当前位置:文档之家› 实验四 磁盘驱动调度算法的模拟

实验四 磁盘驱动调度算法的模拟

实验四   磁盘驱动调度算法的模拟
实验四   磁盘驱动调度算法的模拟

实验四磁盘驱动调度算法的模拟

一.实验内容:

熟悉磁盘的结构以及磁盘的驱动调度算法的模拟,编程实现简单常用的磁盘驱动调度算法:先来先服务(FIFO)、电梯调度算法、最短寻道时间优先算法、扫描(双向扫描)算法、循环扫描算法等。

编程语言建议采用c/c++或Java。模拟程序鼓励采用随机数技术、动态空间分配技术,有条件的最好能用图形界面展现甚至用动画模拟。

实验性质:验证型。

二.实验目的和要求

1)掌握使用一门语言进行磁盘驱动调度算法的模拟;

2)编写程序将磁盘驱动调度算法的过程和结果能以较简明直观的方式展现出来。

三.实验原理、方法和步骤

1. 实验原理

磁盘驱动调度对磁盘的效率有重要影响。磁盘驱动调度算法的好坏直接影响辅助存储器的效率,从而影响计算机系统的整体效率。

常用的磁盘驱动调度算法有:

最简单的磁盘驱动调度算法是先入先出(FIFO)法。这种算法的实质是,总是严格按时间顺序对磁盘请求予以处理。算法实现简单、易于理解并且相对公平,不会发生进程饿死现象。但该算法可能会移动的柱面数较多并且会经常更换移动方向,效率有待提高。

最短寻道时间优先算法:总是优先处理最靠近的请求。该算法移动的柱面距离较小,但可能会经常改变移动方向,并且可能会发生进程饥饿现象。

电梯调度:总是将一个方向上的请求全部处理完后,才改变方向继续处理其他请求。

扫描(双向扫描):总是从最外向最里进行扫描,然后在从最里向最外扫描。该算法与电梯调度算法的区别是电梯调度在没有最外或最里的请求时不会移动到最外或最里柱面,二是扫描算法总是移到最外、最里柱面。

循环扫描(单向扫描):从最外向最里进行柱面请求处理,到最里柱面后,直接跳到最外柱面然后继续向里进行处理。

2. 实验方法

1)使用流程图描述演示程序的设计思想;

2)选取c/c++、Java等计算机语言,编程调试,最终给出运行正确的程序。

作业6--磁盘驱动调度-答案

作业6磁盘驱动调度 1磁盘共有100各柱面,若干个等待访问磁盘者依次要访问的柱面为20 , 44, 40, 4, 80, 12, 76。假设每移动一个柱面需要3ms时间,移动臂当前位于36号柱面,试问对以下 几种磁盘请求调度算法而言,满足以上请求序列,磁头将分别如何移动?并计算为完成 上述各次访问总共花费的寻找时间。 ①先来先服务算法(FCFS)。 ②最短寻找时间优先算法(SSTF)。 ③扫描算法(SCAN)。 ④循环扫描算法(CSCAN)。 1.解 ①先来先服务算法,磁头移动示意图: 0 4 12 20 36 40 44 先来先服务算法磁头的移动顺序为:20,44,40,4,80,12,76。 花费的寻找时间为:(16+24+4+36+76+68+64)*3=864(ms) ②最短寻找时间优先算法,磁头移动示意图: 0 4 12 20 36 40 44 76 80 99 最短寻找时间优先算法磁头的移动顺序为:40,44,20,12,4,76,80 花费的寻找时间为:(4+4+24+8+8+72+4)*3=372 ( ms) 76 80 99

③扫描(电梯调度)算法,磁头移动示意图: 电梯调度算法磁头移动的顺序为:40, 44, 76, 80, 20, 12, 4 花费的寻找时间为:(44+76)*3=360(ms) ④循环扫描算法(CSCAN,磁头移动示意图: 循环扫描算法磁头移动的顺序为:40, 44, 76, 80, 4, 12, 20 花费的寻找时间为:(44+76+16)*3=408(ms) 【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】

操作系统实验报告模板

操作系统上机 实验报告 成绩 教师: 2012 年 12月 5日 班级: 学号: 姓名: 实验地点: 实验时间:

实验一进程的建立 【实验目的】 创建进程及子进程 在父子进程间实现进程通信 【实验软硬件环境】 Linux 、Windows98、Windows2000 【实验内容】 创建进程并显示标识等进程控制块的属性信息; 显示父子进程的通信信息和相应的应答信息。 (进程间通信机制任选) 【实验程序及分析】 编程思路:首先本程序在Linux用C语言完成的,父子进程的创建用fork函数来实现,然后是父子进程间的通信,这里用pipe实现。可以定义chan1[2], chan1[2],chanx[0]表示读,chanx[1]表示写。他们配合使用。 【实验截图】 【实验心得体会】 通过这次上机练习,我熟悉了用c++实现进程的创建,销毁,父子进程间的通讯等一系列课程中需要学习的内容。本来进程的概念在一开始我始终无法清晰地理解,但是通过自己用mfc的方法去实现它后,我开始慢慢地理解操作系统的进程的运作机制。 虽然,我只是实现了一个父子进程的创建和通讯,但是,管中窥豹,我想自己开始明白一个操作系统正是由很多这种进程实现功能的。其中,系统整体的进程调度,管理等等还有很多东西等着我们去进一步学习、理解。 实验二进程间的同步 【实验目的】

理解进程同步和互斥模型及其应用 【实验软硬件环境】 Linux 、Windows98、Windows2000 【实验内容】 利用通信API实现进程之间的同步: 建立司机和售票员进程; 并实现他们间的同步运行。 【实验程序及分析】 程序总体思路:由于本次试验时用PV操作实现的互斥与同步模型,所以先实现P、V操作的函数,然后在主程序中利用PV操作函数实现司机和售票员的同步。司机和售票员分别为父进程和子进程,假设司机停车开门,此时为父进程中运行,然后申请开车,但是此时乘客没上车,所以只能阻塞。此时进入子进程,乘客上车,关门,售票员检票,释放开车,然后死机开车,到站,释放开车门。如此循环。 示意图 #include #include

操作系统实验报告—磁盘调度算法

操作系统实验报告实验3 磁盘调度算法 报告日期:2016-6-17 姓名: 学号: 班级: 任课教师:

实验3 磁盘调度算法 一、实验内容 模拟电梯调度算法,实现对磁盘的驱动调度。 二、实验目的 磁盘是一种高速、大量旋转型、可直接存取的存储设备。它作为计算机系统的辅助存储器,负担着繁重的输入输出任务,在多道程序设计系统中,往往同时会有若干个要求访问磁盘的输入输出请示等待处理。系统可采用一种策略,尽可能按最佳次序执行要求访问磁盘的诸输入输出请求,这就叫驱动调度,使用的算法称驱动调度算法。驱动调度能降低为若干个输入输出请求服务所须的总时间,从而提高系统效率。本实验要求学生模拟设计一个驱动调度程序,观察驱动调度程序的动态运行过程。 三、实验原理 模拟电梯调度算法,对磁盘调度。 磁盘是要供多个进程共享的存储设备,但一个磁盘每个时刻只能为一个进程服务。当有进程在访问某个磁盘时,其他想访问该磁盘的进程必须等待,直到磁盘一次工作结束。当有多个进程提出输入输出请求处于等待状态,可用电梯调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。当存取臂仅需移到一个方向最远的所请求的柱面后,如果没有访问请求了,存取臂就改变方向。 假设磁盘有200个磁道,用C语言随机函数随机生成一个磁道请求序列(不少于15个)放入模拟的磁盘请求队列中,假定当前磁头在100号磁道上,并向磁道号增加的方向上移动。请给出按电梯调度算法进行磁盘调度时满足请求的次序,并计算出它们的平均寻道长度。 四、实验过程 1.画出算法流程图。

2.源代码 #include #include #include int *Init(int arr[]) { int i = 0; srand((unsigned int)time(0)); for (i = 0; i < 15; i++) { arr[i] = rand() % 200 + 1; printf("%d ", arr[i]); } printf("\n"); return arr; } void two_part(int arr[]) { int i = 0; int j = 0;

操作系统磁盘调度SCAN算法

#include #include #include #include typedefstruct_proc { char name[100]; /*定义进程名称*/ int team; /*定义柱面号*/ int ci; /*定义磁道面号*/ int rec; /*定义记录号*/ struct_proc *prior; struct_proc *next; }PRO; PRO *g_head = NULL, *g_curr = NULL, *local; int record = 0; //初始柱面号 int yi = 1; //初始方向 int rec0 = 0; //初始记录号 void init() { PRO *p; /*初始化链表(初始I/O表)*/ g_head = (PRO*)malloc(sizeof(PRO)); g_head->next = NULL; g_head->prior = NULL; p = (PRO*)malloc(sizeof(PRO)); strcpy_s(p->name, "P1"); p->team = 100; p->ci = 10; p->rec = 1; p->next = NULL; p->prior = g_head; g_head->next = p; g_curr = g_head->next; p = (PRO*)malloc(sizeof(PRO)); strcpy_s(p->name, "P2"); p->team = 50; p->ci = 10; p->rec = 5; p->next = NULL; p->prior = g_curr;

模拟电梯调度算法,实现对磁盘的驱动调度。

操作系统实验 (第三次) 一、实验内容 模拟电梯调度算法,实现对磁盘的驱动调度。 二、实验目的

磁盘是一种高速、大容量、旋转型、可直接存取的存储设备。它作为计算机系统的辅 助存储器,担负着繁重的输入输出任务、在多道程序设计系统中,往往同时会有若干个要求访问磁盘的输入输出请求等待处理。系统可采用一种策略,尽可能按最佳次序执行要求访问磁盘的诸输入输出请求。这就叫驱动调度,使用的算法称为驱动调度算法。驱动调度能降低为若干个输入输出请求服务所需的总时间,从而提高系统效率。本实验要求学生模拟设计一个驱动调度程序,观察驱动调度程序的动态运行过程。通过实验使学生理解和掌握驱动调度的职能。 三、实验题目 模拟电梯调度算法,对磁盘进行移臂和旋转调度。 [提示]: (1)磁盘是可供多个进程共享的存储设备,但一个磁盘每时刻只能为一个进程服务。 当有进程在访问某个磁盘时,其他想访问该磁盘的进程必须等待,直到磁盘一次工作结束。当有多个进程提出输入输出要求而处于等待状态时,可用电梯调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。选择访问者的工作由“驱动调度”进程来完成。 由于磁盘与处理器是可以并行工作的、所以当磁盘在作为一个进程服务时,占有处理 器的另一进程可以提出使用磁盘的要求,也就是说,系统能动态地接收新的输入输出请求。为了模拟这种情况,在本实验中设置了一个“接收请求”进程。 “驱动调度”进程和“接收请求”进程能否占有处理器运行,取决于磁盘的结束中断信 号和处理器调度策略。在实验中可用随机数来模拟确定这两个进程的运行顺序,以代替中断四、处理和处理器调度选择的过程。因而,程序的结构可参考图3—1

操作系统磁盘调度算法实验报告

《操作系统原理》 课程设计报告书 题目:磁盘调度 专业:网络工程 学号: 学生姓名: 指导教师: 完成日期:

目录 第一章课程设计目的 (1) 1.1编写目的 (1) 第二章课程设计内容 (2) 2.1设计内容 (2) 2.1.1、先来先服务算法(FCFS) (2) 2.1.2、最短寻道时间优先算法(SSTF) (2) 2.1.3、扫描算法(SCAN) (3) 2.1.4、循环扫描算法(CSCAN) (3) 第三章系统概要设计 (4) 3.1模块调度关系图 (4) 3.2模块程序流程图 (4) 3.2.1 FCFS算法 (5) 3.2.2 SSTF算法 (6) 3.2.3 SCAN算法 (7) 3.2.4 CSCAN算法 (8) 第四章程序实现 (9) 4.1 主函数的代码实现 (9) 4.2.FCFS算法的代码实现 (11) 4.3 SSTF算法的代码实现 (13) 4.4 SCAN算法的代码实现 (15) 4.5 CSCAN算法的代码实现 (17) 第五章测试数据和结果 (20) 第六章总结 (23)

第一章课程设计目的 1.1编写目的 本课程设计的目的是通过磁盘调度算法设计一个磁盘调度模拟系统,从而使磁盘调度算法更加形象化,容易使人理解,使磁盘调度的特点更简单明了,能使使用者加深对先来先服务算法、最短寻道时间优先算法、扫描算法以及循环扫描算法等磁盘调度算法的理解 1

第二章课程设计内容 2.1设计内容 系统主界面可以灵活选择某种算法,算法包括:先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、扫描算法(SCAN)、循环扫描算法(CSCAN)。 2.1.1、先来先服务算法(FCFS) 这是一种比较简单的磁盘调度算法。它根据进程请求访问磁盘的先后次序进行调度。此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况。此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情况下,此算法将降低设备服务的吞吐量,致使平均寻道时间可能较长,但各进程得到服务的响应时间的变化幅度较小。 2.1.2、最短寻道时间优先算法(SSTF) 该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,该算法可以得到比较好的吞吐量,但却不能保证平均寻道时间最短。其缺点是对用户的服务请求的响应机会不是均等的,因而导致响应时间的变化幅度很大。在服务请求很多的情况下,对内外边缘磁道的请求将会无限期的被延迟,有些请求的响应时间将不可预期。 2

天津理工大学 操作系统实验3:磁盘调度算法地实现

实验报告学院(系)名称:计算机与通信工程学院

【实验过程记录(源程序、测试用例、测试结果及心得体会等)】 #include #include #include using namespace std; const int MaxNumber=100; int TrackOrder[MaxNumber]; int MoveDistance[MaxNumber]; //----移动距离; int FindOrder[MaxNumber]; //-----寻好序列。 double AverageDistance; //-----平均寻道长度 bool direction; //-----方向 true时为向外,false为向里 int BeginNum; //----开始磁道号。 int M; //----磁道数。 int N; //-----提出磁盘I/O申请的进程数 int SortOrder[MaxNumber]; //----排序后的序列 bool Finished[MaxNumber]; void Inith() { cout<<"请输入磁道数:"; cin>>M; cout<<"请输入提出磁盘I/O申请的进程数:"; cin>>N; cout<<"请依次输入要访问的磁道号:"; for(int i=0;i>TrackOrder[i]; for(int j=0;j>BeginNum; for(int k=0;k=0;i--) for(int j=0;jSortOrder[j+1])

操作系统驱动调度

实验三驱动调度 一、实验容 模拟电梯调度算法,实现对磁盘的驱动调度。 二、实验目的 磁盘是一种高速、大容量、旋转型、可直接存取的存储设备。它作为计算机系统的辅助存储器,担负着繁重的输入输出任务、在多道程序设计系统中,往往同时会有若干个要求访问磁盘的输入输出请求等待处理。系统可采用一种策略,尽可能按最佳次序执行要求访问磁盘的诸输入输出请求。这就叫驱动调度,使用的算法称为驱动调度算法。驱动调度能降低为若干个输入输出请求服务所需的总时间,从而提高系统效率。本实验要求学生模拟设计一个驱动调度程序,观察驱动调度程序的动态运行过程。通过实验使学生理解和掌握驱动调度的职能。 三、数据结构 #define M 20 typedef struct PCB { char proc[M];//进程名 int cylinder_num;//柱面号 int track_num;//磁道号

int phy_num;//物理记录号 struct PCB *next; }PCB; 四、实验题目 模拟电梯调度算法,对磁盘进行移臂和旋转调度。 (1)磁盘是可供多个进程共享的存储设备,但一个磁盘每时刻只能为一个进程服务。当有进程在访问某个磁盘时,其他想访问该磁盘的进程必须等待,直到磁盘一次工作结束。当有多个进程提出输入输出要求而处于等待状态时,可用电梯调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。选择访问者的工作由“驱动调度”进程来完成。 由于磁盘与处理器是可以并行工作的、所以当磁盘在作为一个进程服务时,占有处理器的另一进程可以提出使用磁盘的要求,也就是说,系统能动态地接收新的输入输出请求。为了模拟这种情况,在本实验中设置了一个“接收请求”进程。 “驱动调度”进程和“接收请求”进程能否占有处理器运行,取决于磁盘的结束中断信号和处理器调度策略。在实验中可用随机数来模拟确定这两个进程的运行顺序,以代替中断处理和处理器调度选择的过程。因而,程序的结构可参考图3—1 (2)“接收请求”进程建立一“请求I/O”表,指出访问磁盘的进程要求访问的物理地址,表的格式为:

实验三___驱动调度

实验三驱动调度 一、实验内容 模拟电梯调度算法,实现对磁盘的驱动调度。 二、实验目的 磁盘是一种高速、大容量、旋转型、可直接存取的存储设备。它作为计算机系统的辅助存储器,担负着繁重的输入输出任务、在多道程序设计系统中,往往同时会有若干个要求访问磁盘的输入输出请求等待处理。系统可采用一种策略,尽可能按最佳次序执行要求访问磁盘的诸输入输出请求。这就叫驱动调度,使用的算法称为驱动调度算法。驱动调度能降低为若干个输入输出请求服务所需的总时间,从而提高系统效率。本实验要求学生模拟设计一个驱动调度程序,观察驱动调度程序的动态运行过程。通过实验使学生理解和掌握驱动调度的职能。 三、实验题目 模拟电梯调度算法,对磁盘进行移臂和旋转调度。 [提示]: (1)磁盘是可供多个进程共享的存储设备,但一个磁盘每时刻只能为一个进程服务。当有进程在访问某个磁盘时,其他想访问该磁盘的进程必须等待,直到磁盘一次工作结束。当有多个进程提出输入输出要求而处于等待状态时,可用电梯调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。选择访问者的工作由“驱动调度”进程来完成。 由于磁盘与处理器是可以并行工作的、所以当磁盘在作为一个进程服务时,占有处理器的另一进程可以提出使用磁盘的要求,也就是说,系统能动态地接收新的输入输出请求。为了模拟这种情况,在本实验中设置了一个“接收请求”进程。 “驱动调度”进程和“接收请求”进程能否占有处理器运行,取决于磁盘的结束中断信号和处理器调度策略。在实验中可用随机数来模拟确定这两个进程的运行顺序,以代替中断处理和处理器调度选择的过程。因而,程序的结构可参考图3—1

(2)“接收请求”进程建立一张“请求I/O”表,指出访问磁盘的进程要求访问的物理地址,表的格式为: 假定某个磁盘组共有200个柱面,由外向里顺序编号(0—199),每个柱面上有20个磁道,编号为0—19,每个磁道分成8个物理记录,编号0—7。进程访问磁盘的物理地址可以用键盘输入的方法模拟得到。图3—2是“接收请求”进程的模拟算法。

磁盘调度实验报告

操作系统实验报告课程名称:计算机操作系统 实验项目名称:磁盘调度实验时间: 班级:姓名:学号: 实验目的: 对操作系统的磁盘调度基础理论和重要算法的理解,加强动手能力。 实验环境: PC机 win7 Visual C++ 实验内容: 编程序实现下述磁盘调度算法,并求出每种算法的平均寻道长度,要求设计主界面以灵 活选择某算法,且以下算法都要实现: 1、先来先服务算法(FCFS) 2、最短寻道时间优先算法(SSTF) 3、扫描算法(SCAN) 4、循环扫描算法(CSCAN) 实验过程: 1.依次输入8个磁道数:123 45 31 67 20 19 38,并以0 结束 2.选择调度算法: (1)先来先服务算法(FCFS) (2)最短寻道时间优先算法(SSTF) 成绩: 指导教师(签名):

(3)扫描算法(SCAN) (4)循环扫描算法(CSCAN) 实验心得: 通过本次实验,学习了解磁盘调度的工作原理及四种调度方法的工作原理,并且在当中

发现了自己的不足,对以前所学过的知识理解得不够深刻,掌握得不够牢固,看到了自己的实践经验还是比较缺乏,理论联系实际的能力还急需提高。 附录: #include #include #include #include #define maxsize 1000 /*********************判断输入数据是否有效**************************/ int decide(char str[]) //判断输入数据是否有效 { int i=0; while(str[i]!='\0') { if(str[i]<'0'||str[i]>'9') { return 0; break; } i++; } return i; } /******************将字符串转换成数字***********************/ int trans(char str[],int a) //将字符串转换成数字 { int i; int sum=0; for(i=0;icidao[j]) { temp=cidao[i]; cidao[i]=cidao[j]; cidao[j]=temp; } } cout<<" 排序后的磁盘序列为:"; for( i=0;i

磁盘调度算法的模拟实现

磁盘调度算法的模拟实现 学院 专业 学号 学生姓名 指导教师姓名 2014年3月19日 目录

一、课设简介 (2) 1.1 课程设计题目 (2) 1.2 课程设计目的 (2) 1.3 课程设计要求 (2) 二、设计内容 (3) 2.1功能实现 (3) 2.2流程图 (3) 2.3具体内容 (3) 三、测试数据 (4) 3.3 测试用例及运行结果 (4) 四、源代码 (5) 五、总结 (12) 5.1 总结............................................ 一、课设简介 1.1课程设计题目

磁盘调度算法的模拟实现1 1.2程序设计目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合起来,独立分析和解决实际问题的机会。 1)进一步巩固和复习操作系统的基础知识。 2)培养学生结构化程序、模块化程序设计的方法和能力。 3)提高学生调试程序的技巧和软件设计的能力。 4)提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 1.3 设计要求 1)磁头初始磁道号,序列长度,磁道号序列等数据可从键盘输入,也可从文件读入。 2)最好能实现磁道号序列中磁道号的动态增加。 3)磁道访问序列以链表的形式存储 4)给出各磁盘调度算法的调度顺序和平均寻道长度 二、设计内容 2.1 功能实现 设计并实现一个本别利用下列磁盘调度算法进行磁盘调度的模拟

程序。 1) 先来先服务算法FCFS 2) 最短寻道时间优先算法 SSTF 2.2流程图 2.3具体内容 1)先来先服务算法FCFS 这是一种比较简单的磁盘调度算法。它根据进程请求访问磁盘 的先后次序进行调度。此算法的优点是公平、简单,且每个进程的请 求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情 况。此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情开始 选择算法 F C F S S S T F 结束

磁盘调度实验报告

操作系统实验报告 磁 盘 调 度

实验六:磁盘调度算法 一.实验目的 复习模拟实现一种磁盘调度算法,进一步加深对磁盘调度效率的理解。 二.实验属性 该实验为设计性实验。 三.实验仪器设备及器材 普通PC386以上微机 四.实验要求 本实验要求2学时完成。 本实验要求完成如下任务: (1)建立相关的数据结构,作业控制块、已分配分区及未分配分区 (2)实现一个分区分配算法,如最先适应分配算法、最优或最坏适应分配算法(3)实现一个分区回收算法 (4)给定一批作业/进程,选择一个分配或回收算法,实现分区存储的模拟管理

实验前应复习实验中所涉及的理论知识和算法,针对实验要求完成基本代码编写并完成预习报告、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。实验后认真书写符合规范格式的实验报告(参见附录A),并要求用正规的实验报告纸和封面装订整齐,按时上交。 五 .主要算法分析 各个算法分析 1.先来先服务算法(FCFS) 先来先服务(FCFS)调度:按先来后到次序服务,未作优化。 最简单的移臂调度算法是“先来先服务”调度算法,这个算法实际上不考虑访问者要求访问的物理位置,而只是考虑访问者提出访问请求的先后次序。例如,如果现在读写磁头正在50号柱面上执行输出操作,而等待访问者依次要访问的柱面为130、199、32、159、15、148、61、99,那么,当50号柱面上的操作结束后,移动臂将按请求的先后次序先移到130号柱面,最后到达99号柱面。 采用先来先服务算法决定等待访问者执行输入输出操作的次序时,移动臂来回地移动。先来先服务算法花费的寻找时间较长,所以执行输入输出操作的总时间也很长。 2.最短寻道时间优先算法(SSTF) 最短寻找时间优先调度算法总是从等待访问者中挑选寻找时间最短的那个请求先执行的,而不管访问者到来的先后次序。现在仍利用同一个例子来讨论,现在当50号柱面的操作结束后,应该先处理61号柱面的请求,然后到达32号柱面执行操作,随后处理15号柱面请求,后继操作的次序应该是99、130、148、159、199。 采用最短寻找时间优先算法决定等待访问者执行操作的次序时,读写磁头总共移动了200多个柱面的距离,与先来先服务、算法比较,大幅度地减少了寻找时间,因而缩短了为各访问者请求服务的平均时间,也就提高了系统效率。 但最短查找时间优先(SSTF)调度,FCFS会引起读写头在盘面上的大范围移动,SSTF查找距离磁头最短(也就是查找时间最短)的请求作为下一次服务的对象。SSTF查找模式有

模拟磁盘调度算法,操作系统课程设计

某某大学 课程设计报告课程名称:操作系统 设计题目:模拟磁盘调度算法 系别:计算机系 专业:计算机科学与技术 组别: 学生姓名: 学号: 起止日期: 指导教师:

目录 第一章需求分析 (1) 1.1课程设计的简介 (1) 1.2课程设计的目的 (1) 1.3磁盘调度主要思想 (1) 1.4课程设计内容 (2) 第二章概要设计 (3) 2.1设计思想 (3) 2.2 数据结构 (3) 2.3模块调用关系图 (3) 2.4子模块程序流程图 (5) 第三章详细设计 (6) 3.1模块划分 (6) 第四章代码测试 (9) 4.1先来先服务 (9) 4.1最短寻道时间优先 (11) 4.1扫描算法 (12) 第五章心得体会 (13) 第六章致谢 (13) 参考文献 (1) 附源代码 (2)

第一章需求分析 1.1课程设计的简介 这是一个用VC++6.0为工具、C++为编程语言而实现模拟先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、扫描算法(SCAN)的一个磁盘调度程序。该程序设计系统主界面可以灵活选择某种算法并算出磁头移动的总磁道数以及平均磁道数。 1.2课程设计的目的 本课程设计的目的是通过设计一个磁盘调度模拟系统,从而使磁盘调度算法更加形象化,容易使人理解,使磁盘调度的特点更简单明了,能使使用者加深对先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、扫描算法(SCAN)等磁盘调度算法的理解。 1.3磁盘调度主要思想 设备的动态分配算法与进程调度相似,也是基于一定的分配策略的。常用的分配策略有先请求先分配、优先级高者先分配等策略。在多道程序系统中,低效率通常是由于磁盘类旋转设备使用不当造成的。操作系统中,对磁盘的访问要求来自多方面,常常需要排队。这时,对众多的访问要求按一定的次序响应,会直接影响磁盘的工作效率,进而影响系统的性能。访问磁盘的时间因子由3部分构成,它们是查找(查找磁道)时间、等待(旋转等待扇区)时间和数据传输时间,其中查找时间是决定因素。因此,磁盘调度算法先考虑优化查找策略,需要时再优化旋转等待策略。 平均寻道长度(L)为所有磁道所需移动距离之和除以总的所需访问的磁道数(N),即: L=(M1+M2+……+Mi+……+MN)/N。其中Mi为所需访问的磁道号所需移动的磁道数。 启动磁盘执行输入输出操作时,要把移动臂移动到指定的柱面,再等待指定扇区的旋转到磁头位置下,然后让指定的磁头进行读写,完成信息传送。因此,执行一次输入输出所花的时间有:

实验四 磁盘驱动调度算法的模拟

实验四磁盘驱动调度算法的模拟 一.实验内容: 熟悉磁盘的结构以及磁盘的驱动调度算法的模拟,编程实现简单常用的磁盘驱动调度算法:先来先服务(FIFO)、电梯调度算法、最短寻道时间优先算法、扫描(双向扫描)算法、循环扫描算法等。 编程语言建议采用c/c++或Java。模拟程序鼓励采用随机数技术、动态空间分配技术,有条件的最好能用图形界面展现甚至用动画模拟。 实验性质:验证型。 二.实验目的和要求 1)掌握使用一门语言进行磁盘驱动调度算法的模拟; 2)编写程序将磁盘驱动调度算法的过程和结果能以较简明直观的方式展现出来。 三.实验原理、方法和步骤 1. 实验原理 磁盘驱动调度对磁盘的效率有重要影响。磁盘驱动调度算法的好坏直接影响辅助存储器的效率,从而影响计算机系统的整体效率。 常用的磁盘驱动调度算法有: 最简单的磁盘驱动调度算法是先入先出(FIFO)法。这种算法的实质是,总是严格按时间顺序对磁盘请求予以处理。算法实现简单、易于理解并且相对公平,不会发生进程饿死现象。但该算法可能会移动的柱面数较多并且会经常更换移动方向,效率有待提高。 最短寻道时间优先算法:总是优先处理最靠近的请求。该算法移动的柱面距离较小,但可能会经常改变移动方向,并且可能会发生进程饥饿现象。 电梯调度:总是将一个方向上的请求全部处理完后,才改变方向继续处理其他请求。 扫描(双向扫描):总是从最外向最里进行扫描,然后在从最里向最外扫描。该算法与电梯调度算法的区别是电梯调度在没有最外或最里的请求时不会移动到最外或最里柱面,二是扫描算法总是移到最外、最里柱面。 循环扫描(单向扫描):从最外向最里进行柱面请求处理,到最里柱面后,直接跳到最外柱面然后继续向里进行处理。

操作系统实验报告

实验报告 实验课程名称:操作系统 实验地点:南主楼七楼机房 2018—2019学年(一)学期 2018年 9月至 2019 年 1 月 专业: 班级: 学号: 姓名: 指导老师:刘一男

实验一 实验项目:分时系统模拟 实验学时:2实验日期: 2018-10-25 成绩: 实验目的利用程序设计语言模拟分时系统中多个进程按时间片轮转调度算法进行进程调度的过程; 假设有五个进程A,B,C,D,E,它们的到达时间及要求服务的时间分别为:进程名 A B C D E 到达时间0 1 2 3 4 服务时间 4 3 4 2 4 时间片大小为1,利用程序模拟A,B,C,D,E五个进程按时间片轮转的调度及执行过程并计算各进程的周转时间及带权周转时间。 执行过程并计算各进程的周转时间及带权周转时间。 轮转调度:BDACE

(1)修改时间片大小为2,利用程序模拟A,B,C,D,E五个进程按时间片轮转的调度及执行过程并计算各进程的周转时间及带权周转时间。 轮转调度:ADBCE (2)修改时间片大小为4,利用程序模拟A,B,C,D,E五个进程按时间片轮转的调度及执行过程并计算各进程的周转时间及带权周转时间.

顺序:ABCDE 1、思考 时间片的大小对调度算法产生什么影响?对计算机的性能产生什么影响?答:通过对时间片轮转调度算法中进程最后一次执行时间片分配的优化,提出了一种改进的时间片轮转调度算法,该算法具有更好的实时性,同时减少了任务调度次数和进程切换次数,降低了系统开销,提升了CPU的运行效率,使操作系统的性能得到了一定的提高。 A B C D E 时间片为1 周转时间12 9 14 8 13 3 3 3.5 4 3.25 带权周转 时间 时间片为2 周转时间8 12 13 7 13 2 4 3.25 3.5 3.25 带权周转 时间 时间片为4 周转时间 4 6 9 10 13 1 2 2.25 5 3.25 带权周转 时间

磁盘调度算法-电脑资料.

磁盘调度算法 -电脑资料 2019-01-01 磁盘优点 容量很大每位的价格非常低当关掉电源后存储信息不丢失 物理特性 磁盘表面覆盖着磁性物质,信息记录在磁表面上, 。固定头磁盘的每个磁道单独有一个磁头,这样就能使得计算机可以很快地从一个磁道转换到另一个磁道。但是这需要大量的头,设备成本很高。更通用的方式是每个盘面只有一个头,让它从一道移向另一道。这种动头设备需要硬件设备移动头。 磁盘一般用于文件存储,设计原则是:成本低、容量大、速度高。扩大存储容量:a.增加每英寸磁道数目; b. 双面记录。 存取盘块中的信息一般要有三部分时间:系统首先要把磁头移到相应的道上或柱面上,这个时间叫做寻道时间;一旦磁头到达指定磁道,必须等待所需要的扇区转到读/写头下,这个延迟时间叫做旋转延迟时间;最后,信息实际在磁盘和内存之间进行传送也要花费时间,这部分时间叫做传送时间。一次磁盘服务的总时间就是这三者之和。 要使磁盘服务尽可能地快,操作系统要提供合适的调度算法,改善磁盘服务的平均时间。 进程需要和磁盘交换信息时必须要操作系统发出系统调用,对磁盘的请求一般要有下述几部分内容: 1. 输入和输出; 2. 磁盘地址(驱动器、柱面、面号、扇区); 3. 内存地址; 4. 传送长度。 磁盘调度算法

1、先来先服务调度(FCFS) FCFS 算法是优先为最先到达的请求服务。例如,有如下请求磁盘服务队列,要访问的磁道数分别是: 98,183,37,122,14,124,65,67 排在前面的是先到达的请求,假设磁头目前停留在53磁道上,按照先来先服务的算法,接下来磁头的移动顺序依次是: 53—>98—>183—>37—>122—>14—>124—>65—>67 这个过程总共移动了(98-53)+(183-98)+(183-37)+(122-37)+(122-14)+(124-14)+(124-65)+(67-65)=640个磁道 这种调度法产生的磁头移动服务太大,磁头频繁的大幅度移动,容易产生机械振动和误差,对使用寿命有损害。所以,要设计好的算法来减少磁头移动幅度,减少服务时间,改善磁盘的吞吐量。 2、最短寻道时间优先法(SSTF) ??优先服务接近于磁头当前位置的请求。SSTF从本质上将是SJF(最短作业优先算法)调度的形式。使用SSTF调度算法,上面那个请求队列的执行顺序是: ??53—>65—>67—>37—>14—>98—>122—>124—>183 总共移动了236个磁道,比FCFS的三分之一多一点,明显改善了磁盘服务, 《》()。 ??但是这种算法并不是最优的。例如,若把磁头从53道移动到37道(尽管不是靠的最近的),然后移动到14,接下去是65,67,98,122,124,183,总共移动了208个磁道<236。 ??SSTF也可能导致某些请求长期得不到服务(即“饥饿”问题)。如果当前磁头附近总会不断的到来新的请求,那么距离磁头远的请求将会一直等待下去。 3、扫描法(SCAN) 由于请求服务的队列具有动态性质,总会有新的请求到达,因此可采用扫描算法。读/写磁头从磁盘的一端出发,向另一端移动,遇到所需的磁道时就

操作系统实验报告

操作系统实验报告 学生学院计算机学院 专业班级计算机科学与技术3班学号3213005910 学生姓名林虹 指导教师丁国芳 2015 年12月15 日

目录 1 实验一进程调度 (1) 2 实验二银行家算法 (16) 3 实验三动态分区分配方式的模拟 (20) 4 实验四仿真各种磁盘调度算法 (26)

实验一进程调度 1. 实验目的 编写并调试一个模拟的进程调度程序,分别采用“短进程优先”、“时间片轮转”、“高响应比优先”调度算法对随机产生的五个进程进行调度,并比较算法的平均周转时间。以加深对进程的概念及进程调度算法的理解。 2. 实验要求 1.每个进程由一个进程控制块(PCB)表示,进程控制块可以包含如下信息:进程 名、优先数(响应比)、到达时间、需要运行时间(进程的长度)、已运行时间、进 程状态等等(可以根据需要自己设定)。 2.由程序自动生成进程(包括需要的数据,要注意数据的合理范围),第一个进程到 达时间从0开始,其余进程到达时间随机产生。 3.采用时间片轮转调度算法时,进程的运行时间以时间片为单位进行计算。 4.每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种 状态之一。 5.每进行一次调度,程序都要输出一次运行结果:正在运行的进程、就绪队列中的进 程、完成的进程以及各个进程的PCB,以便进行检查。 6.最后计算各调度算法的平均周转时间,并进行比较、分析。 3. 实验内容 a.算法原理 (1)短进程优先调度算法 “短进程优先”调度算法的基本思想是把CPU分配给就绪队列中需要时间最短的进程。 (2)时间片轮转算法 将系统中所有的就绪进程按照FCFS原则,排成一个队列。每次调度时将CPU 分派给队首进程,让其执行一个时间片。时间片的长度从几个ms到几百ms。在一个时间片结束时,发生时钟中断。调度程序据此暂停当前进程的执行,将其送到就绪队列的末尾,并通过上下文切换执行当前的队首进程。进程可以未使用完一个时间片,就出让CPU。 (3)高响应比优先算法 HRRN调度策略同时考虑每个作业的等待时间长短和估计需要的执行时间长短,从中选出响应比最高的作业投入执行。 每个作业完成后要打印该作业的开始运行时刻、完成时刻、周转时间和带权周转时间,这一组作业完成后要计算并打印这组作业的平均周转时间、带权平均周转时间。

操作系统实验 磁盘调度算法

操作系统 实验报告 哈尔滨工程大学 计算机科学与技术学院

第六讲磁盘调度算法 一、实验概述 1. 实验名称 磁盘调度算法 2. 实验目的 (1)通过学习EOS 实现磁盘调度算法的机制,掌握磁盘调度算法执行的条件和时机; (2)观察 EOS 实现的FCFS、SSTF和 SCAN磁盘调度算法,了解常用的磁盘调度算法; (3)编写 CSCAN和 N-Step-SCAN磁盘调度算法,加深对各种扫描算法的理解。 3. 实验类型 验证性+设计性实验 4. 实验内容 (1)验证先来先服务(FCFS)磁盘调度算法; (2)验证最短寻道时间优先(SSTF)磁盘调度算法; (3)验证SSTF算法造成的线程“饥饿”现象; (4)验证扫描(SCAN)磁盘调度算法; (5)改写SCAN算法。 二、实验环境 在OS Lab实验环境的基础上,利用EOS操作系统,由汇编语言及C语言编写代码,对需要的项目进行生成、调试、查看和修改,并通过EOS应用程序使内核从源代码变为可以在虚拟机上使用。 三、实验过程 1. 设计思路和流程图 (1)改写SCAN算法 在已有 SCAN 算法源代码的基础上进行改写,要求不再使用双重循环,而是只遍历一次请求队列中的请求,就可以选中下一个要处理的请求。算法流程图如下图所示。 图 3.1.1 SCAN算法IopDiskSchedule函数流程图(2)编写循环扫描(CSCAN)磁盘调度算法 在已经完成的SCAN算法源代码的基础上进行改写,不再使用全局变量ScanInside 确定磁头移动的方向,而是规定磁头只能从外向内移动。当磁头移动到最内的被访问磁道时,磁头立即移动到最外的被访问磁道,即将最大磁道号紧接着最小磁道号构成循环,进行扫描。算法流程图如下图所示。

磁盘调度算法操作系统的任务之一就是有效地使用硬件对磁盘

8.2 磁盘调度算法 操作系统的任务之一就是有效地使用硬件。对磁盘驱动器来说,满足这一要求意味着要有较快的访问速度和较宽的磁盘带宽。访问时间包括两个主要部分是寻道时间和旋转延迟。寻道时间是磁臂将磁头移动到包含目标扇区的柱面的时间。旋转延迟是磁盘需要将目标扇区转动到磁头下的时间。磁盘带宽是所传递的总的字节数除以从服务请求开始到最后传递结束时的总时间。可以通过使用适当的访问顺序来调度磁盘I/O 请求,提高访问速度和带宽。 每当一个进程需要对磁盘进行I/O 操作,它就向操作系统发出一个系统调用。该调用请求指定了一些信息: ?操作是输入还是输出? ?所传输的磁盘地址是什么? ?所传输的内存地址是什么? ?所传输的扇区数是多少? 如果所需的磁盘驱动器和控制器空闲,那么该请求会马上处理。如果磁盘驱动器或控制器忙,那么任何新的服务请求都会加到该磁盘驱动器的待处理请求队列上。对于一个有多个进程的多道程序设计系统,磁盘队列可能有多个待处理请求。因此,当完成一个请求时,操作系统可以选择处理哪个待处理请求。那么操作系统该如何选择呢?有多个磁盘调度算法可供使用,接下来将会加以讨论 磁盘调度算法用以改善磁盘的平均寻道时间。典型算法有FCFS算法、最短寻道时间优 先算法SSTF、SCAN 算法、C-SCAN 算法。 目前常用的磁盘调度算法有:先来先服务、最短寻道时间优先、扫描算法和循环扫描 (1)先来先服务算法FCFS(First Come First Served )这是一种最简单的磁盘调度算法。它根据进程请求访问磁盘的先后次序进行调度。此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况。但此算法由于未对寻道进行优化,致使平均寻道时间可能较长。 假定有一个磁盘请求队列,其I/O对各柱面上块的请求序列如下:(磁道编号从0- 199)98, 183, 37, 122, 14, 124, 65, 67 如果当前磁头位置位于53,图8.4显示了FCFS调度算法的磁头移动路径,总的磁头移动为640柱面。

电梯调度算法

湖北师范学院 《操作系统》实验报告 学生学号: 2011115010820 学生班级: 1108 学生姓名:汤凯 指导老师:李晓瑾 完成时间: 2013年12月28号

实验三驱动调度 实验内容 模拟电梯调度算法,实现对磁盘的驱动调度。 实验目的 磁盘是一种高速、大容量、旋转型、可直接存取的存储设备。它作为计算机系统的辅助存储器,担负着繁重的输入输出任务,在多道程序设计系统中,往往同时会有若干个要求访问磁盘的输入输出请求等待处理。系统可采用一种策略,尽可能按最佳次序执行要求访问磁盘的诸输入输出请求,这就叫驱动调度,使用的算法称驱动调度算法。驱动调度能降低为若干个输入输出请求服务所需的总时间,从而提高系统效率。本实验模拟设计一个驱动调度程序,观察驱动调度程序的动态运行过程。 实验题目 模拟电梯调度算法,对磁盘进行移臂调度和旋转调度。 数据结构及其说明: const int PCB=100; //定义100个进程 int pcbs_num=0; //记录当前io表的进程个数 typedef struct process //请求io表 { char pname[10]; //进程名 int Cylinder; //柱面号 int Track; //磁道号 int Record; //物理记录号 int Way; }PROCESS; PROCESS pcbs[PCB]; PROCESS a; //记录当前位置(柱面号、物理记录号)采用带头节点的循环链表存

源程序并附上注释: public class DiskDispatchArithmetic { public static ArrayList list = new ArrayList();//io表 public static ArrayList waitlist = new ArrayList();//输入的值不符合时,临时存入此表 static String course = "Null";//定义静态值存放进程名 static int cylinder = 0;//定义静态值存放柱面位置 static int track = 0;//定义静态值存放磁道位置 static int record = 0;//定义静态值存放物理记录位置 static String side = "up";//定义静态值存放当前摆臂方向,初始为up BufferedReader streamin = new BufferedReader( new InputStreamReader(System.in)); public void isBigger() {//通过随机数比较,确定下一步执行何种操作 DiskDispatchArithmetic ds = new DiskDispatchArithmetic(); Scanner sc = new Scanner(System.in); System.out.println("输入随机数:"); //double i = Math.random(); //int i = 1; //int i=0; int i = sc.nextInt(); if (list.isEmpty() && waitlist.isEmpty()) { System.out.println("当前io表为空,等待输入"); ds.toContinue(); }else{ if (i >= 0.5) { System.out.println("随机数为" + i + "大于0.5,执行驱动调度"); ds.Scheduling(); } else { System.out.println("随机数为" + i + "小于0.5,执行接受请求"); ds.Request(); } } } public boolean isHave(int a, int b, int c) { ArrayList list1 = (ArrayList) list.clone(); int flag = 0; for (int i = 0; i < list.size(); i++) { io io = (io) list.get(i);

相关主题
文本预览
相关文档 最新文档