当前位置:文档之家› 小波变换经典讲述

小波变换经典讲述

小波变换经典讲述
小波变换经典讲述

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

小波变换学习心得

小波变换学习心得 第一章什么是小波变换 1从傅里叶变换到小波变换 1.1短时傅里叶变换 为了克服傅里叶变换中时域和频域不能兼容的缺点,短时傅里叶变换把一个时间信号变为时间和频率的二维函数,它能够提供信号在某个时间段和某个频率范围的一定信息。这些信息的精度依赖于时间窗的大小。短时傅里叶变换的缺点是对所有的频率成分,所取的时间窗大小相同,然而,对很多信号为了获得更精确的时间或频率信息,需要可变的时间窗。 1.2 小波变换 小波变换提出了变换的时间窗,当需要精确的低频信息时,采用长的时间窗,当需要精确的高频信息时,采用短的时间窗,图1.3 给出了时间域信号、傅里叶变换、短时傅里叶变换和小波变换的对比示意图。 由图1.3看出,小波变换用的不是时间-频率域。而是时间-尺度域,尺度越大,采用越大的时间窗,尺度越小,采用越短的时间窗,即尺度与频率成反比。 1.2连续小波变换 小波是一个衰减的波形,它在有限的区域里存在(不为零),且其均值为零。图1.4是一个Daubechies小波(db10)与正弦波的比较。 正弦波:随时间无限振动的光滑波形,小波变换:尖锐变化而且是无规则的波形。因此小波能更好的刻画信号的局部特性。 在数学上,傅里叶变换的公式为

()()j t F f t e dt ωω+∞ --∞ =? 连续小波变换(Continue Wavelet Transform )的数学表达式 ()(),,a b a b CWT f t t dt ψ+∞ -∞ =? ()12 ,a b t b t a a ψψ--?? = ??? 式中,()t ψ为小波;a 为尺度因子;b 为平移参数。图1.6是小波变换的示意图。由图看出,小波变换给出了在各个时刻信号是由哪些尺度的小波构成。 小波中的尺度因子的作用是将小波在保持完全相似条件下“拉伸”或者“压缩”,图1.7给吃了尺度因子的“拉伸”和“压缩”作用。 小波中的平移参数,是简单地将波形沿时间轴平移。

(完整版)小波原理课件

我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵( Tv_n = av_n,a是eigenvalue )。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。 傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于funct ion space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样 again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢? 现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:

哈工大小波分析上机实验报告

小波分析上机实验报告 院系:电气工程及自动化学院 学科:仪器科学与技术

实验一小波分析在信号压缩中的应用 一、试验目的 (1)进一步加深对小波分析进行信号压缩的理解; (2)学习Matlab中有关信号压缩的相关函数的用法。 二、相关知识复习 用一个给定的小波基对信号进行压缩后它意味着信号在小波阈的表示相对缺少了一些信息。之所以能对信号进行压缩是因为对于规则的信号可以用很少的低频系数在一个合适的小波层上和一部分高频系数来近似表示。 利用小波变换对信号进行压缩分为以下几个步骤来完成: (1)进行信号的小波分解; (2)将高频系数进行阈值量化处理。对从1 到N 的每一层高频系数都可以选择不同的阈值并且用硬阈值进行系数的量化; (3)对量化后的系数进行小波重构。 三、实验要求 (1)对于某一给定的信号(信号的文件名为leleccum.mat),利用小波分析对信号进行压缩处理。 (2)给出一个图像,即一个二维信号(文件名为wbarb.mat),利用二维小波分析对图像进行压缩。 四、实验结果及程序 (1)load leleccum %将信号装入Matlab工作环境 %设置变量名s和ls,在原始信号中,只取2600-3100个点 s = leleccum(2600:3100); ls = length(s); %用db3对信号进行3级小波分解 [c,l] = wavedec(s, 3, 'db3'); %选用全局阈值进行信号压缩 thr = 35; [xd,cxd,lxd,perf0,perfl2] = wdencmp('gbl',c,l,'db3',3,thr,'h',1); subplot(2,1,1);plot(s); title('原是信号s'); subplot(2,1,2);plot(xd); title('压缩后的信号xd');

《数字图像处理》课程学习心得

《数字图像处理》课程学习心得 导读:本文《数字图像处理》课程学习心得,仅供参考,如果能帮助到您,欢迎点评和分享。 《数字图像处理》课程学习心得(一) 在这一学期,我选修了《数字图像处理基础》这门课程,同时,老师还讲授了一些视频处理的知识。在这里,梳理一下这学期学到的知识,并提出一些我对这门课程的建议。 图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它

却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。 1、数字图像处理需用到的关键技术 由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。 图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。 图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。 图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。 图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。 图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。 图像分析:图像分析是指从图像中抽取某些有用的信息、数据或

小波实验报告一维Haar小波2次分解

一、题目:一维Haar 小波2次分解 二、目的:编程实现信号的分解与重构 三、算法及其实现:离散小波变换 离散小波变换是对信号的时-频局部化分析,其定义为:/2200()(,)()(),()()j j Wf j k a f t a t k dt f t L R φ+∞---∞=-∈? 本实验实现对信号的分解与重构: (1)信号分解:用小波工具箱中的dwt 函数来实现离散小波变换,函数dwt 将信号分解为两部分,分别称为逼近系数和细节系数(也称为低频系数和高频系数),实验中分别记为cA1,cD1,它们的长度均为原始信号的一半,但dwt 只能实现原始信号的单级分解。在本实验中使用小波函数db1来实现单尺度小波分解,即: [cA1,cD1]=dwt(s,’db1’),其中s 是原信号;再通过[cA2,cD2]=dwt(cA1,’db1’)进行第二次分解,长度又为cA2的一半。 (2)信号重构:用小波工具箱中的upcoef 来实现,upcoef 是进行一维小波分解系数的直接重构,即: A1 = upcoef('a',cA1,'db1'); D1 = upcoef('a',cD1,'db1')。 四、实现工具:Matlab 五、程序代码: %装载leleccum 信号 load leleccum; s = leleccum(1:3920); %用小波函数db1对信号进行单尺度小波分解 [cA1,cD1]=dwt(s,'db1'); subplot(3,2,1); plot(s); title('leleccum 原始信号'); %单尺度低频系数cA1向上一步的重构信号 A1 = upcoef('a',cA1,'db1'); %单尺度高频系数cD1向上一步的重构信号 D1 = upcoef('a',cD1,'db1'); subplot(3,2,3); plot(A1); title('单尺度低频系数cA1向上一步的重构信号'); subplot(3,2,5); plot(D1); title('单尺度高频系数cD1向上一步的重构信号'); [cA1,cD1]=dwt(cA1,’db1'); subplot(3,2,2); plot(s); title('leleccum 第一次分解后的cA1信号'); %第二次分解单尺度低频系数cA2向上一步的重构信号 A2= upcoef('a',cA2,'db1',2); %第二次分解单尺度高频系数cD2向上一步的重构信号 D2 = upcoef('a',cD2,'db1',2); subplot(3,2,4); plot(A2);

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

调研报告

毕业设计(论文)调研报告 学生姓名张春专业班级电子信息08-2 所在院系电气信息学院 指导教师许丽群职称讲师 所在单位大连交通大学 完成日期2012 年 4 月30 日

调研报告 一、课题来源与意义 语音信号处理在现代通信、多媒体技术以及智能系统等领域中应用非常广泛,是近年来发展非常迅速的一种技术。实际应用中,由于噪声的存在会使语音处理系统的性能恶化,造成语音信号的失真,混淆,给语音信号的传递带来困难。因此,设法去除语音中的噪声,改进语音质量,提高语音信号的信噪比就成为语音去噪研究中的一个重要方向。在传统的傅氏变换的信号处理方法中,信号和噪声的频带重叠部分要尽可能小;在频域可通过时不变滤波方法将信号和噪声区分开,而当它们的频域重叠时,传统的单纯时域或频域处理往往无法达到很好的效果。 小波分析是近十几年来新兴发展起来的一种时频局域化分析方法,它克服了傅里叶变换固定分辨率的弱点, 既可以分析信号的概貌, 又可以分析信号的细节,特别适用于非平稳时变信号,例如语音信号、声纳信号等。小波变换是一种信号的时间-尺度(时间-频率)分析方法,它具有多分辩率分析(Multiresolution Analysis)的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但形状改变的时频局部化分析方法。即在低频部分具有较高的频率分辩率和较低的时间分辩率,在高频部分具有较高的时间分辩率和较低的频率分辩率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以小波变换用于语音信号的去噪是近些年来比较热门的方法。 二、国内外发展状况 小波理论的兴起,得益于其对信号的时域和频域局域分析能力及其对一维有界函数的最优逼近性能,也得益于多分辨率分析概念,以及快速小波变换的实现方法。小波分析的思想来源于伸缩与平移方法。 第一个正交小波基是由Haar在1910年提出的,它就是人们熟知的Haar正交基,Haar 正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。它具有最优的时(空)域分辨率,但是Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。1981年,Stromberg对Haar系进行了改进,证明了小波函数的存在性。1984年,Morlet在分析地震波数据的局部性质时,发现用傅立叶变换难以达到要求,因此引入小波的概念应用于信号分析中,并用一种无限支集的非正交小波分析地震数据,这是第一次真正意义上提出了小波的概念。随后,Grossman和Morlet一起提出了确定小波函数伸缩平移系的展开理论。1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造的规范正交基(即Meyer基),从而证明了正交小波系的存在。1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。

srp项目总结

“心电信号特征参数提取的实现”项目总结 <一>,个人心得体会 自去年起有幸参与这个为期一年的“心电信号特征参数提取的实现”项目,经过老师的指导以及自己的努力,我们受益匪浅。 在研究这个项目之前,我在数学实验这门学科里学过了一些关于MATLAB运行环境以及简单函数的的基础,对这一部分的技术十分感兴趣,所以选择了这一项目来研究。参加学生研究计划,对于我们来说,莫过于在掌握课本知识的同时,可以更加的了解科技的发展,在参与学术研究的同时,也提高了自己的技术能力,能够更加系统的了解到一个项目实施的整套流程,同时也在团队合作与分工中,提高团队的沟通合作能力,这对于我们来说尤为重要。 “心电信号特征参数提取的实现”主要是通过去噪算法和信号抽样算法,计算提取出检测到的人体心电图中一些有用必要的数据,来帮助医生更加快捷准确的对病人的病情进行连接和对其治疗的安排。计算机的高效分析一方面减轻了人工负担,另一方面也为病患检测提高了科学的保证性,是一个有价值的创新实验项目。而在这个项目中用到的小波变换,在相对其他的方法而言,能更加准确快速的得到所需要的QRS 波的特征信息。 自从参与了这个项目以来,我们的项目一直在积极地进行中,而我们从中学习了许多书本上没有的知识,也从实践中验证了书本的许多知识,使我们的知识点更加的牢靠了。 而对于这一个项目,它的难点在于如何提取精确有效的心电信号,这设计到一个去噪以及提取信号函数的问题,而只懂基础函数的我们在这个学习过程中,确实是一份艰辛的体验,更是一份学习的收获。 在本项目中,我们的实现总体思路是明确的,我们也清楚的知道这个项目难点在哪。基于这个项目,我先学习了老师给的一些资料,从基础上了解这个项目中所需要MATLAB知识,小波信号处理等等,慢慢的熟悉基础知识之后是对于一些以往相关资料的阅读,通过以前人们在这方面项目研究上的成果,让我们知道以前关于这个项目的研究是如何规划的,而他们实现过程中的重点难点又在哪里。 在老师的指导下,结合我们自身的运行实践,终于我们能很好的利用matlab中的算法计算出不同心电图的特征信息,我们对此很开心,知识的汲取总是充满乐趣的。 我们的这个srp的作用所在是我们可以通过自己的动手实践,明白我们读大学的意义到底是在哪里,对于大多数学生来说,读好课本的理论,很多人就已经以为是学习的目的了,其实学以致用,在实践中去得到知识,才是学习的源泉,才可以得到学习的乐趣。这个项目经验,对于以后无论是读研还是找工作的我来说,都是一笔宝贵的财富。 <二>、项目论文: 摘要

哈工大小波实验报告

小波理论实验报告 院(系) 专业 学生 学号 日期 2015年12月

实验报告一 一、 实验目的 1. 运用傅立叶变换知识对常用的基本函数做基本变换。 2. 加深对因果滤波器的理解,并会判断因果滤波器的类型。 3. 运用卷积公式对基本信号做滤波处理并分析,以加深理解。 4. 熟悉Matlab 中相关函数的用法。 二、 实验原理 1.运用傅立叶正、反变换的基本公式: ( )?()() ()(),1 1?()(),22i x i t i t i t i t f f x e dx f t e dt f t e f t f e d f t e ωωωωωωωωπ π ∞∞---∞ -∞ ∞ --∞ ==== =?? ? 及其性质,对所要处理信号做相应的傅里叶变换和逆变换。 2.运用卷积的定义式: 1212()()()()+∞ -∞ *=-? f t f t f f t d τττ 对所求信号做滤波处理。 三、 实验步骤与内容 1.实验题目: Butterworth 滤波器,其冲击响应函数为 ,0 ()0, 0若若α-?≥=?

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨率分析(Multi-resolution)的特点,而且在时频两域都具有表征信号局部特征的能力,使一种窗口大小固定不变,但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。小波变换在低频部分具有较高的频率分辨率和较低的时间分辨率。在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜。 小波分析最早应用在地震数据压缩中, 以后在图像处理、故障诊断等方面取得了传统方法根本无法达到的效果. 现在小波分析已经渗透到了自然科学、应用

小波分析报告(去噪)

小波分析浅析 —— 李继刚 众所周知,以π2为周期的复杂的波都可以用以π2为周期的函数)(t f (模拟信号)来描述,它可以由形如)sin(n n nt A θ+的若干谐波叠加而成,因此,完全有理由认为)(t f 有如下的表现形式: ∑ ∑ ∑ ∞ =∞ =∞ =+= += += ) sin cos ()cos sin cos sin ()sin()(n n n n n n n n n n n nt b nt a nt A nt A nt A t f θθθ 为了确定上式中的系数n n b a ,,可以利用Fourier 变换,可以得到函数)(t f 的Fourier 级数,即 ??? ? ? ? ? ?? ====++=??∑--+∞ =π πππππ.,2,1,sin )(1,,1,0,cos )(1),sin cos (2)(1 0 n ntdt t f b n ntdt t f a nt b nt a a t f n n n n n 如果函数以T 为周期,则通过对t 作T w x T t ππ2,2= ?=变换,可以得到函数的Fourier 级数,即 ??? ? ? ? ? ??=?==?=?+?+=??∑--+∞ =π πππ .,2,1,sin )(2,,1,0,cos )(2),sin cos (2)(1 0 n wtdt n t f T b n wtdt n t f T a wt n b wt n a a t f n n n n n 从时域角度来理解Fourier 级数,将}sin ,{cos wt n wt n ??看作是具有频率w n ?的谐波,则时域表现的函数)(t f 可分解为无穷个谐波之和。 从频域角度来理解Fourier 级数,因为)(t f 的频域范围是[)+∞∈,0w ,所以,可将w 轴用间距w ?作离散分化,离散点w n ?处对应着频率为w n ?的谐波}sin ,{cos wt n wt n ??,这样就可将时域函数)(t f 与谐波组成1-1对应关系,即 +∞???0}sin ,cos {)(wt n b wt n a t f n n

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

小波变换函数(自己总结)

2.1小波分析中的通用函数 1 biorfilt双正交小波滤波器组 2 centfrg计算小波中心频率 3 dyaddown二元取样 4 dyadup二元插值 5 wavefun小波函数和尺度函数 6 wavefun2二维小波函数和尺度函数 7 intwave积分小波函数fai 8 orthfilt正交小波滤波器组 9 qmf镜像二次滤波器(QMF) 10 scal2frg频率尺度函数 11 wfilters小波滤波器 12 wavemngr小波管理 13 waveinfo显示小波函数的信息 14 wmaxlev计算小波分解的最大尺度 15 deblankl把字符串变成无空格的小写字符串 16 errargn检查函数参数目录 17 errargt检查函数的参数类型 18 num2mstr最大精度地把数字转化成为字符串 19 wcodemat对矩阵进行量化编码 20 wcommon寻找公共元素 21 wkeep提取向量或矩阵中的一部分 22 wrev向量逆序 23 wextend向量或矩阵的延拓 24 wtbxmngr小波工具箱管理器 25 nstdfft非标准一维快速傅里叶变换(FFT) 26 instdfft非标准一维快速逆傅里叶变换 27 std计算标准差 2.2小波函数 1 biorwavf双正交样条小波滤波器 2 cgauwavf复Gaussian小波 3 cmorwavf复Morlet小波 4 coifwavf Coiflet小波滤波器 5 dbaux Daubechies小波滤波器 6 dbwavf Daubechies小波滤波器 7 fbspwavf频率分布B-Spline小波 8 gauswavf Gaussian小波 9 mexihat墨西哥小帽函数 10 meyer meyer小波11 meyeraux meyer小波辅助函数 12 morlet Morlet小波 13 rbiowavf反双正交样条小波滤波器 14 shanwavf 复shannon小波 15 symaux计算Symlet小波滤波器 16 symwavf Symlets小波滤波器 2.3一维连续小波变换 1 cwt一维连续小波变换 2 pat2cwav从一个原始图样中构建一个小波函数 2.4一维离散小波变换 1 dwt但尺度一维离散小波变换 2 dwtmode离散小波变换拓展模式 3 idwt单尺度一位离散小波逆变换 4 wavedec多尺度一维小波分解(一维多分辨率分析函数) 5 appcoef提取一维小波变换低频系数 6 detcoef提取一维小波变换高频系数 7 waverec多尺度一维小波重构 8 upwlex单尺度一维小波分解的重构 9 wrcoef对一维小波系数进行单支重构 10 upcoef一维系数的直接小波重构 11 wenergy显示小波或小波包分解的能量 2.5二维离散小波变换 1 dwt2单尺度二维离散小波变换 2 idwt2单尺度逆二维离散小波变换 3 wavedec2多尺度二维小波分解(二维分辨率分析函数) 4 waverec2多尺度二维小波重构 5 appcoef2提取二维小波分解低频系数 6 detcoef2提取二维小波分解高频系数 7 upwlev2二维小波分解的单尺度重构 8 wrcoef2对二维小波系数进行单支重构 9 upcoef二维小波分解的直接重构 2.6离散平稳小波变换 1 swt一维离散平稳小波变换 2 iswt一维离散平稳小波逆变换 3 swt2二维离散平稳小波变换 4 iswt2二维离散平稳小波逆变换

小波分析学习心得

小波分析学习心得 学习小波分析这门课程已经有一段时间了,我对于这一门课程已经有了一定程度的认识。由于学科专业所限,我平时接触小波分析的机会并不是很多,很高兴在这个学期能够有机会专门学习小波分析。经过这一段时间小波分析的学习,虽然我还不能说是精通小波分析,不过也是对其中的一些基本概念有了一定的理解。后文中,我将会对在小波分析学习过程中所得到的一些学习心得进行总结。 我们通常说的波一般指的是物质的一种运动方式,在数学中它对应于时间域或空间域的震荡方程。正弦波就是一种最为常见的波,它的振幅均匀的分布时域中,并不收敛,所具有的能量是无穷的。小波,顾名思义,就是小的波,它的能量是有限的,相对于正弦波而言,它的振幅在时域上是收敛的,能量并不是无穷的。傅里叶变换将函数投影到正弦波上,将函数分解成了不同频率的正弦波,这是一个非常伟大的发现,但是在大量的应用中,傅里叶变换的局限性却日趋明显,事实上在光滑平稳信号的表示中,傅里叶变换已经达到了近似最优表示,但是日常生活中的信号却并不是一直光滑的,傅里叶变换在奇异点的表现就令人非常不满意,从对方波的傅里叶逼近就可以看出来,用了大量不同频率的正弦波去逼近其系数衰减程度相当缓慢。其内在的原因是其基底为全局性基底,没有局部化能力,以至局部一个小小的摆动也会影响全局的系数。很多应用场合要求比较精确的时频定位,傅里叶变换的缺点就越来越突出了。 窗口傅里叶变换将信号乘上一个局部窗,然后再做傅里叶变换,获得比较好的时频定位特性,再沿时间轴滑动窗口,得到整个时间轴上的频率分布,似乎到这里就应该结束了,因为我们可以把窗设计小点获得较高的时间分辨率,并期望有同样高的频率分辨率,但测不准原理无情的告诉我们,没有这么好的窗能在时

相关主题
文本预览
相关文档 最新文档