。在不同色谱条件下,分离效果不同。在Allsphere ODS C18色谱柱上,以水-甲醇为流动相,两者流速比为水∶甲醇= 1∶9,流速为 1.0 mL/min,在215 nm 处进行紫外检测,离子液体能与4-甲基咪唑很好的分离。另外,在Hypersil BDS C18色谱柱上用类似的条件分离效果也较好。采用该法的线性范围,检出限分析考察,结果表明,其灵敏度高、定量准确、重现性好,适合于离子液中4-甲基咪唑这种杂质含量的测定。 [关键词]反相高效液相色谱法;离子液体;4-甲基咪唑 离子液体作为一种可代替挥发性有机溶剂[1-5]的绿色溶剂,已广泛应用于萃取分离过程,有机合成,化工及催化反应。离子液体有以下特点:热稳定性好,温度范围宽;对无机物、

分析化学的包含方法及原理,研究内容,以及实际应用等方面谈谈对分析化学这门课程的认识。

请从分析化学的发展历程,分析化学的包含方法及原理,研究内容,以及实际应用等方面谈谈对分析化学这门课程的认识。 分析化学是研究物质的化学组成、含量、结构和形态等化学信息的分析方法及相关理论的一门科学,它包括化学分析、仪器分析两部分。化学分析是基础,仪器分析是新世纪的发展方向。 分析化学的发展历程主要是由三次变革构成的。第一次变革在上世纪20-30年代。建立了溶液四大平衡理论,分析化学由技术到科学的转变。第二次变革在上世纪40-60年代,形成了经典分析化学(化学分析)和现代分析化学(仪器分析为主)。第三次次变革是由70年代至今。分析化学提供组成、结构、含量、分布、形态等全面信息,成为当代最富活力的学科之一。 分析化学的方法可分为六大类。第一类按任务分,可分为:定性分析(Qualitative analysis):鉴定组成;定量分析(Quantitative analysis):测定含量;结构分析(Structural analysis):研究结构。第二类按对象分,可分为:无机分析(Inorganic analysis):鉴定组成和测定含量;有机分析(Organic analysis):官能团的分析和结构鉴定。第三类,按测定原理分为:化学分析(Chemical anaylsis):重量分析,滴定分析;仪器分析(Instrumental anaylsis):光学分析,电分析,色谱分析 NMR,MS,电子显微镜,X-射线分析。第四类按试样用量和操作规模分为:常量分析S> 0.1 g , V> 10 mL ;半微量分析S0.01~0.1g , V1~10 mL;微量分析S0.1~10 mg ,V0.01~1 mL ;超微量分析 S<0.1 mg ,V<0.01 mL 。第五类按被测组分的含量

相关主题
文本预览
相关文档 最新文档