当前位置:文档之家› 利用矩阵理论详细推导MIMO信道容量

利用矩阵理论详细推导MIMO信道容量

利用矩阵理论详细推导MIMO信道容量
利用矩阵理论详细推导MIMO信道容量

利用矩阵理论详细推导MIMO 信道容量

摘要 多输入多输出(MIMO)技术被认为是现代通信技术中的重大突破之一,以其能极大增加系统容量与改善无线链路质量的优点而受到了越来越多的重视与关注。通信信道容量是信道进行无失真传输速率的上界,因此研究MIMO 的信道容量具有巨大的指导意义。本文把矩阵理论知识与MIMO 技术信道容量中的应用紧密结合,首先建立了MIMO 信道模型,利用信息论理论和矩阵理论详细推导出MIMO 信道容量。并得出重要结论。

关键词: MIMO ;信道容量;奇异值分解

一、 引言

MIMO Multiple Input-Multiple Output)是指在通信链路的发送端与接收端均使用多个天线元的传输系统,它能够将传统通信系统中存在的多径因素变成对用户通信性能有利的因素,从而成倍地提高业务传输速率。矩阵理论在通信,自动控制等工程领域里应用广泛,而通信的难点在于信道的处理,因此,矩阵理论与无线信道的研究是一个很好的切入点。目前,MIMO 技术的信道容量和空时编码,空时复用等技术都离不开矩阵理论的应用。

二、 利用矩阵理论详细推导MIMO 信道容量

1) MIMO 信道介绍

MIMO 是多输入多输出系统,当发送信号所占用的带宽足够小的时候,信道可以被认为是平坦的,

这样,MIMO 系统的信道用一个R T

n n ?的复数矩阵H 描述,H 的子元素,j i h 表示从第(1,2,...)R j j n =根发射天线到第(1,2,...)T i i n =根接收天线之间的空间信道衰落系数[1]。如下图所示:

1112121

22212T T R T R R n n n n n n H h h h h h h h h h ??????=????

????

(2.1) 每个符号周期内,发送信号可以用一个1T n ?的列向量12[]T T

i n x x x x x =??????表示,其中i x 表示

在第i 个天线上发送的数据。同时,用一个1R n ?的列向量12[]R T

i n y y y y y =??????表示,其中i y 表示在第i 个天线上发送的数据。对于高斯信道,发射信号的最佳分布也是高斯分布[1]。因此,x 的元素是零均

值独立同分布的高斯变量。发送信号的协方差可以表示为:

{}H xx R E xx =

(2.2)

发送信号的功率可以表示为

()xx P tr R =

(2.3)

接收信号和噪声可以分别用两个1R n ?的列向量y 和n 表示。其中信道噪声是加性噪声,服从循环对称复高斯分布,并且与发射信号x 不相关,假设n 均值为0,功率为2σ。噪声的协方差为:

2

R H nn n R E nn I σ??==??

(2.4)

通过这样一个线性模型,接收信号可以表示为

y Hx n =+ (2.5)

??????????????接收信号的协方差可表示为

()()[]2[]R

H yy H

H

H

H

H

H

H xx n R E yy E Hx n Hx n HE xx H E nn HE xn H E nx HR H I σ=??

=++??

??????=+++??????=+ (2.6)

因为x 与噪声n 不相关,所以[]0H E xn E nx ??+=??。

2) MIMO 信道容量一般公式推导

下面根据信息论知识,我们对MIMO 信道容量做一般性推导。在下面的推导过程中我们假设信道

矩阵H 在接收端已经完全已知,但是它是随机的,因此我们可以得到瞬时信道容量为:[1]

()()()max ,X

x C H I x y ?=

(2.7)

其中,(),I x y 是在已知信道H 的情况下输入x 与输出y 之间的互信息量,有:

()()(),|I x y H y H y x =-

(2.8)

其中,()H y 是y 的信息熵(微分熵),定义:2()()log ()H y p y p y =-

,其中()p y 是y 的概率(概率密度)。()H y 是y 的差分嫡,(|)H y x 是给定x 条件下y 的差分嫡,由于发送信号与噪声之间是独立的,因此有(|)()H y x H n =[1],所以上式可以重新写为:

()()(),I x y H y H n =-

(2.9)

由于噪声概率密度函数确定,所以()H n 为定值,当信道为加性高斯信道时,信源x 服从高斯分布时此时接收信号y 也服从高斯分布,根据信息论理论,此时(,)I x y 取最大,即为信道容量。此时y 和n 的信息熵分别为:[1]

{}

21

2

()log det yy bit H y eR π????= (2.10)

{}

221

2

()log det R n bit H n e I πσ????= (2.11)

所以我们可以得到信道瞬时交互信息(,)I x y ,也即信息容量为:

{}

2222

22221

()log det /det 2

1log det ()/det 21log det 2R R R R R yy n H xx n n n H xx n C H eR e I HR H e I I e I HR H I bit ππσπσπσσσ????=????????????=+????????????

???

???

=+??????????

(2.12)

工程中一般定义信道容量为单位时间内的平均互信息,故定义MIMO 的信道容量:[2]

()1

C C H T

=

(2.13) 其中T 为一个符号周期,根据采样定理,(1/)2T B ≥,其中B 为信号带宽,取(1/)2T B =,代入

(2.13)式,得:[2]

22log det /R H xx n HR H C B I bit s σ???

???

=+

???????

???

(2.14)

这即是MIMO 的信道容量一般公式。

3) 奇异值分解计算MIMO 信道容量

对于MIMO 无线信道,信道是极其复杂的。因此原始的信道矩阵也就显得复杂,不便于分析,而

且一般矩阵不经过处理计算行列式很困难。这就自然想到在信源端对发射信号做某种预处理,使得经过预处理的信号经过的信道变得简单易分析,而且具体实现也变得简单。对于信道矩阵来说,对角矩阵是最简单的,所以自然就想到把信道矩阵分解,利用矩阵理论中的奇异值分解可以达到这种目的。下面就矩阵的奇异值分解来计算MIMO 的信道容量。

由奇异值分解理论,任何一个R T

n n ?的矩阵H 可以写成:[3]

H H UDV = (2.15)

式中,D 是R T n n

?的对角阵,其对角非零元素模值为H 的正奇异值,U 和V 分别为R R

n n ?和

T T

n n ?的酉矩阵。把公式(2.15)代入公式(2.5),得:

H y UDV x n =+

(2.16)

公式(2.16)两边同时左乘酉矩阵H U ,利用H

R

n U U I =,同时令 H y

U y =, H

x V x =即对信源信号x 进行预编码,H n U n = ,得:[3]

y Dx

n =+ (2.17)

根据矩阵理论,矩阵H

HH 的特征值为非负数,非零特征值的个数等于矩阵H 的秩,用r 表示,对

于R T

n n ?的矩阵

H ,秩的最大值min(,)R T m n n =表示矩阵H 代入公式

(2.17)得:

(1,2,...)i i i

y n i r =+= (2.18)

(1,...)i i R

y n i r n ==+ (2.19)

式(2.19)显示,接收元素 (1,...)i R

y i r n =+并不依赖于发射信号,即信道增益为零。另一方面,接收元素 (1,2...,)i y i r =仅仅取决于发射元素 i x ,因此,可以认为,通过式(2.18)和(2.19)得到的等效MIMO

信道是由个去耦平行子信道组成的[4]。其信道增益为矩阵H 的奇异值。可以进一步推导出 i y , i x ,和 i

n 的协方差和迹:

,,H H H

yy xx nn y y x x nn

R U R U R V R V R U R U === (2.20)

()(),()(),()()yy xx nn y y

x x nn tr R tr R tr R tr R tr R tr R === (2.21)

对于接收端已知信道参数,发射端未知,发射端平均分配功率的MIMO 系统。设发射端发射总功

率为T P ,则每个天线发射功率为/T T P n ,此时

{}H T

xx T T

n P R E xx I n ==

(2.22)

根据式(2.20)得:

H

T

xx x x T T

n P R V R V I n ==

(2.23)

然后把根据(2.15)算出H HH 后和(2.23)代入MIMO 信道一般公式(2.14)得:

221

log (1)/r

i T

i T

P C B bit s n λσ==+

∑ (2.24)

式(2.24)可以看出,MIMO 链路的信道容量很大程度上取决于H 的秩r 。矩阵的秩越大,容量也越大。所以,MIMO 正是利用无线信道的多径效应使相距超过半个波长的天线尽量不相关,从而使信道矩阵秩越大,进而在不增加带宽和发射功率的情况下增加系统容量。[4]

下面我们说明信道容量是如何与信道矩阵H 相关的。令min(,)R T m n n =为矩阵H 的秩,定义:

,,H R T

H

R T

H H n n Q HH n n ?>?=?

设(1,2,...)i i m λ=是Q 的特征值,则:

1

det()()m

m i i I Q λλλ=-=-∏

(2.26)

用2

T T

n P σ-代替(2.26)中的λ,得:

2

2

1

det()(1)m

i T

T m i T T p P I Q n n λσ

σ

=+

=+∏ (2.27)

把式(2.27)代入式(2.24)得平均功率分配的MIMO 信道容量:

22

log [det()]/T m T P C B I Q bit s n σ

=+

(2.28)

T

n 逐渐增大,使得

1

m T

Q I n →,此时,可以得到信道容量的近似表达式:

22

log (1)/T

P C Bm bit s σ=+

(2.29)

由此可以看出当发射天线数目很多时,信道容量随m 的增大而线性增大,也就是说可以在不增加带宽

和发射功率的情况下成倍的提高信道容量。

参考文献:

1 梁毓锋.MIMO无线通信系统的信道容量分析:[D].大连:大连海事大学,2008

2 Thomas M.Cover,Joy A.Thomas(著),阮吉寿,张华(译).信息论基础[M].北京:机械工业出版社,2009

3 孙丹,张晓光.MIMO系统信道容量研究[J].现代电子技术,2006(19):4-6

4 刘冰.MIMO系统的信道容量分析[J].微计算机信息,2005,21(12-3):129-131

什么是MIMO-OFDM技术

什么是MIMO-OFDM技术 什么是MIMO-OFDM技术 摘要 第四代移动通信提供高的数据传输速率,而MIMO和OFDM提高了频谱效率,从而提供高传输速率和系统容量的技术。两者的结合已经成为第四代移动通信技术研究中的热点。通过这两种技术的优势互补,可以为系统提供高传输速率,同时也能提高系统容量,降低成本。文中详细介绍了这两种技术及信道估计。 图1. 采用MIMO-OFDM技术的新标准。 一、引言 目前没有第四代移动通信的确切定义,但比较认同的解释是:“第四代移动通信的概念可称为宽带接入和分布网络,具有非对称的和超过2Mbit/s的数据传输能力。它包括宽带无线固定接入、宽带无线局域网、移动宽带系统、互操作的广播网络和卫星系统等。此外,第四代移动通信系统将是多功能集成的宽带移动通信系统,可以提供的数据传输速率高达100Mbit/s甚至更高,也是宽带接入IP系统”。简单而言,4G是一种超高速无线网络,一种不需要电缆的信息超级高速公路。这样在有限的频谱资源上实现高速率和大容量,需要频谱效率极高的技术。MIMO技术充分开发空间资源,利用多个天线实现多发多收,在不需要增加频谱资源和天线发送功率的情况下,可以成倍地提高信道容量。OFDM技术是多载波传输的一种,其多载波之间相互正交,可以高效地利用频谱资源,另外,OFDM将总带宽分

割为若干个窄带子载波可以有效地抵抗频率选择性衰落。因此充分开发这两种技术的潜力,将二者结合起来可以成为新一代移动通信核心技术的解决方案,下面详细介绍这两种技术及其二者的结合方案。 二、MIMO技术 MIMO(Multiple-InputMultiple-Output)系统示意图如图1所示,该技术最早是由Marconi于1908年提出的,它利用多天线来抑制信道衰落。MIMO技术是指在发射端和接收端分别设置多副发射天线和接收天线,其出发点是将多发送天线与多接收天线相结合以改善每个用户的通信质量(如差错率)或提高通信效率(如数据速率)。MIMO技术实质上是为系统提供空间复用增益和空间分集增益,空间复用技术可以大大提高信道容量,而空间分集则可以提高信道的可靠性,降低信道误码率。通常,多径要引起衰落,因而被视为有害因素,然而对于MIMO来说,多径可以作为一个有利因素加以利用,MIMO技术的关键是能够将传统通信系统中存在的多径衰落影响因素变成对用户通信性能有利的增强因素,MIMO 技术有效地利用随机衰落和可能存在的多径传播来成倍地提高业务传输速率,因此它能够在不增加所占用的信号带宽的前提下使无线通信的性能改善几个数量级。假定发送端有N个发送天线,有M个接收天线,在收发天线之间形成M×N信道矩阵H,在某一时刻t,信道矩阵为: 其中H的元素是任意一对收发天线之间的增益。对于信道矩阵参数确定的MIMO信 道,假定发送端不知道信道信息,总的发送功率为,与发送天线的数量M无关;接收端 的噪声用N×1向量n表示,是独立零均值高斯复变量,各个接收天线的噪声功率均为;发送功率平均分配到每一个发送天线上,则容量公式为: 令M不变,增大N,使得,这时可以得到容量的近似表达式:

MIMO在LTE中的应用

为了满足系统中高速数据传输速率和高系统容量方面的需求,LTE系统的下行MIMO技术支持2×2的基本天线配臵。下行MIMO技术主要包括:空间分集、空间复用及波束成形3大类。与下行MIMO相同,LTE系统上行MIMO技术也包括空间分集和空间复用。在LTE系统中,应用MIMO技术的上行基本天线配臵为1×2,即一根发送天线和两根接收天线。考虑到终端实现复杂度的问题,目前对于上行并不支持一个终端同时使用两根天线进行信号发送,即只考虑存在单一上行传输链路的情况。因此,在当前阶段上行仅仅支持上行天线选择和多用户MIMO两种方案。 空间复用 空间复用的主要原理是利用空间信道的弱相关性,通过在多个相互独立的空间信道上传输不同的数据流,从而提高数据传输的峰值速率。LTE系统中空间复用技术包括:开环空间复用和闭环空间复用。 ●开环空间复用:LTE系统支持基于多码字的空间复用传输。所谓多码字,即用于空间复用传输的多层数据来自于多个不同的独立进行信道编码的数据流,每个码字可以独立地进行速率控制。 ●闭环空间复用:即所谓的线性预编码技术。 ●线性预编码技术:作用是将天线域的处理转化为波束域进行处理,在发射端利用已知的空间信道信息进行预处理操作,从而进一步提高用户和系统的吞吐量。线性预编码技术可以按其预编码矩阵的获取方式划分为两大类:非码本的预编码和基于码本的预编码。 非码本的预编码方式:对于非码本的预编码方式,预编码矩阵中发射端获得,发射端利用预测的信道状态信息,进行预编码矩阵计算,常见的预编码矩阵计算方法有奇异值分解、均匀信道分解等,其中奇异值分解的方案最为常用。对于非码本的预编码方式,发射端有多种方式可以获得空间信道状态信息,如直接反馈信道、差分反馈、利用TDD信道对称性等。 基于码本的预编码方式:对于基于码本的预编码方式,预编码矩阵在接收端获得,接收端利用预测的信道状态信息,在预定的预编码矩阵码本中进行预编码矩阵的选择,并将选定的预编码矩阵的序号反馈至发射端。目前,LTE采用的码本构建方式基于Householder变换的码本。MIMO系统的空间复用原理示意图如下所示:

矩阵理论中的矩阵分析的实际应用论文

矩阵分析在同步捕获性能研究新应用 摘要:该文提出了一种利用概率转移矩阵计算捕获传输函数的方法,通过将以往分析方法中的流程图转换为概率转移矩阵,仅需知道一步转移概率矩阵,利用现代计算机编程语言(如MAPLE,MATLAB等)的符号运算功能,即可得到捕获系统的传输函数:通过对传输函数求导,可计算平均捕获时间。矩阵分析方法可完整地计算出捕获系统的传输函数,可弥补流程图方法在分析传统连续搜索捕获方案的传输函数时所忽略的项;可纠正流程图方法在分 析非连续搜索捕获方案的传输函数时所引起的误差。 关键词:CDMA;矩阵分析;传输函数;流程图;捕获 A Novel Acquisition Performance Evaluation Approach Based on Matrix Analysis Abstract:A novel acquisition performance analysis approach is proposed based on matrix analysis.Given the first step transition probability matrix,the transfer function of acquisition system can be obtained by utilizing the symbol operation function of computer programming such as MAPLE,MATLAB and so on,and the mean acquisition time can be computed by differentiating the transfer function.The transfer function of acquisition system can be computed perfectly by matrix analysis,it not only complements the items neglected in that of conventional serial acquisition scheme but also corrects the error items in that of nonconsecutive acquisition scheme.

MIMO系统检测仿真

一、引言 随着无线通信业务的发展,人们对数据率的要求越来越高,而传统通信方式通过使用某些信道编码方法已接近香农极限,要想再提高频谱利用率已经很困难。在这种情况下,多输入多输出(MIMO ,Multiple Input Multiple Output )技术由于能同时带来分集增益和空间复用增益,成为未来移动通信系统的有力竞争方案。MIMO 通信系统的检测器是MIMO 技术实用过程中关键的一个模块,选择一种检测性能好而且便于硬件实现的检测方法是人们追求的目标。 传统的MIMO 检查算法主要有:最大似然(ML ,Maximum Likelihood )检测算法、迫零(ZF ,Zero Forcing )检测算法、最小均方误差(MMSE ,Minimum Mean-Square Error )检测算法、V-BLAST (ZF-OSIC )检测算法和基于QR 分解的检测算法等。此外,通过把在给定格中寻求最短向量的球形解码思想应用于MIMO 系统,形成了MIMO 系统的球形解码算法,在保持优良检测性能的同时,大大减小了计算复杂度。本次课程设计主要针对最大似然算法,迫零算法和最小均方误差算法进行仿真和性能仿真比较。 二、MIMO 系统 MIMO 通信系统可以定义为收发两端分别采用多个天线或阵列天线的无线通信系统。MIMO 的多输入多输出是针对多径无线传输信道而言的。 考虑n T 根发射天线n R 根接收天线的MIMO 系统,如下图所示,数据流被分成n T 个子数据流,每个子流通过星座点映射后送给发射天线。分别从个发射天线发射出去,再经多径传输信道后由n R 个接收天线接收,同时用接收到的信号进行信道估计得到信道参数值,然后通过一定的检测算法处理分解出子信息流。因为n T 个发射天线同时发射子信息流,各发射信号只占用同一频带,并未增加带宽,达到提高频谱利用率的目的,同时多个并行空间也实现了更高的数据传输速率。 在接收端的一根天线会收到每根发送天线送出的信号,将所有接收天线收到的符号作为一个矢量12(,,)R T n x x x x =…,表示,那么x Hs n =+,12(,,)T T n s s s =…,s 是发射信号矢量,H是R T n n ?维的矩阵,其元素,j i h 是发射天线(1,2,,)T i i n =…到接收天线

MIMO系统中的天线选择技术

MIMO系统中的天线选择技术 作者:樊冰,周雪芳,孙文胜时间:2007-04-11 来源: 摘要:MIMO系统是无线通信领域的研究热点,他能够极大地提高通信系统的容量和频谱利用率。然而使用多个射频的MIMO系统增加了天线的体积、功率和硬件,从而增加了成本。因此寻找具有MIMO天线优点且低价格、低复杂度的最优天线选择极具吸引力。总结了天线选择的方案、介绍了两类关键实现算法和最新研究进展,并在性能上进行分析比较,最后指出了该技术的实际应用问题。 关键词:MIMO;天线选择;空时编码;无线通信 引言 随着无线通信的迅猛发展,人们对无线通信业务的类型和质量的要求越来越高。在当前频谱资源下提高通信速率和可靠性的办法之一就是使用多个发送和多个接收天线,也就是多输入多输出(MIMO)的通信系统。由于MIMO系统不可避免地要在发送端和接收端设置多副天线,导致其射频链路的硬件成本和通信双方为保持信道的非相关性所需空间的局限性(尤其是移动终端),以及天线数目的增加导致的空时码编解码的复杂性都在一定程度上限制了MIMO系统的应用,因此如何才能做到既要保持多天线系统较高的频谱效率和较高的可靠性,又要降低系统的复杂度和成本已逐渐成为人们的研究热点。目前,一种较有前景的技术就是在发送端或者接收端进行天线选择,用以克服MIMO系统的上述缺点。 天线选择方案 最优天线选择准则可分为2种:(1)以最大化多天线提供的分集增益提高传输质量;(2)以最大化多天线提供的容量来提高传输效率。一般来说,天线选择既可以在发送端进行,也可以在接收端进行,或者收发两端同时进行,他们对MIMO系统的性能影响不同,因此要视具体情况而定。 接收天线选择 接收天线选择与RAKE接收提供的类似,接收机可收到发送信号的几个版本,每个都经历了不同的复数衰落系数和噪声。假接收机有N个接收天线,要从N个天线选择n个接收,经过空间复用恢复原始数据输出。系统框图如图1所示。

信道容量的计算

§4.2信道容量的计算 这里,我们介绍一般离散信道的信道容量计算方法,根据信道容量的定义,就是在固定信道的条件下,对所有可能的输入概率分布)(x P 求平均互信息的极大值。前面已知()Y X I ;是输入概率分布的上凸函数,所以极大值一定存在。而);(Y X I 是r 个变量 )}(),(),({21r x p x p x p 的多元函数。并且满足1)(1 =∑=r i i x p 。所以可用拉格朗日乘子法来 计算这个条件极值。引入一个函数:∑-=i i x p Y X I )();(λ φ解方程组 0) (] )();([) (=∑?-???i i i i x p x p Y X I x p λ φ 1)(=∑i i x p (4.2.1) 可以先解出达到极值的概率分布和拉格朗日乘子λ的值,然后在解出信道容量C 。因为 ) () (log )()();(11 i i i i i r i s j i y p x y Q x y Q x p Y X I ∑∑=== 而)()()(1 i i r i i i x y Q x p y p ∑== ,所以 e e y p y p i i i i i y p x y Q i x p i x p l o g l o g ))(ln ()(log ) ()()() (==????。 解(4.2.1)式有 0log )()()()()()(log )(111=--∑∑∑===λe y p x y Q x y Q x p y p x y Q x y Q i i i i i r i s j i i i i s j i i (对r i ,,2,1 =都成立) 又因为 )()()(1j k k r k k y p x y Q x p =∑= r i x y Q s j i j ,,2,1,1)(1 ==∑= 所以(4.2.1)式方程组可以转化为 ),,2,1(log ) ()(log )(1r i e y p x y Q x y Q j i j s j i j =+=∑=λ 1)(1 =∑=r i i x p

MIMO系统的原理及容量分析

MIMO 系统的原理及容量分析 张大朋 (班级:011291,学号:01129016) Email:captaindp@https://www.doczj.com/doc/341353497.html, 电话:187xxxxxxxx Project website: 摘 要:本文简要讨论了无线通信系统中多输入多输出(Multiple Input Multiple Output,MIMO )这一技术的原理及性能。通过分析MIMO 系统的原理和在平坦衰落信道与频率选择性衰落信道条件下的容量,及与传统的单输入多输出(Single Input Multiple Output,SIMO )系统容量的比较,论证了这一技术对无线通信的系统容量的提高。 关键词:MIMO ;系统容量;无线通信 Principle and Capacity Analysis of MIMO System Dapeng Zhang (Class:011291,Student No:01129016) Email: captaindp@https://www.doczj.com/doc/341353497.html, Telephone number:187xxxxxxxx Project website: Abstract:This article briefly discusses the instrument and performance of Multiple-Input Multiple-Output( MIMO) in wireless communication system.By analyzing the principle and the performance of MIMO systems in the condition of flat fading channel and frequency selective fading channel capacity and comparing MIMO with Single Input Multiple Output(SIMO) system,proving that this technology improved the capacity of wireless communications. Key words:MIMO;system capacity;wireless communications 1 引言 在传统的无线通信系统中,发射端和接收端通常是各使用一根天线,这种单天线系统也称为单输入和单输出(Single Input Single Output ,SISO )。对于这样的系统,C.E.Shannon (1916-2001)于1948年在《通信的数学理论》]1[中提出了一个信道容量的计算公式:)/1(log 2N S B C +=,其中B 代表信道带宽,N S /代表接收端信噪比。用B 归一化后,得到的带宽利用率)/1(log 2N S +=η,它确定了在有噪声的信道中进行可靠通信的上限速率。以后的电信工作者无论使用怎样的调制方案和信道编码方法,只能一点点地接近它,却无超越它,Shannon 速率成了现代无线通信发展的一大瓶颈。提高频谱使用效率的一种重要方法是采用分集技术。单输入多输出(Single Input Multiple Output,SIMO )系统采用最佳合并的接收分集技术,通常能够改善接收端信噪比(Signal Noise Ratio ,SNR ),从而提高信道的容量和频谱的使用效率。在多输入单输出(Multiple Input Single Output,MISO )系统,如果发射端不知道信道的状态信息,无法在发射天线中采用波束形成技术和自适应分配发射功率,信道容量的提高不明显。SIMO 和MISO 技术的发展自然演变成多输入多输出(Multiple Input Multiple Output ,MIMO )技术,即在无线链路的两端都使用多根天线,Bell 实验室的学者E.Telatar ]2[和J.Foshinin ]3[分别证明了MIMO 系统与SIMO 和MISO 系统相比,可以取得巨大的信道容量,也突破了传统的SISO 信道容量的瓶颈,将信道容量提升了几个数量级,是

矩阵分析在通信领域的应用论文

矩阵分析在通信领域的应用学院:电气与电子工程学院 学号:____201606001____ 姓名:___江诚____

矩阵分析在通信领域的应用 【摘要】矩阵是数学的基本概念之一,也是线性代数的核心内容。矩阵广泛运用于各个领域,如数学建模、密码学、化学、通信和计算机科学等,解决了大量的实际问题。本文主要介绍矩阵在通过信领域的应用,如:在保密通信中,应用逆矩阵对通信的信息进行加密;在信息论中,利用矩阵理论计算信源熵、信道容量等;在信息论的信道编码中,利用监督矩阵,生成矩阵,对信道中的信息进行编码,利用错误图样对信道传输的信息进行纠正;此外,矩阵分析在MIMO技术这个模块中也有着很重要的应用,基本可以说矩阵分析是MIMO技术研究的基础。关键词:矩阵;保密通信;信道容量;信道编码;MIMO 1、引言 随着科技快速稳健的发展,通信技术也得到了飞速的发展,人们对通信的要求也不断提高,不仅要求通信的实时性、有效性,还要求通信的保密性。而现实环境中,由于噪声的影响,常常使通信出现异常,这就要求人们对接收到的信号能够更好的实现检错纠错。此外,在频谱资源的匮乏己经成为实现高速可靠传输通信系统的瓶颈。一方面,是可用的频谱有限;另一方面,是所使用 的频谱利用率低下。因此,提高频谱利用率就成为解决实际问题的重要手段。多进多出(MIMO)[1]技术即利用多副发射天线和多副接收天线进行无线传输的 技术,该技术能够很好的解决频谱利用率的问题。然而对以上通信中存在的问题的分析和研究都需要用到矩阵理论的知识,本文把矩阵理论和其在通信领域的应用紧密结合,通过建立一些简单的分析模型,利用矩阵知识将通信领域很多复杂的计算和推导变得简单明了。 2、矩阵在通信领域中的应用 2.1 矩阵在保密通信中的应用[2] 保密通信是当今信息时代的一个非常重要的课题, 而逆矩阵正好在这一领域有其应用。我们可以用逆矩阵[3][4]所传递的明文消息进行加密(即密文消息),然后再发给接收方,而接收方则可以采用相对应的某种逆运算将密文消息编译成明文。

实验三 信道容量计算

实验三信道容量计算 一、实验目的: 了解对称信道与非对称信道容量的计算方法。 二、实验原理: 信道容量是信息传输率的极限,当信息传输率小于信道容量时,通过信道编码,能够实现几乎无失真的数据传输;当数据分布满足最佳分布时,实现信源与信道的匹配,使得信息传输率能够达到信道容量。本实验利用信道容量的算法,使用计算机完成信道容量的计算。 实验采用迭代算法计算信道容量,即:设DMC的转移概率pyx(i,j),p(i)是任意给定的一组初始给定输入分布,开始为等概率分布,以后逐次迭代更新p(i)的取值。其所有分量P (i)均不为0。按照如下方法进行操作: 具体方法: 1、计算q(j)=∑ i j i pyx i p) ,( *)(,pyx(i,j)为信道转移概率 2、计算a(i) 先算中间变量d(i)=∑ j j q j i pyx j i pyx) ( /) ,( log( *) ,( 然后,a(i)=exp(d(i)) 3、计算中间变量U=∑ i i p i a)( *)( 4、计算IL=log2(u) 5、计算IU=log2(max(a(i)) 6、当IU-IL>ε(ε为设定的迭代精度)时,进入以下循环,否则输出迭代次数n,信道容量C=IU计算结果,最佳分布p(i)。 ①重新计算p(i)=p(i)*a(i)/U ②计算q(j),方法同1 ③计算a(i),方法同2 ④计算中间变量U=∑ i i p i a)( *)( ⑤计算IL=log2(u) ⑥计算IU=log2(max(a(i)) ⑦计次变量n=n+1

返回6判断循环条件是否满足。 四、实验内容: 假设离散无记忆二元信道如图所示,编程,完成下列信道容量的计算 2e 1. 令120.1e e p p ==和120.01e e p p ==,先计算出信道转移矩阵,分别计算该对称信道的信道容量和最佳分布,将用程序计算的结果与用对称信道容量计算公式的结果进行比较,并贴到实验报告上。 2. 令10.15e p =,20.1e p =和10.075e p =20.01e p =,分别计算该信道的信道容量和最佳分布; 四、实验要求: 在实验报告中给出源代码,写出信道对应的条件转移矩阵,计算出相应结果。并定性讨论信道容量与信道参数之间的关系。

矩阵分析在通信中的应用.docx

矩阵论在通信领域中的应用 基于多输入多输出技术( MIMO )信道容量的分析 1 背景分析 频谱资源的匮乏己经成为实现高速可靠传输通信系统的瓶颈。一方面,是可用的频谱有限; 另一方面,是所使用的频谱利用率低下。因此,提高频谱利用率就成为解决实际问题的重要手段。多进多出(MlMo)技术即利用多副发射天线和多副接收天线进行无线传输的技术的提出很好地解决了这个问题。 多输入多输出(MIMO)技术能极大增加系统容量与改善无线链路质量的优点。通信信道容量是信道进行无失真传输速率的上界,因此研究MIMO勺信道容量具 有巨大的指导意义。但是对信道容量的推导分析是一个很复杂的过程,但是应用矩阵的知识进行分析能很好的解决这个问题,本文把矩阵理论知识与MlMO技术信道容量中的应用紧密结合,首先建立了MIMO言道模型,利用信息论理论和矩 阵理论建立系统模型详细推导出MlMO言道容量,通过程序仿真反应实际情况,可以更直观正确的得出重要结论,这些结论的得出没有矩阵的知识是很难实现的。 2 问题的提出 基于MlMO勺无线通信理论和传输技术显示了巨大的潜力和发展前景。MlMO 技术的核心是空时信号处理,利用在空间中分布的多个天线将时间域和空间域结合起来进行信号处理,有效地利用了信道的随机衰落和多径传播来成倍的提高传输速率,改善传输质量和提高系统容量,能在不额外增加信号带宽的前提下带来无线通信性能上几个数量级的提高。目前对MIMc技术的应用主要集中在以空时编码(STC,Space-Time COdeS)为典型的空间分集(diversity) 和以BLAST(Bell LAyered Space-Time architecture) 为典型的空间复用(multiplexing) 两个方面。MIMO作为未来一代宽带无线通信系统的框架技术,是实现充分利用空间资源以提高频谱利用率的一个必然途径。 可问题是,MlMO S统大容量的实现和系统其它性能的提高以及MlMO S统中使用的各种信号处理算法的性能优劣都极大地依赖于MlMO言道的特性,特别是各个天线之间的相关

MIMO系统原理与标准概述.

MIMO系统原理与标准概述 【文章摘要】在过去几年中,无线业务变得越来越重要,同时对更高网络容量和更高性能的需求不断增长。几种选择方式如更高带宽、优化的调制方式甚至代码复用系统实际上提高频谱效率的潜力有限。MIMO系统通过采用天线阵列,利用空间复用技术来提高所使用带宽的效率。 对更高网络容量和更高无线网络性能的需求是不变的。多输入多输出(MIMO)系统能极大地改善频谱效率,因此MIMO将在很多未来的无线通信系统中扮演重要角色。本文将概述MIMO系统的原理和这些系统的标准化。 在过去几年中,无线业务变得越来越重要,同时对更高网络容量和更高性能的需求不断增长。几种选择方式如更高带宽、优化的调制方式甚至代码复用系统实际上提高频谱效率的潜力有限。MIMO系统通过采用天线阵列,利用空间复用技术来提高所使用带宽的效率。 MIMO系统利用来自一个信道的多个输入和多个输出。这些系统是用空间分集和空间复用定义的。空间分集分为Rx和Tx分集。信号的副本从另外一个天线发送或在多个天线处接收。采用空间复用,系统能在一个频率上同时传输一个以上的空间数据流。MIMO是在802.11n、802.16-2004和802.16e以及3GPP中制定的。包含MIMO的更新的标准是IEEE802.20和802.22。本应用笔记将概述MIMO系统的原理以及这些系统的标准化。本文将用到WCDMA、OFDM和天线阵列的基础知识。 MIMO信道 非MIMO系统用几个频率通过多个信道链接。MIMO信道具有多个链路,工作在相同的频率。该技术的挑战是所有信号路径的分离和均衡。信道模型包括具有直接和间接信道分量的H矩阵。直接分量(例如h11)描述信道平坦度,而间接分量(例如h21)代表信道隔离。发送信号用s代表,接收信号用r代表。时间不变的窄带信道定义为: 了解H对于解码来说是必要的,并通过一个已知的训练序列估计。如果接收器将信道近似值发送到发送器,则可以用来进行预编码。预编码能改善MIMO性能。 香农推出了下列公式,可以计算理论信道容量。

寻呼空口信道容量及信道容量计算

寻呼空口信道容量及FACH 信道 容量计算方法

目录 1寻呼容量计算方法 (2) 1.1现网理论容量计算 (2) 1.2实际网络环境下的容量计算 (3) 2寻呼容量扩容方案 (3) 2.1寻呼拥塞产生的原因 (3) 2.2寻呼容量预警机制 (4) 2.3现网容量评估 (4) 2.4空口寻呼扩容方案 (5) 2.4.1方案原理 (5) 2.4.2目标容量 (6) 3FACH信道容量评估 (7)

1寻呼容量计算方法 首先需要明确寻呼容量的单位是个/时间/小区,也就是说衡量一个RNC支持多大的寻呼量是以小区为标准的,比如某RNC支持的寻呼容量应为XX个/小时/小区或者XX个/秒/小区。 RNC设备支持的理论寻呼量为45万TMSI/小时/小区,实际每小区支持的寻呼容量则取决于空口的寻呼容量配置。 空口寻呼容量配置计算方法如下(以小区为参考单位): PCH寻呼能力计算公式为:Ntfs×RoundDown[(TBSize-7)/Lue]×Npch/(Nr×Tpbp) IMSI寻呼时, Ntfs×RoundDown[(TBSize-7)/72]×Npch/(Nr×Tpbp) TMSI/PTMSI寻呼时,Ntfs×RoundDown[(TBSize-7)/40]×Npch/(Nr×T pbp) 注:RoundDown为向下取整。 如果空口环境不好,存在大量重传的时候,则上面的公式需要再除以(1+Nr),寻呼容量减半,通常情况下不考虑重传。 1.1现网理论容量计算 除西安网络进行寻呼信道扩容外,现网目前各项空口寻呼信道参数配置如下表: 协议参数说明备注现网配置 Ntfs PCH传输格式中 240bit块的个数(一 个寻呼子信道承载) 传输块个数 一般配置为0、1。Ntf与PCH所在 的SCCPCH的码道数目相关。 1 Tbsize PCH传输块大小240 Npch 每个寻呼块配置的寻 呼子信道数目 协议规定Npch<=8 8 Nr 重复因子相同寻呼的重发次数 1 Tpbp PICH的寻呼周期重复周期/ Tpbp 640ms/320ms 640

矩阵变换及应用开题报告

鞍山师范学院 数学系13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号:30 指导教师:裴银淑 2013年12月26日

一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义: 矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词,他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容,在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金斯大学的RogerA.Horn和威廉姆和玛丽学院的CharlesR.Johnson联合编著的《矩阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出了巨大贡献。 2 、本人对以上综述的评价:

利用矩阵理论详细推导MIMO信道容量

利用矩阵理论详细推导MIMO 信道容量 摘要 多输入多输出(MIMO)技术被认为是现代通信技术中的重大突破之一,以其能极大增加系统容量与改善无线链路质量的优点而受到了越来越多的重视与关注。通信信道容量是信道进行无失真传输速率的上界,因此研究MIMO 的信道容量具有巨大的指导意义。本文把矩阵理论知识与MIMO 技术信道容量中的应用紧密结合,首先建立了MIMO 信道模型,利用信息论理论和矩阵理论详细推导出MIMO 信道容量。并得出重要结论。 关键词: MIMO ;信道容量;奇异值分解 一、 引言 MIMO Multiple Input-Multiple Output)是指在通信链路的发送端与接收端均使用多个天线元的传输系统,它能够将传统通信系统中存在的多径因素变成对用户通信性能有利的因素,从而成倍地提高业务传输速率。矩阵理论在通信,自动控制等工程领域里应用广泛,而通信的难点在于信道的处理,因此,矩阵理论与无线信道的研究是一个很好的切入点。目前,MIMO 技术的信道容量和空时编码,空时复用等技术都离不开矩阵理论的应用。 二、 利用矩阵理论详细推导MIMO 信道容量 1) MIMO 信道介绍 MIMO 是多输入多输出系统,当发送信号所占用的带宽足够小的时候,信道可以被认为是平坦的, 这样,MIMO 系统的信道用一个R T n n ?的复数矩阵H 描述,H 的子元素,j i h 表示从第(1,2,...)R j j n =根发射天线到第(1,2,...)T i i n =根接收天线之间的空间信道衰落系数[1]。如下图所示: 1112121 22212T T R T R R n n n n n n H h h h h h h h h h ??????=???? ???? (2.1) 每个符号周期内,发送信号可以用一个1T n ?的列向量12[]T T i n x x x x x =??????表示,其中i x 表示 在第i 个天线上发送的数据。同时,用一个1R n ?的列向量12[]R T i n y y y y y =??????表示,其中i y 表示在第i 个天线上发送的数据。对于高斯信道,发射信号的最佳分布也是高斯分布[1]。因此,x 的元素是零均 值独立同分布的高斯变量。发送信号的协方差可以表示为: {}H xx R E xx = (2.2) 发送信号的功率可以表示为 ()xx P tr R = (2.3) 接收信号和噪声可以分别用两个1R n ?的列向量y 和n 表示。其中信道噪声是加性噪声,服从循环对称复高斯分布,并且与发射信号x 不相关,假设n 均值为0,功率为2σ。噪声的协方差为: 2 R H nn n R E nn I σ??==?? (2.4) 通过这样一个线性模型,接收信号可以表示为 y Hx n =+ (2.5)

信道容量实验报告

湖南大学 信息科学与工程学院 实验报告 实验名称信道容量的迭代算法课程名称信息论与编码 第1页共9页

1.实验目的 (1)进一步熟悉信道容量的迭代算法; (2)学习如何将复杂的公式转化为程序; (3)掌握C 语言数值计算程序的设计和调试技术。 2、实验方法 硬件:pc 机 开发平台:visual c++软件 编程语言:c 语言 3、实验要求 (1)已知:信源符号个数r 、信宿符号个数s 、信道转移概率矩阵P 。 (2)输入:任意的一个信道转移概率矩阵。信源符号个数、信宿符号个数和每 个具体的转移概率在运行时从键盘输入。 (3)输出:最佳信源分布P*,信道容量C 。 4.算法分析 1:procedure CHANNEL CAPACITY(r,s,(ji p )) 2:initialize:信源分布i p =1/r ,相对误差门限σ,C=—∞ 3:repeat 4: 5: 6: C 221 1 log [exp(log )] r s ji ij r j p φ==∑∑ 7:until C C σ ?≤ 8:output P*= ()i r p ,C 9:end procedure 21 21 1 exp(log ) exp(log ) s ji ij j r s ji ij r j p p φφ===∑∑∑i p 1 i ji r i ji i p p p p =∑ij φ

5.程序调试 1、头文件引入出错 f:\visualc++\channel\cpp1.cpp(4) : fatal error C1083: Cannot open include file: 'unistd.h': No such file or directory ————#include 纠错://#include f:\visualc++\channel\cpp1.cpp(5) : fatal error C1083: Cannot open include file: 'values.h': No such file or directory ————#include 纠错://#include 2、变量赋值错误 f:\visualc++\channel\cpp1.cpp(17) : error C2065: 'ij' : undeclared identifier f:\visualc++\channel\cpp1.cpp(17) : error C2440: 'initializing' : cannot convert from 'int' to 'float ** ' Conversion from integral type to pointer type requires reinterpret_cast, C-style cast or function-style cast ————float **phi_ij=ij=NULL; 纠错:float **phi_ij=NULL; 3、常量定义错误 f:\visualc++\channel\cpp1.cpp(40) : error C2143: syntax error : missing ';' before 'for' ————for(i=0;iDELTA) f:\visualc++\channel\Cpp1.cpp(84) : error C2021: expected exponent value, not ' ' ————if(fabs(p_j)>=DELTA) f:\visualc++\channel\Cpp1.cpp(100) : error C2021: expected exponent value, not ' ' ————if(fabs(phi_ij[i][j])>=DELTA) f:\visualc++\channel\Cpp1.cpp(116) : error C2021: expected exponent value, not ' ' ————while(fabs(C-C_pre)/C>DELTA); 纠错:#define DELTA 0.000001; F:\visualc++\channel\Cpp1.cpp(68) : error C2065: 'MAXFLOAT' : undeclared identifier F:\visualc++\channel\Cpp1.cpp(68) : warning C4244: '=' : conversion from 'int' to 'float', possible loss of data ————C=-MAXFLOAT; 纠错:#define MAXFLOAT 1000000; 3、引用中文逗号 f:\visualc++\channel\cpp1.cpp(60) : error C2018: unknown character '0xa1' f:\visualc++\channel\cpp1.cpp(60) : error C2018: unknown character '0xb1' f:\visualc++\channel\cpp1.cpp(60) : error C2065: 'Starting' : undeclared identifier f:\visualc++\channel\cpp1.cpp(60) : error C2059: syntax error : '.'

矩阵分解及其应用

《线性代数与矩阵分析》课程小论文 矩阵分解及其应用 学生姓名:****** 专业:******* 学号:******* 指导教师:******** 2015年12月

Little Paper about the Course of "Linear Algebra and Matrix Analysis" Matrix Decomposition and its Application Candidate:****** Major:********* StudentID:****** Supervisor:****** 12,2015

中文摘要 将特定类型的矩阵拆解为几个矩阵的乘机称为矩阵的分解。本文主要介绍几种矩阵的分解方法,它们分别是矩阵的等价分解、三角分解、谱分解、奇异值分解和 Fitting 分解等。矩阵的分解理论和方法是矩阵分析中重要的部分,在求解矩阵的特征值、解线性方程组以及实际工程中有着广泛的运用。因此,本文将介绍矩阵等价分解、三角分解、奇异值分解的理论运用以及三角分解的工程运用。 关键词:等价分解,三角分解,奇异值分解,运用

Abstract Many particular types of matrix are split into the product of a matrix of several matrices, which is called decomposition of matrix. In this paper, we introduce some methods of matrix decomposition, which are equivalent decomposition, triangular decomposition, spectral decomposition, singular value decomposition, Fitting decomposition and so on. The decomposition theory and method of matrix is an important part of matrix analysis, which is widely used in solving the characteristic value, solving linear equations and the practical engineering. In this paper, we will introduce the theory of matrix equivalence decomposition, triangular decomposition, singular value decomposition and the engineering application of triangular decomposition. Key words:Equivalent Decomposition, Triangular Decomposition, Singular Value Decomposition, Application

MIMO的应用

摘要 MIMO使用多个发射和接收天线来增加容量 在微波传输系统中MIMO使用了不同的技术原理 MIMO对高频、短单跳微波传输是有意义的 在LTE、WiMAX和微波传输网络中,采用多输入多输出(MIMO)技术以及合适的部署策略是可以增加容量的。但是,具有视距传输网络中的MIMO,比如LTE和WiMAX,与其在视距微波传输中的运行相比有所差异。为了充分利用MIMO的优势,服务提供商需要了解MIMO是如何工作的,以及为什么它在不同的网络中存在差异。 MIMO的优势 MIMO使用至少2个,有时多个,发射天线和接收天线来传输一个单信道。这种方法增加了数据速率和频谱效率。例如,在每一侧增加6个天线所得到的容量增长,与在一个单输入单输出(SISO)的信道增加100多倍功率所产生的效果是相同的。 MIMO技术使得容量增加和使用天线数量呈线性关系。相反,SISO、单输入多输出(SIMO)和多输入单输出(MISO)系统的容量增加,和天线数量呈现对数关系。相对对数增加而言,线性容量的增加是一个更有效的方法。

MIMO的发射机和接收机比SISO、SIMO和MISO的更复杂,但是它不需要更多的发射功率。 MIMO优势是如此清楚,它和许多技术标准已经相结合,包括: ?国际电信联盟(ITU)的高速下行分组接入(HSDPA)标准是通用移动通信系统(UMTS)标准的一部分。 ?家用无线路由使用IEEE802.11n标准 ?电气和电子工程师协会在蜂窝电话中使用的移动WiMAX技术IEEE802.16标准。 ?ITULTE标准。 当MIMO遇到香农定理 当MIMO系统在上世纪90年代中后期由GerardFoschini等人提出后,这种具有突破性的带宽效率似乎违反香农定理。实际上MIMO中的多样性和信号处理的使用,将单一点对点信道变换成多个并行信道来处理了。 香农定理是建立在一个具有信道容量C和以速率R来传输信息的有噪信道上的。然后它又指出,如果R小于C,应该有这样一些代码,使得接收机错误译码概率达到任意小。这意味着,从理论上讲,它可能以一个低于速率C的任何速率而几乎没有差错地来传输信息。 这个容量通常表示成: C=Wlog2(1 + S/N)

相关主题
文本预览
相关文档 最新文档