当前位置:文档之家› 无线通信技术课程设计

无线通信技术课程设计

无线通信技术课程设计
无线通信技术课程设计

无线通信技术课程设计

无线通信技术课程设计本文内容:无线通信技术课程实验报告实验

一、DQPSK和GMSK信号调制实验

一、实验目的:了解GRC的信号处理模块、流程图及其使用方法了解DPSK、DQPSK调制解调原理了解GMSK调制解调原理观察DPSK、DQPSK信号分别通过 AWGN 信道情况下的星座图失真情况

二、实验设备: PC两台、RFX2400 USRP1两台

三、实验内容:

1、了解grc的基本操作方法,要求仿真的流程中信号调制方式使用DPSK、DQPSK。

2、通过单机实验和GnuRadio+USRP的实验两种实验方式进行仿真。

3、比较同一调制方式,在不同SNR下的误码率,并且分析结果。

4、画出信号通过信道前后的时域波形图、频谱图、星座图、比较两者的不同并且分析原因。

5、画出不同信噪比情况下的星座图,解释其对于误码率的影响。

四、实验原理:

1、DQPSK: DQPSK调制原理是利用载波的四种不同相位来表示输入的数字信息,也就是四进制相位键控,它规定了四种调制相位:。所以需要将二进制数字序列中的数据划分为每两个比特为一组,也就是有00,01,10和11四种情况,经过差分编码后,分别对应上面的四个相位,其具体对应关系如表1所示。而调制之后的符号星座图的相位路径转换图如图

2、1所示。解调端根据星座图和载波相位来判断发送端发送的信息数据。

表1 相位转换二进制比特1 二进制比特2 相位11 +/4 01 +3/4 0 0/4 调制符号星座图和可能变换路径

2、GMSK:将基带信号经过高斯滤波器之后,再进行MSK (Minimum Shift Keying)即最小频移键控调制,从而形成调制信号的过程教叫做GSMK(Gaussian Filtered Minimum Shift Keying)即高斯滤波最小频移键控调制。它具有良好的频谱和功率特性。

高斯滤波原始数据经过高斯滤波器之后的响应可由下式来表示:其中,调频指数,意味着对应调制数据源,一个码元内的最大相移为。下式为GMSK调制符号表达式。

五、实验步骤和结果分析。

1、DQPSK实验

1、1单机实验 (1)实验框图: (2)不同信噪比下的误码率。

下面这些图是在保证其他参数不变的条件下,通过逐渐增大噪声的幅度值,即不断减小信噪比SNR,观测到的误码率数值和星座图。我们发现,随着信噪比的不断减小,误码率的值不断增加。

噪声幅度litude=0、12 噪声幅度litude=0、25 同时,我们还发现问题,就是噪声幅度的取值必须在一定的范围内才能够观测到误码率的取值。

(3)信号通过信道前后的时域波形图:信号通过信道前后的频谱图:信号通过信道前后的星座图我们观察上面的图形发现:信号在经过信道以后的时域波形较之原来发生了失真,而频谱图的主瓣也有较大衰减,星座图与信号在经过信道前的情况相比也一定程度上偏离了理想点。我们分析,信号在经过信道前后变化的原因主要是信道中存在高斯噪声,而且噪声的幅度越大,经过信道后的信号波形失真越严重,频谱衰减越厉害。

(4)不同信噪比情况下的星座图:下面是在保持其他参数不变的情况下,通过不断增加噪声的幅度,即不断减小SNR的值,观察到的信号经过信道后的星座图。

分析结果:噪声对信号的影响很大,噪声幅度越大,引起的损伤越大,符号点相对于中心点随机向外扩散的越严重。即符号点相对集中的时候,误码率较小;反之,符号点相对分散的时候,误码率较大。

1、2双机实验 (1)发送框图:接收框图: (2)误码率:分析:实验中,我们通过不断调整信号的增益,以此改变SNR,来观察误码率的变化。我们发现,随着SNR的取值变大,BER也在变大。

(3)信号经过信道后的时域波形图和频谱图:我们观察上面的图形发现:与单机实验类似,信号在经过信道以后的时域波形较之原来发生了比较大的失真,而频谱图的主瓣也有一定程度的衰减,经过信道后的信号的星座图的符号点一定程度上偏离了理想点。我们分析,信号在经过信道前后变化的原因主要是信道中存在高斯噪声,而且噪声的幅度越大,经过信道后的信号波形失真越严重,频谱衰减越厉害,星座图符号点扩散越严重。

(4)不同信噪比下的星座图:图a 图b 图c 图d 分析:上图为不同信噪比情况下的星座图,图a到图d显示的是随着信噪比的减小(通过改变发送模块的增益值),星座图符号点随机分布情况更加分散。同时,误码率增加。

2、GMSK调制实验

2、1单机实验 (1)实验框图: (2)不同信噪比下的误码率:litude=0、12 litude=0、25 分析:以上这些图是在保证其他参数不变的条件下,通过逐渐增大噪声的幅度值,即不断减小信噪比SNR,观测到的误码率数值。我们发现,随着信噪比的不断减小,误码率的值不断增加。同DQPSK的实验,这个实验在调整噪声的幅度值时,同样是有一定的取值范围。

(3)信号经过信道前后的时域波形图:信号经过信道前后的频谱图:信号经过信道前后的星座图:结果分析:我们观察上面的图形发现:信号在经过信道以后的时域波形较之原来发生了失真,而频谱图的主瓣也有较大衰减,星座图与信号在经过信道前的情况相比也一定程度上偏离了理想点。我们分析,信号在经过信道前后变化的原因主要是信道中存在高斯噪声,而且噪声的幅度越大,经过信道后的信号波形失真越严重,频谱衰减越厉害。

(4)不同信噪比情况下的星座图:分析结果:噪声影响信号的信噪比,噪声幅度越大,信噪比越小,引起的损伤越大,符号点相对于中心点随机向外扩散的越严重。即符号点相对集中的时候,误码率较小;反之,符号点相对分散的时候,误码率较大。

2、2双机实验 (1)发送框图:接收框图: (2)信号经过信道后的时域波形图和频谱图:信号经过信道前后的星座图:我们观察上面的图形发现:信号在经过信道以后的时域波形较之原来发生了失真,而频谱图的主瓣也有较大衰减,星座图与信号在经过信道前的情况相比也一定程度上偏离了理想点。我们分析,信号在经过信道前后变化的原因主要是信道中存在高斯噪声,而且噪声的幅度越大,经过信道后的信号波形失真越严重,频谱衰减越厉害。

(3)不同信噪比的星座图:实验结论同上述DQPSK。即随噪声增加,信噪比降低,星座图符号点随机分散情况更加严重,同时误码率也增加。

六、实验中遇到的问题及体会从开始对新软件的一无所知,到渐渐熟悉,再到后来能够熟练掌握基本流程,我们都从中学到了很多。在实验过程中我们遇到了不少的问题,一开始甚至连如何进入软件都不会,后来在画流程图时很多模块的参数设置只能完成按照实验指导书设置,导致实验进展缓慢,特别是双机实验一直没能顺利开展。多亏了助教的耐心细致讲解才使我们突破了一个又一个障碍。比如双机实验时需要键入命令sudo grc而不是单纯的grc,这样可以提高用户权限以使用usrp进行实验,同时,usrp不能完全按照指导书上的参数设置,接收端usrp的Decimation(采样率)应设置为发端的一半,这是由于硬件所决定的,还有在使用GMSK解调模块时,Sles应该大于等于2等等,其中最恼人的还是各个模块间类型不匹配的问题,后来我们熟记了不同数据类型对应的颜色,再加上熟能生巧使得实验效率明显提高。这次无线通信课程设计锻炼了我们彼此间沟通配合的能力,更培养了我们严谨求实的科研精神,使我们受益匪浅。

实验

二、卷积码

一、实验目的:

1、了解grc仿真中的信号处理模块、流程图以及使用方法

2、了解卷积码的基本原理

3、了解GunRadio实现信道编码的方法

4、了解不同SNR对于误码率的影响

5、了解卷积码对于误码率的影响

6、了解不同的卷积码对于误码率的影响

二、实验设备: PC两台、RFX2400 USRP1两台

三、实验要求:

1、了解Grc的基本操作方法,要求仿真的流程中信道编码部分使用卷积编码。

2、通过单机实验和GnuRadio+USRP的实验两种实验方式进行仿真。

3、搭建有信道编码与无信道编码的Grc仿真模型。

4、比较上述两种情况下的误码率,并且分析结果。

5、比较不同的卷积码对于误码率的影响,并且分析结果(比较(2,1,3)码与(2,1,8)码的性能)。

四、实验原理:卷积码将k个信息比特编码成n个比特,但k和n通常很小,特别适合以串行形式进行传输,时延小。与分组码不同,卷积码编码后的n个码元不仅与当前段的k个信息有关,还与前面的N-1段信息有关,编码过程中互相关联的码元个数为nN。卷积码的纠错性能随N的增加而增大,而差错率随N的增加而指数下降。卷积码的纠错能力不仅与约束长度有关,还与采用的译码方式有关。G RC提供译码方式是维特比译码,它是卷

积码译码方式中非常经典的以及广泛使用的一种译码方式。该实

验可以考察编码前后数据有什么变化,译码后能不能恢复原来数据,通过Number Sink考察加噪声后误码率怎么样,对性能有什

么提高,并且划出BER图形。

五、实验步骤及结果分析:

1、单机实验:

1、1 以(2,1,3)卷积码为信道编码,用DBPSK进行调

制。

实现框图:(2,1,3)卷积码单机实验框图首先是Vector Source,即信源,我们设置的数据是1,0,0,1,1。然后是Throttle限流模块。接下来是Packed_to_Unpakce模块,它将pack成byte或short型的数据以unpacked型的数据输出。然后就是卷积码编码模块,这里需要注意的是路径选择。接下来模块

为Packet_encoder,然后便是调制模块DBPSK Mod,我们使用的

便是DPSK调制。在噪声模块中可以设置噪声大小,我们可以通过改变噪声大小观察其解码误码率大小,来分析卷积码的抗干扰能力。下面模拟的就是接收端,首先是DPSK demod模块,相应于DPSK编码模块,这个模块进行解码。Packet_decoder相应于Packet_encoder。然后需要加上一个模块Chunks to Symbols,用于后面的映射。接下来便是维特比译码模块,我们选择了一个将

两个模块合二为一的模块,其中维度设置为1,映射与前一模块相同,路径与卷积码编码时路径相同。然后是

Unpacked_to_Packed,将unpacked 的数据(bit)以byte或short型的数据输出。接下来就是将发送的数据输入到Error Rate的ref端,将解调译码之后的数据输入到in端,通过Error Rate模块进行误码率的计算,并将结果存到一个file中,设置好它的路径和名称用于后面画图使用。最后一个模块是Number Sink,主要用于显示数据的具体数值,可用于计算误码率时显示误码率的时候等。

运行结果:上图显示的分别为信号源及信宿(通过编码、调制、信道、解调、译码等一过程)的时域波形,通过观察完全一致,符合我们所设置的矢量源。接下来我们观测了其误码情况。随信噪比不同降低误码率增大。

1、2 以(2,1,8)卷积码为信道编码,用DBPSK进行调制。

实现框图:(2,1,8)卷积码单机实验框图相比(2,1,3)卷积码单机框图,只需要修改码型及路径。其余一致。

运行结果同理,上图显示的分别为信号源及信宿(通过编码、调制、信道、解调、译码等一过程)的时域波形,通过观察也完全基本一致,符合我们所设置的矢量源。通过前后的时域波形,很难比较它与(2,1,3)卷积码的性能。不过通过观察误码率,(2,1,8)卷积码的误码率,相对于(2,1,3)码其性能有所改善。这也是源于其约束长度的增加。

1、3 无信道编码,同样用 DBPSK进行调制。

实现框图:与实验一中调制实验基本相同,调制方式改为DBPSK,并且矢量源设置为1,0,0,1,1,便于与有信道编码情况下进行比较。

运行结果:上图为无信道编码情况下,直接用DBPSK调制,得出的误码率,为0、3321Unit,比上步骤中(2,1,3)卷积码单机实验中的误码率大,得出结论通过信道编码可以改善误码率。

2、双机实验:

2、1 以(2,1,3)卷积码为信道编码,用DBPSK进行调制。

实现框图:(2,1,3)卷积码双机实验发送框图流程图与上述单机实验类似,不同的是在信源后去掉Throttle模块,并且在发送之前要加上一个Multiply Const模块,用于信号放大,这里我们设置的是12k。最后就是USRP Sink模块,我们设置的发送频率是

2、45GHz,DAC内插的数值是128。

(2,1,3)卷积码双机实验接收框图首先是USRP Source,ADC抽样的数值为64,接收频率为

2、45GHz,下面的流程图与单机时是完全一致的。

运行结果:下图为(2,1,3)卷积码双机实验发送端信源时域图以及信道前时域图。下图为(2,1,3)卷积码双机实验接收端信宿图以及信号经过信道后的时域波形图及误码率数值。

2、2 以(2,1,8)卷积码为信道编码,用DBPSK进行调

制。

实现框图:(2,1,8)卷积码双机实验发送框图(2,1,8)卷积码双机实验接收框图相对于(2,1,3)卷积码双机实验,同样只是码型及其路径选择的变化。

运行结果:上图为(2,1,8)卷积码双机实验接收端信宿

时域图以及信道后的时域图,并且给出了误码率大小。

2、3 无信道编码双机实验,同样用DBPSK进行调制。

实现框图:与实验一调制实验相同,将调制方式改为DBPSK,并且信号源改为矢量源1,0,0,1,1,便于与上述有信道编码的相比较。

运行结果:上图为无信道编码情况下,直接用DBPSK调制,得出的误码率,为0、5375Unit,比上步骤中(2,1,3)卷积码双机实验中的误码率大,得出结论通过信道编码可以改善误码率。

六、实验所遇到问题及感想:本次实验中我们发现最大的

问题就是首先对于linux系统以及GNU软件的不熟悉,其次是对

于相关通信原理以及无线通信的理论知识理解不深,知识不够巩固。具体来说在实验中我们遇到了很多问题,比如说不清楚画流

程图各个模块参数的含义以及如何设置,导致一直报错,另外是

细节问题,比如说双机实验时候忘记了发送端设置为enable。实验过程中我们也发现了一点小问题,有时候总是提示can“t open

usrp,在排除画图或者参数错误之后我们发现在此重新启动,结果运行正常,这点我们不太明白。

通过这次实验使我们更加熟悉了通信链路过程中每一环节的作用及重要性,巩固了理论知识,同时也增强了我们的动手能力,发现问题解决问题以及分析问题的能力,这是一次很有价值的课程设计,我们都收获颇多。实验

三、直接序列扩频通信技术的仿真

一、实验目的了解m序列产生及相关性原理。

了解直接序列扩频通信模型。

了解应用m序列进行扩频通信的原理。

扩频增益与扩频因子的概念及与m序列长度的关系。

了解直接序列扩频频谱扩展原理。

了解解扩同步和判决的方法。

了解不同扩频增益对系统抗干扰能力的影响。

了解不同信道条件下的系统性能。

二、实验内容搭建GNU Radio中m序列相关性检测流程图,掌握GNU Radio产生m序列的方法。

利用代码生成新的GRC block。

搭建单机扩频通信流程图,检测相关性,检测最终获得的数据与信号源数据是否一致,检测信号的BER并分析结果。

搭建双机通过USRP进行扩频通信流程图,检测相关性,检测最终获得的数据与信号源数据是否一致,检测信号的BER并分析结果。

三、实验原理直接序列扩频扩频通信是在信号发送端,首先将信息调制形成数字信号,该数字信号经扩频发生器产生的扩频码序列调制后,信号的频带被展宽,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,经变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经过信息解调,恢复成原始信息输出。

直接序列扩频系统是将要发送的信息用伪随机(PN)序列扩展到一个很宽的频谱上去,在接收端,用与发端扩展用的相同的伪随机序列对接收到的扩频信号进行相关处理,恢复出原来的信息。干扰信号由于与伪随机序列不相关,在接收端被扩展,使落入信号频带内的干扰信号功率大大降低,从而提高了系统的输出信噪比,达到抗干扰的目的。

下图是扩频通信的原理图:图1

四、GRC实现图根据直接序列扩频通信技术的仿真图(如下),分别连接GRC单机仿真电路和利用USRP进行实际收发的电路,分别进行实验。

图2 图2 各个模块的参数及说明:

1、Vector Source:双极性码信源,从一个向量中获取数据输出。实验中单机仿真选取的数据输出为-1,1,-1循环输出,用USRP实际收发时用过3位、4位并试验过7位、8位循环码。

2、 GLFSR Source(Generalized Linear-Feedback Shift Register):PN码发生源,产生PN伪随机码。级数选取为3级,产生7位PN序列。

3、 Repeat:实现数据内插功能模块,与PN序列位数保持一致,重复七次数据。

4、 Mutiply:乘法器,使数据和PN码相乘,实现扩频功能。DeDSSS_ff:解扩模块,需要自己编写生成并加入。

5、 Packet Encoder,DPSK Mod,DPSK Demod,Packet Decoder:分别实现打包编码,信号调制,信号解调和打包解码的功能。

6、 PN Correlator:m序列相关性检测模块,按照下式计算m序列相关性,输出下式计算结果:

7、 Throttle:限流模块,不可与USRP模块同时使用。

8、 Keep1 in N:抽取模块,与前面Repeat相对应,N取7。

9、 USRP Sink:使用USRP来发送信号。USRP Source:使用USRP来接受信号。

10、Error Rate:计算误码率的模块,将解调出来的信号与信源比较,得出误码率。

五、实验步骤及结果分析

1、单机实验。

1、1实验步骤 (1)选择适当模块连接成图3的电路。调整各个模块参数。

(2)点按钮运行,观察示波器输出。

(3)截图并分析结果。

1、2单机实验框图

1、3实验结果及分析 (1)利用scope sink观测扩频调制前和扩频解调后的信号时域图,观测时候一致。

(2)改变噪声大小 (3)pn相关性检测 (4)利用fft sink模块观测不同级数(即不同调制深度)时扩频前后的频谱图。

2、双机实验

2、1实验步骤(1)、选取两台电脑,分别连接成收发的电路。调整各个模块参数。

(2)、调整USRP Sink和USRP Source的频率与设备一致,组装好设备,分别连至两台电脑上,使两台设备的天线尽量靠近。

(3)、先后点击发送端、接收端的按钮运行,观察示波器输出。

(4)、截图并分析结果。

2、2双机实验框图发送框图:接收框图:

2、3实验结果分析(1)发送端波形接收端波形(2)pn 相关性检测

无线通信基础知识-复习总结.doc

无线通信基础知识 1、什么是无线通信 利用电磁波的辐射和传播,经过空间传送信息的通信方式称为无线电通信(radio communication),简称无线通信。 2、简述无线通信的特征(特点) 1)、电波传播条件复杂。电波会随传播距离的增加而发生弥散损耗,会受到地形、地物的遮蔽而发生阴影效应,会因多径产生电平衰落和吋延扩展;通信中的快速移动引起多普勒频移。2)、噪声和干扰严重。除外部干扰,如天电干扰、工业干扰和信道噪声外,系统本身和不同系统之间,还会产生各种干扰,如邻道干扰、互调干扰、共道干扰、多址干扰以及远近效应等。3)、要求频带利用率高。无线通信可以利用的频谱资源非常有限,而通信业务量的需求却与日俱增。解决方法:要开辟和启用新的频段;要研究各种新技术和新措施,以压缩信号所占的频带宽度和提高频谱利用率。 4)、系统和网络结构复杂。根据通信地区的不同需要,网络可以组成带状、面状或立体状,可单网运行,也可多网并行并互连互通。为此,通信网络必须具备很强的管理和控制功能。5)、可同吋向多个接收端传送信号。 6)、抗灾害能力强。 7)、保密性差。 3、无线通信的分类 4、按使用对象分为:军用和民用 5、按使用环境分为:陆地、海上和空中 6、按多址方式分为:频分多址、时分多址和码分多址、空分多址等 7、按覆盖范围分为:城域网、局域网和个域网 8、按业务类型分为:话务网、数据网和综合业务网 9、按服务对象分为:专用网和公用网 10、按工作方式分为:单工、双工和半双工 11、按信号形式分为:模拟网和数字网 无线通信的传播特性 1、通信系统的信道按信道特性参数随外界因素影响而变化的快慢可以分为儿种?无线通信的 信道属于哪种? 信道分类1、恒参信道;2、随参(变参)信道:无线通信信道 2、地形可以分为几种?地物呢? 1)、为了计算移动信道中信号电场强度中值(或传播损耗中值),可将地形分为两大类,即中等起伏地形和不规则地形。 1、所谓中等起伏地形是指在传播路径的地形剖面图上,地面起伏高度不超过20m,且起伏 缓慢,峰点与谷点之间的水平距离大于起伏高度。以中等起伏地形作传播基准。 2、其它地形如丘陵、孤立山岳、斜坡和水陆混合地形等统称为不规则地形。 2)、不同地物环境其传播条件不同,按照地物的密集程度不同可分为三类地区: 1、开阔地。在电波传播的路径上无高大树木、建筑物等障碍物,呈开阔状地面,如农田、 荒野、广场、沙漠和戈壁滩等; 2、郊区。在靠近移动台近处有些障碍物但不稠密,例如,有少量的低层房屋或小树林等;

无线电能传输(课程设计)实验报告

实验报告 1.实验原理 与无线通信技术一样摆脱有形介质的束缚,实现电能的无线传输是人类多年的一个美好追求。无线电能传输技术(Wireless Power Transfer, WPT)也称之为非接触电能传输技术( Contactless PowerTransmission, CPT),是一种借于空间无形软介质(如电场、磁场、微波等)实现将电能由电源端传递至用电设备的一种供电模式,该技术是集电磁场、电力电子、高频电子、电磁感应和耦合模理论等多学科交叉的基础研究与应用研究,是能源传输和接入的一次革命性进步。 无线电能传输技术解决了传统导线直接接触供电的缺陷,是一种有效、安全、便捷的电能传输方法,因而它被美国《技术评论》杂志评选为未来十大科研方向之一。该技术不仅在军事、航空航天、油田、矿井、水下作业、工业机器人、电动汽车、无线传感器网络、医疗器械、家用电器、RFID识别等领域具有重要的应用价值,而且对电磁理论的发展亦具有重要科学研究价值和实际意义。在中国科协成立五十周年的系列庆祝活动中,无线能量传输技术被列为“10 项引领未来的科学技术”之一。 到目前为止,根据电能传输原理,无线电能传输大致可以分为三类:感应耦合式、微波辐射式、磁耦合谐振式。作为一个新的无线电能传输技术,磁耦合谐振式是基于近场强耦合的概念,基本原理是两个具有相同谐振频率的物体之间可以实现高效的能量交换,而非谐振物体之间能量交换却很微弱。 磁耦合谐振式无线电能传输的传输尺度介于前两者之间,因此也被称之为中尺度(mid-range)能量传输技术,其尺度为几倍的接收设备尺寸(可扩展到几米到几十米)。 除了较大的传输距离,还存在以下优势:由于利用了强耦合谐振技术,可以实现较高的功率(可达到kW)和效率;系统采用磁场耦合(而非电场,电场会发生危险)和非辐射技术,使其对人体没有伤害;良好的穿透性,不受非金属障碍物的影响。因此该技术已经成为无线电能传输技术新的发展方向。

几种无线通信技术的比较

几种无线通信技术的比 较 The manuscript was revised on the evening of 2021

几种无线通信技术的比较 摘要:随着电子技术、计算机技术的发展,近年来无线通信技术蓬勃发展,出现了各种标准的无线数据传输标准,它们各有其优缺点和不同的应用场合,本文将目前应用的、无线通信方式进行了分析对比,并总结和预见了它们今后的发展方向。 关键词:Zigbee Bluetooth UWB Wi-Fi NFC Several Wireless Communications Technology Comparison Abstract:As the development of electronic technology,computer technology, wireless communication technology have a rapid development in recent years,emerged wireless data transmission standard,they have their advantages and disadvantages,and different applications,the application of various wireless communication were analyzed and compared,and summarized and foresee their future development. 一.几种无线通讯技术 (一)ZigBee 1.简介: Zigbee是基于标准的低功耗个域网。根据这个规定的技术是一种短距离、低功耗的技术。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。 ZigBee是一种高可靠的无线数传网络,类似于和网络。ZigBee数传模块类似于移动网络。通讯距离从标准的75m到几百米、几公里,并且支持无限扩展。ZigBee是一个由可多到65000个无线数传模块组成的一个无线数传网络平台,在整个网络范围内,每一个ZigBee网络数传模块之间可以相互通信,每个网络节点间的距离可以从标准的75m无限扩展。与的CDMA网或GSM网不同的是,ZigBee网络主要是为工业现场自动化控制数据传输而建立,因而,它必须具有简单,使用方便,工作可靠,价格低的特点。而移动通信网主要是为语音

通信原理课程设计对讲机

1任务书 设计并制作一个无线对讲机,要求采用调频方式工作,至少10米以上通话距离。2设计方案选择 方案一:发射试用调频无线送话器,接收采用集成电路KC538,具有中频放大、鉴频和音频功率放大等功能。KC538中频放大器采用三极管差分放大器,故有增益高和调配抑制比较好的特点。 方案二:采用集成电路D1800,它作为收音机接收专业集成电路,功放部分则用D2822电路具有体积小、外围元件少灵敏度极高、性能稳定等优点。 方案选择:综上电路,接收频率和工作电流都在要求范围之内,具有良好的抗干扰能力,经过比较,方案二更具有简洁性,电路布复杂。因此本系统采用方案二设计。 工作原理 该对讲收音机的原理框图如下图所示,分为接收部分和发射部分,发射部分电路采用本级振荡经调制差频后中频发射。接收部分采用相干解调方式放大输出。

接收部分原理:调频信号由TX接收,经C9耦合到IC1的19脚内的混频电路,IC1第1脚内部为本机振荡电路,1脚为本振信号输入端,L4、R6、C10、C11等元件构成本振的调谐回路。在IC1内部混频后的信号经低通滤波器后得到10.7MHz的中频信号,中频信号由IC1的7、8、9脚内电路进行中频放大、检波,7、8、9脚外接的电容为高频滤波电容,此时,中频信号频率仍然是变化的,经过鉴频后变成变化的电压。10脚外接电容为鉴频电路的滤波电容。这个变化的电压就是音频信号,经过静噪的音频信号从14脚输出耦合至12脚内的功放电路,第一次功率放大后的音频信号从11脚输出,经过R10、C25、RP,耦合至IC2进行第二次功率放大,推动扬声器发出声音。 对讲机接收结构框图如下图所示:

无线通信基础知识

序 无线通信之所以成为既富挑战性又能引起研究人员兴趣的课题,主要原因有两个,这两个原因对于有线通信而言基本没有什么影响。首先是衰落(fading)现象;其次是无线用户是在空中进行通信,因此彼此间存在严重的干扰(interference),下面分别做一简要介绍。 1)衰落 首先介绍一些无线衰落信道的特性,与其他通信信道相比,移动信道是最为复杂的一种。电波传播的主要方式是空间波,即直射波、折射波、散射波以及它们的合成波。再加之移动台本身的运动,使得移动台与基站之间的无线信道多变并且难以控制。信号通过无线信道时,会遭受各种衰落的影响,一般来说接收信号的功率可以表达为: P(d)=|d|-n S(d)R(d) 其中d表示移动台与基站的距离向量,|d|表示移动台与基站的距离。根据上式,无线信道对信号的影响可以分为三种: (1) 大尺度衰落:电波在自由空间内的传播损耗|d|-n,其中n一般为3~4,与频率无关; (2) 阴影衰落:S(d)表示,由于传播环境的地形起伏、建筑物和其他障碍物对地波的阻塞或遮蔽而引发的衰落,被称作中等尺度衰落; (3) 小尺度衰落:R(d)表示,它是由发射机和接收机之间的多条信号路径的相长干扰和相消干扰造成的,当空间尺度与载波波长相当时,会出现小尺度衰落,因此小尺度衰落与频率有关。 大尺度衰落与诸如基站规划之类的问题关系更为密切,小尺度衰落是本文的

重点。 2)干扰 干扰可以是与同一台接收机通信的发射机之间的干扰(如蜂窝系统的上行链路),也可以是不同发射机——接收机对之间的干扰(例如不同小区中用户之间的干扰)。

无线信道的多径衰落 无线移动信道的主要特征就是多径传播,即接收机所接收到的信号是通过不同的直射、反射、折射等路径到达接收机,参见图1。由于电波通过各个路径的距离不同,因而各条路径中发射波的到达时间、相位都不相同。不同相位的多个信号在接收端叠加,如果同相叠加则会使信号幅度增强,而反相叠加则会削弱信号幅度。这样,接收信号的幅度将会发生急剧变化,就会产生衰落。 图1 例如发射端发送一个窄脉冲信号,则在接收端可以收到多个窄脉冲,每一个窄脉冲的衰落和时延以及窄脉冲的个数都是不同的。对应一个发送脉冲信号,图2给出接收端所接收到的信号情况。这样就造成了信道的时间弥散性(time dispersion ),其中τmax被定义为最大时延扩展。 在传输过程中,由于时延扩展, 接收信号中的一个符号的波形会扩 展到其他符号当中,造成符号间干 扰( Inter Symbol interference, ISI )。为了避免产生ISI,应该令图2 符号宽度要远远大于无线信道的最大时延扩展,或者符号速率要小于最大时延扩展的倒数。由于移动环境十分复杂,不同地理位置,不同时间所测量到的时延扩

Wifi通信与LoRa的技术对比

1Wifi通信 1.1什么是wifi wifi是一种无线局域网WIFI(WirelessFidelity,无线保真)技术是一个基于IEEE 802.11系列标准的无线网路通信技术的品牌,目的是改善基于IEEE 802.11标准的无线网路产品之间的互通性,由Wi-Fi联盟(Wi-Fi Alliance)所持有,简单来说WIFI就是一种无线联网的技术。Wi-Fi是一种允许电子设备连接到一个无线局域网(WLAN)的技术,通常使用2.4G UHF或5G SHF ISM 射频频段。连接到无线局域网通常是有密码保护的;但也可是开放的,这样就允许任何在WLAN范围内的设备可以连接上。 1.2WiFi的组成架构 Wifi网络架构示意图 一般架设无线网络的基本配备就是无线网卡及一台AP,如此便能以无线的模式,配合既有的有线架构来分享网络资源,架设费用和复杂程度远远低于传统的有线网络。如果只是几台电脑的对等网,也可不要AP,只需要每台电脑配备无线网卡。AP为Access Point简称,一般翻译为“无线访问接入点”,或“桥接器”。它主要在媒体存取控制层MAC中扮演无线

工作站及有线局域网络的桥梁。有了AP,就像一般有线网络的Hub一般,无线工作站可以快速且轻易地与网络相连。 1.3Wifi的技术特点 1.3.1优点 (1)其无线电波覆盖范围广,WiFi半径则达100米(理论值),适宜单位楼层以及办公室内部运用。而蓝牙技术唯有覆盖15米以内。 (2)速度不仅快,而且可靠性高 802.11b的无线网络规范即是IEEE 802.11网络规范变种。最高带宽是11Mbps,在信号有干扰或者比较弱的情况之下,带宽可以调整到1Mbps、5.5Mbps及2Mbps,带宽自动调整,有效保障网络的可靠性和稳定性。 (3)无线网络 WiFi的优势主要在不需要布线,可不受布线条件的限制。所以十分适宜移动办公用户需求,具备着广阔市场前景。 (5)健康安全 IEEE802.11所设定的发射功率不可以超过100毫瓦,实际发射功率大概60~70毫瓦。手机的发射功率大概200毫瓦到1瓦间,手持式对讲机高达5瓦,而无线网络使用的方式并不是像手机直接接触人体,具有一定安全性的。 1.3.2不足之处 现在所运用的IP无线网络,存在着部分不足之处,例如:切换时间长、覆盖半径小、带宽不高等,使它不能很好支持移动VoIP等要求高的应用。因为无线网络系统对上层业务开发的不开放原因,使很多适宜IP移动环境的业务难以开发。定位在家庭用户的WLAN产品,在许多地方不能够满足运营商在网络维护、运营上的要求。 1.3.3wifi 的安全 wifi提供大量应用前提之下,网络安全是个值得我们关注的问题。一方面:wifi给予了我们很多接入internet的方式。使我们拥有了互联网的无限资源;另一方面:wifi同样给予

无线通信技术课程设计

《无线通信》课程设计报告 学生梁佳健 学号 11211157 班级通信1107班 第十组 实验一、DQPSK与GMSK信号调制实验 一、实验目得: 了解GRC得信号处理模块、流程图及其使用方法 了解DPSK、DQPSK调制解调原理 了解GMSK调制解调原理 观察DPSK、DQPSK信号分别通过 AWGN 信道情况下得星座图失真情况 二、实验设备: PC两台、RFX2400 USRP1两台 三、实验内容: 1、了解grc得基本操作方法,要求仿真得流程中信号调制方式使用DPSK、DQPSK。

2、通过单机实验与GnuRadio+USRP得实验两种实验方式进行仿真。 3、比较同一调制方式,在不同SNR下得误码率,并且分析结果。 4、画出信号通过信道前后得时域波形图、频谱图、星座图、比较两者得不同并且分析原因。 5、画出不同信噪比情况下得星座图,解释其对于误码率得影响。 四、实验原理: 1、DQPSK: DQPSK调制原理就是利用载波得四种不同相位来表示输入得数字信息,也就就是四进制相位键控,它规定了四种调制相位:。所以需要将二进制数字序列中得数据划分为每两个比特为一组,也就就是有00,01,10与11四种情况,经过差分编码后,分别对应上面得四个相位,其具体对应关系如表1所示。而调制之后得符号星座图得相位路径转换图如图2、1所示。解调端根据星座图与载波相位来判断发送端发送得信息数据。 表1 相位转换 调制符号星座图与可能变换路径 2、GMSK: 将基带信号经过高斯滤波器之后,再进行MSK(Minimum Shift Keying)即最小频移键控调制,从而形成调制信号得过程教叫做GSMK(Gaussian Filtered Minimum Shift Keying)即高斯滤波最小频移键控调制。它具有良好得频谱与功率特性。 高斯滤波

无线通信技术基础知识

无线通信技术 1.传输介质 传输介质是连接通信设备,为通信设备之间提供信息传输的物理通道;是信息传输的实际载体。有线通信与无线通信中的信号传输,都是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即是可供使用的频谱宽度,高带宽传输介

质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。 无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。 无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机和发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值和传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展是对信道色散效应的描述; (4)多普勒扩展:是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 无线信道模型 无线信道模型一般可分为室内传播模型和室外传播模型,后者又可以分为宏蜂窝模型和微蜂窝模型。

短距离无线通信技术

短距离无线通信技术 1.1短距离无线通信 以信号有效接发/传输距离为标志区分各种无线技术,由于技术不断融合和发展,具体 技术的应用围也会动态变化。 WWAN 无线广域网 WMAN 无线城域网 WLAN 无线局域网 WPAN 无线个域网 无线基站(信源) 发送/接收 蜂窝通讯技术 2G/3G/4G GPRS EDGE LTE …… WiMax Wibro(国) 802.16 WIFI WAPI 802.11 Bluetooth UWB Zigbee …… RFID NFC IrDA 中、长距离无线通信,卫星通信和长波、 短波则能实现超长距离无线通信 短距离无线通信,NFC则被视为非接触超 短距离无线通信 WIFI IrDA Zigbee Bluetooth UWB NFC RFID 通信模式点对点网状单点对多点点对点 通信距离0~100m 0~1m 10m~75m 0~10m 0~10m 0~20cm 0~50m 传输速度54Mbps 1Mbps 10K~250Kbps 1Mbps 53.3~480M 424Kbps 安全性低低中高高极高高 频段 2.4GHz 2.4GHz 868MHZ欧洲 915MHz美国 2.4GHz 3.1~10.6G 13.56MHz 多频段 国际标准802.11b 802.11g 无802.15.4 802.15.1x 无ECMA340 ECMA352 成本高低极低低高低低 1.1.1WLAN WIFI是WLAN的主流技术标准,应用中常把WIFI与WLAN等价,其实这并不严谨,例如,中国对WLAN强制执行自有知识产权的WAPI标准。 WLAN应用的标准协议是802.11,这是一个庞大的协议家族。 802.11是WLAN原始标准,WIFI应用802.11b标准,可向11g、11n升级。有兴趣的可

无线通信技术课程设计:无线通信技术的特点

无线通信技术课程设计:无线通信技术的特点 无线通信技术课程实验报告实验一、DQPSK和GMSK信号调制实 验一、实验目的:了解GRC的信号处理模块、流程图及其使用方法 了解DPSK、DQPSK调制解调原理了解GMSK调制解调原理观察DPSK、DQPSK信号分别通过AWGN信道情况下的星座图失真情况二、实验设备:PC两台、RFX2400USRP1两台三、实验内容:1.了解grc的基本 操作方法,要求仿真的流程中信号调制方式使用DPSK、DQPSK。 2.通过单机实验和GnuRadio+USRP的实验两种实验方式进行仿真。 3.比较同一调制方式,在不同SNR下的误码率,并且分析结果。 4.画出信号通过信道前后的时域波形图、频谱图、星座图、比较两者的不同并且分析原因。 5.画出不同信噪比情况下的星座图,解释其对于误码率的影响。 四、实验原理:1、DQPSK:DQPSK调制原理是利用载波的四种不 同相位来表示输入的数字信息,也就是四进制相位键控,它规定了 四种调制相位:。所以需要将二进制数字序列中的数据划分为每两 个比特为一组,也就是有00,01,10和11四种情况,经过差分编码后,分别对应上面的四个相位,其具体对应关系如表1所示。而调 制之后的符号星座图的相位路径转换图如图2.1所示。解调端根据 星座图和载波相位来判断发送端发送的信息数据。 表1相位转换二进制比特1二进制比特2相位11+/401+3/400- 3/410-/4调制符号星座图和可能变换路径2、GMSK:将基带信号经 过高斯滤波器之后,再进行MSK(MinimumShiftKeying)即最小频 移键控调制,从而形成调制信号的过程教叫做GSMK (GaussianFilteredMinimumShiftKeying)即高斯滤波最小频移键 控调制。它具有良好的频谱和功率特性。

几种无线通信技术的比较.

几种无线通信技术的比较 摘要:随着电子技术、计算机技术的发展,近年来无线通信技术蓬勃发展,出现了各种标准的无线数据传输标准,它们各有其优缺点和不同的应用场合,本文将目前应用的、无线通信方式进行了分析对比,并总结和预见了它们今后的发展方向。 关键词:Zigbee Bluetooth UWB Wi-Fi NFC Several Wireless Communications Technology Comparison Abstract:As the development of electronic technology,computer technology, wireless communication technology have a rapid development in recent years,emerged wireless data transmission standard,they have their advantages and disadvantages,and different applications,the application of various wireless communication were analyzed and compared,and summarized and foresee their future development. 一.几种无线通讯技术 (一)ZigBee 1.简介: Zigbee是基于IEEE802.15.4标准的低功耗个域网协议。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。 ZigBee是一种高可靠的无线数传网络,类似于CDMA和GSM网络。ZigBee数传模块类似于移动网络基站。通讯距离从标准的75m到几百米、几公里,并且支持无限扩展。ZigBee是一个由可多到65000个无线数传模块组成的一个无线数传网络平台,在整个网络范围内,每一个ZigBee网络数传模块之间可以相互通信,每个网络节点间的距离可以从标准的75m无限扩展。与移动通信的CDMA网或GSM网不同的是,ZigBee网络主要是为工业现场自动化控制数据传输而建立,因而,它必须具有简单,使用方便,工作可靠,价格低的特点。而移动通信网主要是为语音通信而建立,每个基站价值一般都在百万元人民币以上,而每个ZigBee―基站‖却不到1000元人民币。每个ZigBee网络节点不仅本身可以作为监控对象,例如其所连接的传感器直接进行数据采集和监控,还可以自动中转别的网络节点传过来的数据资料。除此之外,每一个Zigbee网络节点(FFD)还可在自己信号覆盖的范围内,和多个不承担网络信息中转任务的孤立的子节点(RFD)无线连接。

无线通信技术对比分析

无线通信技术对比分析二〇一四年四月二十六日

目录 一、传统无线通信技术说明 0 1、数传电台技术 0 2、GPRS/CDMA-1X技术 0 3、无线网桥(802.11a)技术 (2) 4、MESH WiFi技术 (4) 5、McWiLL技术 (6) 6.固定WiMAX技术 (7) 7.移动WiMAX技术 (8) 二、新一代无线通信技术与传统技术的综合比较 (11)

一、传统无线通信技术说明 1、数传电台技术 无线数传电台技术为油田的信息化做出了重大的贡献,该技术投资少、见效快,覆盖距离远、运行稳定。作为低速的无线数据接入系统,在过去的10多年的时间内,毫无疑问它是油井数字化建设的不二的技术选择。目前数传电台面临重大的技术挑战,“数字油田”发展的要求越来越高,突出表现在对带宽的要求越来越大,对实时性要求越来越高,对业务的综合能力越来越高。不仅要传输“三遥”的数据、还要传送图象业务、应急通信、调度等综合性的业务需求。 对于已经建设的油井,数传电台还是需要继续发挥它的重要作用,对于正在建设的油井,数传电台可以作为一种临时的手段,不再适合大规模部署的技术手段。我们认为应该采用新一代的无线宽带接入技术来满足“数字油田”建设的最新要求。 新一代的无线宽带接入系统基于移动WiMAX标准化技术,采用全IP的承载平台、符合“最高的带宽能力、最大的用户容量、最综合的业务支持能力、最优化的投入产出效率”的技术要求,是目前为止“数字油田”建设最佳的无线通信技术。 总结:数传电台是我们油田信息化建设不可缺少的无线通信技术手段,但是我们需要逐步地向新一代的无线通信技术进行演进,以满足油田建设“减员增效”的战略要求。 2、GPRS/CDMA-1X技术 GPRS/CDMA-1X公网技术已经广泛地应用于“数字油田”的建设中,经过几年的部署和应用,对于该技术的优势和劣势,油田用户已经有了客观的认识。

无线通信的发展历程 (1)

无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入(Multiple Access)和双工(Multiplexing)。从1G到4G的无线通信系统演进史基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。给出了三种最典型的多址接入技术:FDMA、TDMA和CDMA的比较。 双工技术为用户同时接收和发送数据提供了可能性。两种最典型的双工技术:FDD模式和TDD模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。

第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 第一代无线通信系统 采用频分多址(Frequency Division Multiple Access)技术组建的模拟蜂窝网也被称为第一代(First Generation,下称1G)无线通信系统。这些系统中,话务是主要的通信方式。由于采用模拟调制,这些系统容易被第三方窃听。1G的主要蜂窝系统包括AMPS、NMT、Hicap、CDPD、Mobitex、DataTac、TACS和ETACS。 所有1G系统都有两类逻辑信道:业务信道和控制信道。业务信

无线通信技术基础知识

无线通信技术 1、传输介质 传输介质就是连接通信设备,为通信设备之间提供信息传输的物理通道;就是信息传输的实际载体。有线通信与无线通信中的信号传输,都就是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即就是可供使用的频谱宽度,高带宽传输介质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。 无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。

2、1无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机与发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 2、2无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,就是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,就是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值与传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展就是对信道色散效应的描述; (4)多普勒扩展:就是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,就是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 2、3无线信道模型 无线信道模型一般可分为室内传播模型与室外传播模型,后者又可以分为宏蜂窝模型与微蜂窝模型。 (1)室内传播模型:室内传播模型的主要特点就是覆盖范围小、环境变动较大、不受气候影响,但受建筑材料影响大。典型模型包括:对数距离路径损耗模型、Ericsson多重断点模型等; (2)室外宏蜂窝模型:当基站天线架设较高、覆盖范围较大时所使用的一类模型。实际使用中一般就是几种宏蜂窝模型结合使用来完成网络规划; (3)室外微蜂窝模型:当基站天线的架设高度在3~6m时,多使用室外微蜂窝模型;其描述的损耗可分为视距损耗与非视距损耗。

基于STM32的无线通信系统设计课程设计

课程设计说明书 题目:基于STM32的无线通信系统设计课程: ARM课程设计 院(部):计算机科学与技术学院 专业:计算机科学与技术专业 班级: 学生姓名: 学号: 指导教师: 完成日期:

目录 课程设计说明书 ............................................................................................................................................................. I 课程设计任务书 (2) 1.课程设计题目 (3) 2.课程设计目的 (3) 3.课程设计内容 (3) 3.1硬件资源 (3) 3.2软件资源 (8) 3.3调试环境准备与使用 (11) 3.4系统设计步骤 (12) 3.4.1需求分析 (12) 3.4.2概要设计 (12) 3.4.3详细设计 (16) 3.4.4系统实现及调试 (20) 3.4.5功能测试 (40) 3.4.6系统评价(结果分析) (41) 3.5.结论(体会) (42) 3.6.参考文献 (42) 课程设计指导教师评语 (43)

山东建筑大学计算机科学与技术学院

课程设计任务书 设计题目基于STM32的无线通信系统设计指导教师班级学号 已知技术参数和设计要求技术参数: 基于Cortex-M3内核的奋斗STM32开发板,无线射频收发器nRF24L01P工作于2.4GHz频段,STM32和nRF24L01P之间采用SPI 接口方式,嵌入式操作系统平台采用uC/OS-II。 设计要求: 用STM32开发板和nRF24L01扩展板设计一个基于uC/OS-II的无线通信系统,能够实现两个无线节点间的数据收发。 设计内容与步骤设计内容: 1.编写STM32和nRF24L01P的初始化程序。 2.将uC/OS-II移植至 STM32。 3.设计简单的无线通信协议,编写无线通信任务和射频收发 中断服务子程序。 设计步骤: 1.uC/OS-II任务划分及概要设计,ISR的功能设计。 2.编写 STM32和nRF24L01P的初始化程序,调试STM32的片内定时器模块,编写基于nRF24L01P模块的数据收发ISR。 3.编写与移植相关的几个函数,将uC/OS-II移植至 STM32。 4.拟定通信协议,编写无线通信任务。 5.利用两套STM32开发板和nRF24L01扩展板调试上述功能,总结分析,撰写课程设计说明书。 设计工作计划与进度安排1、奋斗STM32开发版资源及应用:10学时 2、《Cortex M3权威指南》、《STM32F10X参考手册》、《STM32固 件库手册》:20学时 3、MDK安装及使用:5学时 4、概要设计:15学时 5、uC/OS-II移植及所用外设的驱动程序编写:10学时 6、无线通信任务编程及调试:15学时 7、撰写课程设计说明书:15学时 设计考核要求1、考勤20% 2、课程设计说明书50%。 3、成果演示30%

无线通信专业(专业基础知识和专业技术知识)

一、无线通信专业 (一)无线通信专业基础知识 1.无线通信原理: (1)无线收发信设备知识; (2)无线信道的特性; (3)调制技术; (4)编码技术; (5)天线基本原理及相关参数; (6)跳频技术。 2.无线通信系统基础知识: (1)无线通信传输系统的组成及工作原理; (2)无线通信系统的制式、性能及分布状况、系统联网常识; (3)无线接口信令; (4)各种传输方式; (5)无线通信系统工作原理; (6)无线通信系统网络结构。 3.无线通信业务知识: (1)移动交换机的组成及电路结构; (2)移动交换机的工作原理; (3)移动交换机的维护常识;

(4)相关仪器、仪表的使用和基本知识。 4.各种传输方式、工作原理、网络结构。 5.其他知识: 本专业维护规程。 (二)无线通信专业技术知识 无线通信专业分为无线传输系统、微波传输系统、卫星通信传输系统、无线接入四个职业功能,每个职业功能还分为不同的工作内容。每个工作内容为一个考试模块,考生只需选择某一考试模块参加考试。 一、无线传输系统 ●工作内容:长波、中波、短波、超短波 ●专业能力要求:1.掌握测试仪表、工具的使用方法。 2.能够对分析测试结果,提出改进质量的技术措施。 3.掌握设备的软硬件构成及所使用的软件语言。 4.掌握各种电源设备的工作原理和性能。 5.熟练掌握主要测试仪表的原理和使用方法。 6.具备主持制定大中型工程计划并组织实施的能力。

7.完成设备的大修、更新、改造,组织新设备的安装、测试开通。 ●相关知识:1.电波传播特性。 2.针对大功率发射机设备的风冷、水冷循环系统原理。 3.无线通信原理。 4.无线通信系统基础知识。 5.无线通信业务知识。 二、微波传输系统 ●工作内容:微波终端、微波中继 ●专业能力要求:1.微波通信传输系统的结构。 2.监控系统的原理和组成。 3.掌握测试仪表、工具的使用方法。 4.能够对分析测试结果,提出改进质量的技术措施。 5.掌握设备的软硬件构成及所使用的软件语言。 6.掌握各种电源设备的工作原理和性能。 7.熟练掌握主要测试仪表的原理和使用方法。 ●相关知识:1.无线通信原理。 2.无线通信系统基础知识。 3.无线通信业务知识。 三、卫星通信传输系统

常见无线通信技术

常见无线通信技术 蓝牙 超宽带技术 ZigBe Wi一F zigBee的产生 ZigBee的优势 zigBee的应用 1.典型的短距离无线数据网络技术 典型的短距离无线系统由一个无线发射器(包括数据源、调制器、RF源、RF功率放大器、天线、电源组成)和一个无线接收器(包括数据接收电路、RF 解调器、译码器、RF低噪声放大器、天线、电源)组成。 随着无线的发展,网络化、标准化、要求逐渐出现在人们的面前。因此各种无线网络技术标准纷纷被制订出来。下面我们来看看目前比较热门的几种无线网络技术标准、 5种短程无线连接技术正在成为业界谈论的焦点,它们分别是ZigBee、无线局域网(Wi-Fi)、蓝牙(Bluetooth)、超宽频(Ultra Wide Band)和近距离无线传输(NFC)。

1.ZigBee ZigBee是一种新兴的短距离、低速率无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术方案。它此前被称作HomeRF Lite或FireFly无线技术,主要用于近距离无线连接。它有自己的无线电标准,在数千个微小的传感器之间相互协调实现通信。这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所以它们的通信效率非常高。最后,这些数据可以进入计算机,用于分析或者被另一种无线技术如WiMax收集。 ZigBee的基础是IEEE 802.15.4,这是IEEE无线个人区域网(PAN,Personal AreaNetwork)工作组的一项标准,被称作IEEE 802.15.4(ZigBee)技术标准。 ZigBee不仅只是 802.15.4 的名字。IEEE仅处理低级MAC层和物理层协议,所以ZigBee联盟对其网络层协议和API进行了标准化。完全协议用于一次可直接连接到一个设备的基本点的4KB或者作为Hub、路由器的协调器的32KB。每个协调器可连接多达255个节点,而几个协调器则可形成一个网络,对路由传输的数目则没有限制。ZigBee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其他节点获得。、

移动通信基础知识培训(全)

移动通信基础知识培训

移动通信基础知识培训 一移动通信常用的专业术语 基站:即公用移动通信基站是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。都是以主设备加基站天线的形式呈现,最直观的就是我们现实中看到的铁塔,抱杆,桅杆型的基站。 直放站:是在无线通信传输过程中起到信号增强的一种无线电发射中转设备。直放站的基本功能就是一个射频信号功率增强器。实际上基站在其覆盖范围内并不是100%的覆盖到每个角落,难免会由于某些原因而在有些地方出现信号弱,更甚者出现盲区的现象,这时候就需要直放站进行覆盖,达到消除弱信号或者盲区的目的。因此直放站就是通过各种方式将基站信号接入并进行放大,进而改善信号不良区域。 天线(Antenna)——天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。简单的理解,天线就是负责信号中转的无源器件。 室内分布系统:室内分布系统是将基站信号引入室内,解决室内盲区覆盖;它可以有效解决信号延伸和覆盖,改善室内通信质量;它将基站信号科学地分配到室内的各个房间、通道,而又不产生相互干扰。它是基站和微蜂窝的补充和延伸,有不能被基站和直放站所代替的优势,是大都市中移动通信不可缺少的组成部分。 盲区:在移动通信中,盲区表示信号覆盖不到的地区,在这样的地区移动信号非常微弱,甚至是没有。由于建筑物的隔墙、楼层等障碍对电磁波产生阻挡、衰减和屏蔽作用,使得大型建筑物的底层、地下商场、停车场、地铁隧道等环境下,移动通信信号弱,手机无法正常使用,形成了移动通信的盲区。 通话质量(RXQUAL):顾名思义,就是手机通话时的语言质量即清晰程

无线通信技术课程设计

无线通信技术课程设计 无线通信技术课程设计本文内容:无线通信技术课程实验报告实验 一、DQPSK和GMSK信号调制实验 一、实验目的:了解GRC的信号处理模块、流程图及其使用方法了解DPSK、DQPSK调制解调原理了解GMSK调制解调原理观察DPSK、DQPSK信号分别通过 AWGN 信道情况下的星座图失真情况 二、实验设备: PC两台、RFX2400 USRP1两台 三、实验内容: 1、了解grc的基本操作方法,要求仿真的流程中信号调制方式使用DPSK、DQPSK。 2、通过单机实验和GnuRadio+USRP的实验两种实验方式进行仿真。 3、比较同一调制方式,在不同SNR下的误码率,并且分析结果。 4、画出信号通过信道前后的时域波形图、频谱图、星座图、比较两者的不同并且分析原因。 5、画出不同信噪比情况下的星座图,解释其对于误码率的影响。 四、实验原理:

1、DQPSK: DQPSK调制原理是利用载波的四种不同相位来表示输入的数字信息,也就是四进制相位键控,它规定了四种调制相位:。所以需要将二进制数字序列中的数据划分为每两个比特为一组,也就是有00,01,10和11四种情况,经过差分编码后,分别对应上面的四个相位,其具体对应关系如表1所示。而调制之后的符号星座图的相位路径转换图如图 2、1所示。解调端根据星座图和载波相位来判断发送端发送的信息数据。 表1 相位转换二进制比特1 二进制比特2 相位11 +/4 01 +3/4 0 0/4 调制符号星座图和可能变换路径 2、GMSK:将基带信号经过高斯滤波器之后,再进行MSK (Minimum Shift Keying)即最小频移键控调制,从而形成调制信号的过程教叫做GSMK(Gaussian Filtered Minimum Shift Keying)即高斯滤波最小频移键控调制。它具有良好的频谱和功率特性。 高斯滤波原始数据经过高斯滤波器之后的响应可由下式来表示:其中,调频指数,意味着对应调制数据源,一个码元内的最大相移为。下式为GMSK调制符号表达式。 五、实验步骤和结果分析。 1、DQPSK实验 1、1单机实验 (1)实验框图: (2)不同信噪比下的误码率。

相关主题
文本预览
相关文档 最新文档