当前位置:文档之家› 笔算开平方

笔算开平方

笔算开平方
笔算开平方

怎样用笔算开平方

上面我们学习了查表和用计算器求平方根的方法.或许有的同学会问:不用平方根表和计算器,可不可以求出一个数的平方根呢?先一起来研究一下,怎样求,这里1156

是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3.于是问题的关键在于;怎样求出它的个位数a?为此,我们从a所满足的关系式来进行分析.

根据两数和的平方公式,可以得到

1156=(30+a)2=302+2×30a+a2,

所以1156-302=2×30a+a2,

即256=(3×20+a)a,

这就是说,a是这样一个正整数,它与3×20的和,再乘以它本身,等于256.

为便于求得a,可用下面的竖式来进行计算:

根号上面的数3是平方根的十位数.将256试除以20×3,得4.由于4与20×3的和64,与4的积等于256,4就是所求的个位数a.竖式中的余数是0,表示开方正好开尽.于是得到

1156=342,

上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:

1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;

2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);

3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);

4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是4,即试商是4);

5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);

6.用同样的方法,继续求平方根的其他各位上的数.

的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到

笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值.

我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.

数学公式(全部编小学三年级上下册)

数学公式(全部编小学三年级上下册) 不积跬步,无以至千里。中考/高考的胜利是需要一步步脚踏实地拼搏出来的。而在学生们拼搏的路途中,老师是指路人、掌舵人,老师引领的方向对了,学生 们复习就会事半功倍。 小学三年级上册数学公式大全 一、测量 1.长度单位有毫米、厘米、分米、米、千米(公里)。 1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米

1米=10分米=100厘米=1000毫米 2.重量单位有:克、千克、吨。 1吨=1000千克1千克= 1000克 3、面积单位:1平方千米=100公顷1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米 4、时间单位:年、月、日时、分、秒 1年=4季1年=12个月1季度=3个月二月(平年二月28天闰年二月29天)3.周长:封闭图形一周的长度,叫做周长。 长方形的周长=(长+宽)×2 长方形的面积= 长×宽 正方形的周长= 边长×4 正方形的面积=边长×边长 二、有余数除法 1、被除数÷除数=商……除数 2、被除数=商×除数+余数 3、余数一定要比除数小。 三、时、分、秒 1、时间单位有:时、分、秒1时=60分1分=60秒 2、1天=24小时(也就是说时针一天要走2圈。)1年=12月 四、分数的初步认识 1.分数:把一个物体平均分成几分,每份就表示它的几分之一,这样的数叫做分数。 2.比较分数的大小: 分母相同,分子大的那个分数就大。分子相同,分母小的那个分数反而大。 3.同分母分数相加减的运算规则:分母不变,把分子相加减。

小学三年级下册数学公式大全 一、位置与方向 1.东与西相对,南与北相对。东→南→西→北,按顺时针方向转。 2.地图通常是按上北下南,左西右东绘制的。 3. 二、除数是一位数的除法 1.笔算除法顺序:确定商的位数,试商,检查,验算。 2.被除数÷除数=商被除数÷除数=商……余数 商×除数=被除数商×除数+余数=被除数 被除数÷商=除数(被除数—余数)÷商=除数 3.0除以任何数(0除外)都等于0,0乘以任何数都得0, 0加任何数都得任何数本身,任何数减0都得任何数本身。 4.笔算除法时,那一位上不够商1,就添0占位。(最高位不够除,就看两位上商。) 5.除法计算时,记住每一次减得的余数一定要比除数小。 6.2、3、5倍数的特点 2的倍数:个位上是2、4、6、8、0的数是2的倍数。 5的倍数:个位上是0或5的数是5的倍数。 3的倍数:各个数位上的数字加起来的和是3的倍数,这个数就是3的倍数。比如:462,4+6+2=12,12是3的倍数,所以462是3的倍数。 7.关于倍数问题: 两数和÷倍数和=1倍的数 两数差÷倍数差=1倍的数 8.和差问题 (两数和—两数差)÷2=较小的数 (两数和+ 两数差)÷2=较大的数 例:已知甲乙两数之和是37,两数之差是19,求甲乙两数各是多少? 如图: 解析:如果给甲数加上“乙数比甲数多的部分(两数差)”(虚线部分),则由图知,甲数+两数差=乙数。如是:甲数+两数差+乙数=甲数+乙数+两数差=两数和+两数差 又有:甲数+两数差+乙数= 乙数+乙数 =乙数×2 知道:两数和+两数差=乙数×2 + 两数差)÷2=乙数

开根号手算方法

开根号手算方法

529,24 129 529,24 129 4b b b 長除式演算法求開根號 以下這個演算法是根據: (10 a + b )2 = 100 a 2 + 20ab + b 2= 100 a 2 + (20 × a + b) × b 而生的。 給y= (10 a + b )2,我們想求得a ;b, 在此我們先猜測a 再由式子 y - 100 a 2 =(20 × a + b) × b 去求得b 。 長除式演算法: 1. 將要開平方根的數從小數點分別向右及向左每兩個位一組分開, 如98765.432內 小數點前的65是一組, 87是一組, 9是一組, 小數點後的43是一組, 之 後是單獨一個2, 要補一個0 而得20是一組 。 也就是9,87,65.43,20。 以 準確至2位小數為例子: 將 1 04.85 73 得四組, 順序為 1' 04. 85' 73'。 2. 將最左的一組的數減去最接近又少於它的平方數,並將該平方數的開方(應該是個位數) 記下 。 3. 將上一步所得之差乘100,和下一組數加起來。 4. 將記下的數乘20,然後將它加上某個個位數,再乘以該個個位數,令這個積不大於上一 步所得之差,將上一步所得之差減去所得之積。 5. 重覆第2步,直到找到答案 。 6. 可以在數字的最右補上多組的00'以求得理想的精確度為止 。 範例:求 (529)2/1=? 解法:將529分為兩組,分別為 5,29。(第1步) 先猜a 為2,因為2的平方為4比5小。(第2步) 529 = (20 + b)2=400 + 2 × 20 × b +b 2 529 – 400 = ( 20 × 2 + b ) × b (第3、4步) 129 =( 40 + b ) × b 故b = 3 。 因此 (529)2/1 = 23

用笔做开方运算的方法

用筆做開方運算的方法 很容易,先把被开方数自小数点左右分为每两个数一个区,如1049.76(以下都以这个数为例)可分为10…49.76,然后从高位区开始算,过程有点象除法竖式,下面就是正文:从高位区开始,10开方的整数是3,这整数3便是结果的最高位数字,余数1(10-3*3)和下一区和在一起便是149,用20(专用数字,从第二区开始一直用到完)去乘前面已开方结果3,便市60(20*3),记住,这个数的个位数不是固定的,它可是必须与除得的商相同且须尽量大,继实例部分,第二步用149除以60(60不是真正的除数,因为它的个位数是所得的商),这样可得出商的约数,如以上除的整数部分是2,那么须把60+2为62作为除数,得商2与除数62的个位数相同,因此商2便是结果的第二位数(既为32),余数为25(149-62*2),被开方数的整数区用完了便在结果32后加“.”既以后的算出来的结果为小数部分,剩下的都与第二部分相同下面与你们共同来完成它吧:把余数25和下一区放在一起为2576,试用除数为20*32=640,则商为4,4+640为644,2576除以644刚好为4(4恰为除数644的个位数)没余数,则4为结果的最后一位了,既结果为32.4。这结果可是精确的数哦,如果后面还除不尽的话,就在被开方数的小数部分后加00……还是每两数为一区,用以上的方法一直精确下去,结果可是与计算器算出来一样哦, 开方,一般都是...按计算机,以前是查数学用表... 现在有一个更容易的方法了,而且可以一下子给你开出这个数,而且多少次方都无问题! 例:32*32=1024 我们把1024分解质因数(小学知识,别说你不会) 1024=2*2*2*2*2*2*2*2*2*2 一共是10个2 把10的因数找出来: 10(1,2,5,10) 一共10个2对不?10/1=10,2的10次方 10/2=5,2*2=4,4的五次方 10/5=2,2*2*2*2*2=32,32的二次方(即平方) 10/10=1,2*2.....*2=1024,1024的一次方 手动开平方 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;小数部分从最高位向后两位一段隔开,段数以需要的精度+1为准。 2.根据左边第一段里的数,求得平方根的最高位上的数。(在右边例题中,比5小的平方数是4,所以平方根的最高位为2。) 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。 4.把第二步求得的最高位的数乘以20去试除第一个余数,所得的最大整数作为试商。(右例中的试商即为[152/(2×20)]=[3.8]=3。) 5.用第二步求得的的最高位数的20倍加上这个试商再乘以试商。如果所得

开平方的计算

在中学阶段,涉及开平方的计算,一是查数学用表,一是利用计算器。而在解题时用的最多的是利用分解质因数来解决。如化简√1024,因为1024=2^10,所以。√1024=2^5=32;又如√1256=√(2^3*157)=2*√(2*157)=2√314. 如果想用笔算求算术平方根,在初二代数中讲完平方根后,有一个附录,讲得很详细。以下的介绍不知能否讲清楚: 比如求√37625.(如图) ①将37625从个位起,向左每两位分一节:3,76,25 ②找一个最大的数,使它的平方不大于第一节的数字,本题中得1(1的平方为1,而2的平方为4,大于3,所以得1).把1写在竖式中3的上方。 ③将刚才所得的1平方写在竖式中3的下方,并相减,然后将76移写在本行(如图) ④将前面所得的1乘20,再加一个数a,写在竖式的左方(如图),并同时把a 写在竖式的上方对准6。而这个所谓的a,是需要试验的,使它与(20+a)的积最大且不超过276.本题中所得的a为9 ⑤用9乘29,再用276减去,所得的差写在下方 ⑥继续反复运用步骤④和⑤。如果后面的数字不足,则补两个0,继续运算。如果最后的余数是0,则该数的算术平方根是有理数;如果被开方数是小数,小数部分在分节的时候是从十分位起,每两位小数分一节。 (附图中的虚线方框为制图时所产生,又竖式中最后的余数应是2779)

手算开平方和开立方的方法 2011-01-14 17:58 手算开平方和开立方的方法 1)开平方Extracting Square Root 写出被开方数,从小数点起向左和向右每隔两位分段,并在段的上方打点作记号。左边加一竖线,右边加一个左括号。 从左段起求最大平方数,将方根写在括号右边,同时也写在竖线左边。然后在第一段下边写平方数,减去此平方数。写出减的结果,并将被开数第二段移下来,两者合并作为新被除数。此时竖线左边第二行(对齐新被除数)写出刚刚得的根乘2后再乘10的积作为新的除数(预留出个位的空白),将它去试除新被除数,所得的商填到除数的个位空白处,最终一起去除被除数,此时落实的商写在括号后已得根的后面。除数与商的积写在被除数的下方,然后相减,继续此步骤直到所有的分段都移下,包括小数点后两位两位彺下移。如果除不尽,余数后面可再补两个零,继续到所需位数。

笔算开方

笔算开立方的方法 方法一 1.将被开立方数的整数部分从个位起向左每三位分为一组; 2.根据最左边一组,求得立方根的最高位数; 3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数; 4.用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数; 5.用同样方法继续进行下去。 方法二 第1、2步同上。 第三步,商完后,落下余数和后面紧跟着的三位,如果后面没有就把余数后面添上三个0; 第四步,将要试商的数代入式子“已商数×要试商数×(10×已商数+要试商数)×3 0+要商数的立方”,最接近但不超过第三步得到的数者,即为这一位要商的数。 然后重复第3、4步,直到除尽。 开方算法的历史记载 九章算术 《九章算术》中讲了开平方、开立方的方法,而且计算步骤和现在的基本一样.所不同的是古代用筹算进行演算,现以少广章第12题为例,说明古代开平方演算的步骤,“今有积五万五千二百二十五步.问为方几何.”“答曰:二百三十五步.”这里所说的步是我国古代的长度单位。 开立方原文 开立方 〔立方适等,求其一面也。〕 术曰:置积为实。借一算,步之,超二等。 〔言千之面十,言百万之面百。〕 议所得,以再乘所借一算为法,而除之。 〔再乘者,亦求为方幂。以上议命而除之,则立方等也。〕 除已,三之为定法。

〔为当复除,故豫张三面,以定方幂为定法也。〕 复除,折而下。 〔复除者,三面方幂以皆自乘之数,须得折、议,定其厚薄尔。开平幂者, 方百之面十;开立幂者,方千之面十。据定法已有成方之幂,故复除当以千为百, 折下一等也。〕 以三乘所得数,置中行。 〔设三廉之定长。〕 复借一算,置下行。 〔欲以为隅方。立方等未有定数,且置一算定其位。〕 步之,中超一,下超二等。 〔上方法,长自乘而一折,中廉法,但有长,故降一等;下隅法,无面长, 故又降一等也。〕 复置议,以一乘中, 〔为三廉备幂也。〕 再乘下, 〔令隅自乘,为方幂也。〕 皆副以加定法。以定法除。 〔三面、三廉、一隅皆已有幂,以上议命之而除,去三幂之厚也。〕 除已,倍下,并中,从定法。 〔凡再以中、三以下,加定法者,三廉各当以两面之幂连于两方之面,一隅 连于三廉之端,以待复除也。言不尽意,解此要当以棋,乃得明耳。〕 复除,折下如前。开之不尽者,亦为不可开。 〔术亦有以定法命分者,不如故幂开方,以微数为分也。〕[1] 开平方 开方(是指开平方,由正方形面积求其一边之长.)术曰:置积为实(即指筹算中把被开方数放置于第二行,称为实)借一算(指借用一算筹放置于最后一行,如图1-25(1)所示用以定位).步之(指所借的算筹一步一步移动)超一等(指所借的算筹由个位越过十位移至百位或由百位越过千位移至万位等等,这与现代笔算开平方中分节相当如图1-25(2)所示).议所得(指议得初商,由于实的万位数字是5,而且22<5<32,议得初商为2,而借算在万位,因此应在第一行置初商2于百位,如图1-25(3)所示).以一乘所借一算为法(指以初商2乘所借算一次为20000,置于“实”下为“法”,如图1-2 5(4)所示)而以除(指以初商2乘“法”20000得40000,由“实”减去得:55225-40000=1 5225,如图1-25(5)所示)除已,倍法为定法,其复除,折法而下(指将“法”加倍,向右移一位,得4000为“定法”因为现在要求平方根的十位数字,需要把“借算”移至百位,如图1-25(6)所示).复置借算步之如初,以复议一乘之,所得副,以加定法,以除(这一段是指:要求平方根的十位数字,需置借算于百位.因“实”的千位数字为15,且4

因式分解法、直接开平方法(2)

第一章因式分解 1.2.1 因式分解法、直接开平方法(2) 主备人备课时间 集体修订时间课型新授课 授课人许大精授课时间 教学札记教学目标: 1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方 程。 2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。 3、引导学生体会“降次”化归的思路。 知识与能力: 通过两种方法解简单的一元二次方程,初步培养学生解方程的能力,培养学生 观察、类比、转化的思维能力. 情感态度价值观: 通过平方根的理论,因式分解的理论求一元二次方程的解,使学生建立旧知 与新知的联系,由已有的知识形成新的数学方法,激发学生的学习兴趣,让学生 形成勤奋学习的积极情感,为以后学习打下良好的基础.通过解方程的教学,了 解“未知”可以转化为“已知”的思想. 教学重点: 掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。 教学难点: 通过分解因式或直接开平方将一元二次方程降次为一元一次方程。 教学课时:1课时 教学方法:自主、合作、探究 教学媒体:多媒体 教学过程: (一)复习引入 1、判断下列说法是否正确 (1) 若p=1,q=1,则pq=l( ),若pq=l,则p=1,q=1( ); (2) 若p=0,g=0,则pq=0( ),若pq=0,则p=0或q=0( ); (3) 若x+3=0或x-6=0,则(x+3)(x-6)=0( ), 若(x+3)(x-6)=0,则x+3=0或x-6=0( ); (4) 若x+3= 或x-6=2,则(x+3)(x-6)=1( ),

若(x+3)(x-6)=1,则x+3= 或x-6=2( )。 答案:(1) √,×。(2) √,√。(3)√,√。(4)√,×。 2、填空:若x2=a;则x叫a的,x= ;若x2=4,则x= ; 若x2=2,则x= 。 答案:平方根,±,±2,±。 (二)创设情境 前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗? 引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。 给出1.1节问题一中的方程:(35-2x)2-900=0。 问:怎样将这个方程“降次”为一元一次方程? (三)探究新知 让学生对上述问题展开讨论,教师再利用“复习引入”中的内容引导学生,按课本P.6那样,用因式分解法和直接开平方法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。 (四)讲解例题 展示课本P.7例1,例2。 按课本方式引导学生用因式分解法和直接开平方法解一元二次方程。 引导同学们小结:对于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接开平方法解。 因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。 直接开平方法的步骤是:把方程变形成(ax+b)2=k(k≥0),然后直接开平方得ax+b= 和ax+b=- ,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。 注意:(1) 因式分解法适用于一边是0,另一边可分解成两个一次因式乘积的一元二次方程;

笔算开平方方法

笔算开平方方法 一. 拿出一个数,以小数点为分界,两位为一节,从最高位开始开平方。 我们就拿256吧 两位一节,先看最高的是2,那最大开平方就是1,写下1,剩余1。 第二步就是重点了! 再取两个下来,也就是56。前面还有1,组合成156。 将第一次的开平方数1,先扩大20倍,得到20,加上可以取的最大值,这个最大值是什么最大呢?也就是x*(20+x)<=156的最大x,可以取6,也正好是6,所以开平方的结果是16。 再拿个比较大的数:15625 这个数,我们还是两位一节,看最高位1,那就写1,没剩余。 第二步:再取两个下来,也就是56,我们先将1扩大20倍,再用刚才的方法,取最大的x,可以取2,那就写2,剩余56-2*(20+2)=56-44=12 第三步:再取两个下来,也就是25,和刚才剩余的12组成1225,那我们再对刚才的开平方数12,再扩大20倍,得到240,再求最大的开平方数,正好是5,没有剩余。 所以结果是125 如果有剩余,那小数点后也是两位两位地加,也就是一次加两个0,方法和前面一样,对前面已开出来的先扩大20倍,再取最大开方数,一直到你所要的准确度。 二. 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数; 2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(20×3除256,所得的最大整数是4,即试商是4); 5.用所求的平方根的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数); 6.用同样的方法,继续求平方根的其他各位上的数. 如遇开不尽的情况,可根据所要求的精确度求出它的近似值. 例如求的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到 笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值. 实例 例如,A=5:5介于2的平方至3的平方;之间。我们取初始值2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9都可以,我们最好取中间值2.5。 第一步:2.5+(5/2.5-2.5)1/2=2.2;即5/2.5=2,2-2.5=-0.5,-0.5×1/2=-0.25,2.5+(-0.25)=2.25,取2位数2.2。 第二步:2.2+(5/2.2-2.2)1/2=2.23;即5/2.2=2.27272,2.27272-2.2=-0.07272,-0.07272×1/2=-0.03636,2.2+0.03636=2.23。取3位数2.23。 第三步: 2.23+(5/2.23-2.23)1/2=2.236。即5/2.23=2.2421525,,2.2421525-2.23=0.0121525,,0.0121525×1/2=0.00607,,2.23+0.006=2.236.,取4位数。每一步多取一位数。这个方法又叫反馈开方,即使你输入一个错误的数值,

笔算开方公式

笔算开方公式 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

笔算开方公式(竖式) 今日入定冥想时突然想起,中考前数学老师教过的手算开平方(下面简称“手开方”)公式。只是当时仅仅作为求二次方程判别式的应急公式,并没有仔细琢磨其正确性以及严格证明。既然今日想起,不妨钻研一下,却竟然得出了证明。以下为完整过程,请广大数学爱好者斧正! 1.手开方公式举例: 上式意为65536的开平方为256。手开方过程类似于除法计算。为了方便表述,以下仍称类似位置的数为“被除数”、“除数”、“商”。以65536为例,其具体计算过程如下: Step1:将被开方数(为了形象,表述成“被除数”,此例中即为65536)从个位往高位每两位一断写成6,55,35的形式,为了方便表述,以下每一个“,”称为一步。 Step2:从高位开始计算开方。例如第一步为6,由于22=4<6<9=32,因此只能商2(这就是和除法不同的地方,“除数”和“商”的计算位必须相同)。于是将2写在根号上方,计算开方余项。即高位余项加一步低位,此例中,即为高位余项2和低位一步55,余项即为255。 Step3:将Step2得到的第一步开方得数2乘以20(原理在后面证明)作为第二步除数的高位。即本步除数是4x(四十几)。按照要求,本步的商必须是x。因为45×5=225<255<46×6=276,所以本步商5。 Step4:按照类似方法,继续计算以后的各步。其中,每一步的除数高位都是20×已求出的部分商。例如第三步的除数高位就是25×20=500,所以第三步除数为50x。本例中,506×6=3036恰好能整除,所以256就是最终计算结果。 2.字母表示和手开方公式的证明: 既然要证明,必须先把公式一般化。简言之,用字母而不是特殊值来表示计算过程和结果。 任意正整数均可表示成 则正整数M开方计算得到的就是A。根据手开方公式的思路,应该写成:不失一般性,对A进行推广。前面A表示正整数,现在A可以表示任意实数。因为计算开平方问题上,对于数值,正负是无所谓的。因此不妨假设A为

中值法——手工快速开平方

中值法——手工快速开平方 【题目】 假设a2=53,509,225,求a。 【分析】 按照教科书上的开平方的方法,对位数不多的数来讲,还比较实用,但对于位数较多的数字或小数位数较多的数来讲,此方法就比较繁琐,并且还有可能出错,并且一出错就得重头计算。经过笔者不断总结、分析,找到一个非常好的方法,暂且叫做“中值法”吧。 一个实数的平方根为绝对值相等的一正一负两个数,所以,a应该是两个值。 【中值法步骤】 1、确定区间[a1,a2],使a12≤a2≤a22。一般区间可考虑整数,如[100,200]、[500,600]等。 2、取区间中间值a3,即a3=(a1+a2)÷2。 3、计算a的初值a4,即a4=(a3+a2÷a3)×0.5 4、计算a的准确值。a5=(a4+a2÷a4)×0.5,如果a5与a4相差很小,根据a2的个位数,判断a的个位数,确定a的准确值。 如果a2是一个完全平方数(及a为整数),到上面第4步时,结果就已经出来了;如果不是一个完全平方数(即a是一个小数),并且需要精确到小数点后n位,则重复第3、4步,直到小数位数达到需要的n位,就可以了。 【解题】

1、判断a区间。明显 7,000<a2<8,000 2、取区间中间值。 (7,000+8,000)÷2=7,500 3、计算初值。 (7,500+53,509,225÷7,500)×0.5=7,317.281,667 4、确定准确值。 (7,317.281,667+53,509,225÷7,317.281,667)×0.5=7,315.000,356 这个结果与初值相差不大。且a2的个位为5,所以,a值就是7,315和 -7,315。 【例题1】 已知a2=2,345,678,911,求a(如果a为小数,保留4位小数,且 a>0) 1、判断a区间。明显 40,000<a2<50,000 2、取区间中值。 (40,000+50,000)÷2=45,000 3、计算初值。 (45,000+2,345,678,911÷45,000)×0.5=48,563.099,01 4、确定准确值。 (48,563.099+2,345,678,911÷48,563.099,01)×0.5=48,432.385,83 此数与上数还有一定差距,且a2个位为1,与48,432接近的数中,

直接开平方法

第2课时 § 公式法 教学目标 1、 初步掌握直接开平方法解一元二次方程 2、 会用直接开平方法解形如)0()(2 ≥=-b b a x 的方程 教学重点和难点 重点:用直接开平方法解形如)0()(2≥=-b b a x 的方程 难点:方程为何有两个解 教学过程设计 一、 从学生原有的认知结构提出问题 上一节课,我们研究了一元二次方程。接下来,我们将学习一元二次方程的解法。它是本章的重点内容,课本介绍了四种解法,这节课我们学习一元二次方程的第一种解法:直接开平方法。 二、 师生共同研究形成概念 1、 复习旧知识 1、 4的平方根是 。 2、 072 =-y ,则y 为 。 2、 直接开平方法 解方程:042 =-x 解:移项得:42 =x 因为x 是4的平方根, 所以 2±=x 即 21=x 、 22-=x 这种解某些一元二次方程的方法叫做直接开平方法。 3、 例题讲解 例1 用直接开平方法解下列方程: 1)2142=-x ; 2)01822=-x ; 3)2182 12-=-x ; 4)0332=-y 分析:此题是对“直接开平方法”解一元二次方程。通过第一个例子的讲解,其它方程的解答就可以由学生单独完成。

例2 用直接开平方法解下列方程: 1)4)3(2=+x ; 2)2)3(2=+x ; 3)09)1(42=--x 分析:此题的难度在于学生能否把括号里面的式子看成是一个整体,若能的话,这题就是用上面的方法求方程的解。 例3 用直接开平方法解下列方程: 1)5)32(2=-x ; 2)25)16(2=-x ; 3)012)1(2=-+x ; 4)036)5(2 =--x 5)24)3(62=+x ; 6)32)12(42=-x ; 7)0100)43(42=--x 分析:这部分题的难度较大,不能直接求得结果,需要通过变形,才能得出结果。 三、 随堂练习 1、 用直接开平方法解下列方程: 1)0452=-t ; 2)14)1(72=+m ; 3)04)22 1 (2=-+x ; 4)14)1(72=+p ; 5)05)12(2 =--y ; 四、 小结 这节课我们学习一元二次方程的第一种解法:直接开平方法。它是最基本的一种方法。要记住,一元二次方程是有两个解的,这两个解可以是相同的,可以是不相同的。 五、 作业 书本 P 7 1、2 双数部分 六、 教学后记

笔算开平方法的计算步骤

笔算开平方法的计算步骤如下: 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;小数部分从最高位向后两位一段隔开,段数以需要的精度+1为准。 2.根据左边第一段里的数,求得平方根的最高位上的数。 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商 5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试,得到的第一个小于余数的试商作为平方根的第二个数。 6.用同样的方法,继续求平方根的其他各位上的数。 如遇开不尽的情况,可根据所要求的精确度求出它的近似值. 笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值. 我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍. 手工开根号法,只适用于任何一个整数或者有限小数开二次方. 因为网上写不出样式复杂的计算式,所以只能尽量书写,然后通过口述来解释: 假设一个整数1456456,开根号首先要从个位开始,每两位数做个标记,这里用'表示,那么标记后变成1'45'64'56.然后根据你要开的小数位数在小数点后补0,这里的举例开到整,则补2个0,(原因等明白该做法后自会理解),解法如下: 解法中需要说明的几个问题: 1,算式中的....没有意义,是因为网上无法排版,为了能把版式排得整齐点而加上的 2,为了区别小数点,所以小数点用。表示,而所有的.都是为了排版需要 3、除了1'45'64'56中的'有特殊意义,在解题中有用处外,其他的'都是为了排版和对起位置,说明数字来源而加的,取消没有任何影响 ...........1..2..0..6。8 .........----------------------- .....1../..1'45'64'56.00.. (1) (1) ............-------- .......22..|.45.. (2) (44) ..............-------- ........240.|.1'64.. (3)

直接开平方法(第一课时)

22.2解一元二次方程 第一课时 直接开平方法 教学目的 1.使学生掌握用直接开平方法解一元二次方程. 2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a>0,c<0)的方法.教学重点、难点 重点:准确地求出方程的根. 难点:正确地表示方程的两个根. 教学过程 复习过程 回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据. 求下列各式中的x: 1.x2=225; 2.x2-169=0;3.36x2=49; 4.4x2-25=0. 一元二次方程的解也叫做一元二次方程的根. 解题的依据是:一个正数有两个平方根,这两个平方根互为相反数. 即一般地,如果一个数的平方等于a(a≥0),那么这样的数有两个,它们是互为相反数. 引入新课 我们已经学过了一些方程知识,那么上述方程属于什么方程呢? 新课 例1 解方程 x2-4=0. 解:先移项,得x2=4. 即x1=2,x2=-2. 这种解一元二次方程的方法叫做直接开平方法. 例2 解方程 (x+3)2=2. 练习:P28 1、2 归纳总结 1.本节主要学习了简单的一元二次方程的解法——直接开平方法.

2.直接法适用于ax 2+c=0(a >0,c <0)型的一元二次方程. 布置作业:习题22.1 4、6题 达标测试 1.方程x 2-0.36=0的解是 A.0.6 B.-0.6 C.±6 D.±0.6 2.解方程:4x 2+8=0的解为 A.x 1=2 x 2=-2 B.2,221-==x x C.x 1=4 x 2=-4 D.此方程无实根 3.方程(x+1)2-2=0的根是 A.21,2121-=+=x x B. 21,2121+-=+=x x C. 21,2121+=--=x x D. 21,2121--=+-=x x 4.对于方程(ax+b)2=c 下列叙述正确的是 A.不论c 为何值,方程均有实数根 B.方程的根是a b c x -= C.当c ≥0时,方程可化为:c b ax c b ax -=+= +或 D.当c=0时,a b x = 5.解下列方程: ①.5x 2-40=0 ②.(x+1)2 -9=0 ③.(2x+4)2-16=0 ④.9(x-3)2-49=0

因式分解公式大全

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 公式及方法大全 待定系数法(因式分解) 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 常用的因式分解公式:

例1 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是 x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3

=(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn, 比较两边对应项的系数,则有 解之得m=3,n=1.所以 原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.例2 分解因式:x4-2x3-27x2-44x+7. 分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为 (x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有 由bd=7,先考虑b=1,d=7有

直接开平方法练习题

1.下列方程中,不能用直接开平方法的是( ) A. 230x -= B. 2(1)40x --= C. 2 20x x += D. 22(1)(21)x x -=+ 2. 下列说法中正确的是( ) A. 方程24x =两边开平方,得原方程的解为 2x = B. 3x =是方程29x =的根,所以得根是3x = C. 方程2250x -=的根是5x =± D. 方程232640x x -+=有两个相等的根 3.已知0a ≠,方程2229160a x b -=的解是( ) A. 169b x a = B.43b x a = C.43b x a =± D.2 243b x a =± 4. 方程220(0)x m m +=<的根( ) A.2m - B.2m - C.22 m -± D.2m -± 5. 若2(1)10x +-=,则x 得值等于( ) A. 1± B. 2± C. 0或2 D. 0或-2 6、用直接开平方法解方程k h x =+2)( ,方程必须满足的条件是( ) A .k ≥o B .h ≥o C .hk >o D .k <o 7、方程22) 1(=-x 的根是( ) A.-1、3 B.1、-3 C.1-2、1+2 D.2-1、2+1 8、下列解方程的过程中,正确的是( ) (A)22-=x ,解方程,得x=±2 (B)42)2(=-x ,解方程,得x-2=2,x=4 (C)92)1(4=-x ,解方程,得4(x-1)= ±3, x1=47;x2=41 (D)252)32(=+x ,解方程,得2x+3=±5, x1= 1;x2=-4 9.当x =________时,分式293 x x -+无意义; 当x =________时,分式293 x x -+的值为零。 10. 若222(3)25a b +-=,则22a b +=_________ 11.一元二次方程22(21)(3)x x -=-的解是___________ 12.方程()412 =-x 的解是______________。

手动开平方方法(最新方案)

手动开平方方法(最新方案) 虽然现在开方可以直接用符号表示,但考试中如果出一道开方让你写数值的题目怎么办呢?在最新的数学研究中,有一种最新的开平方法。 如有下题: 1522756=() 开方步骤如下: (一)分位 把一个平方数分为几段。 1.从最低位(个位)开始。 2.每两个数为一位。 3.最高位可以是一位数。 1522756分为:1|52|27|56 分位后,1522756被分为了4段,开方结果为四位数(这里是完全平方数,没有小数)(二)开方 开方运算和除法类似,每运算1次都有一个递减过程。运算时也是从高位至低位。 如1|52|27|56先算1,再算52…… 格式如下: 平方根 52 | |1 56 | 27 运算过程 和除法类似,平方根写在横线上面,运算过程写在下面。 平方定义,12=1 所以如下: 1 52 | |1 56 | 27 1 ——————— 5 2 这第一步与除法佷像,但是是一次落2位,也就是1段。 下面的运算就与除法有些差别了,这是计算中非常麻烦的部分。 这一步骤叫:造数 首先,将已开出的平方根部分×2,得到1×2=2 然后,我们须要假设下一个我们要开出的平方根是A,A的范围是0~9中任何一个自然数。下面就需要我们去试一试了,我们要在0~9中找出一个数作为A的值,前提是:要使前面一步算出的2与A合为一个新数,就是以A为个位,2为十位,合成2A(注意:这里不指2和A相乘,如果A=6,那么这个数为26),并且2A×A最接近而不超过前面落下的52。下一步就是试数,经试验A=2合适,也就得到22×2=44。 这一步的44就是结果了,下一位平方根为A,也就是2,得到:

九章算术

九章算术 《九章算术》成书于西汉末到东汉初之间,约公元一世纪前后,《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程及勾股九章如下表所示。原作有插图,今传本已只剩下正文了。 《九章算术》的作者不详。很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶。由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释,其中重要的有: 《九章算术》的主要内容,可分成算术、代数和几何三部分。 一、算术部分 1.分数 《九章算术》中有比较完整的分数计算方法,包括四则运算,通分、约分、化带分数为

假分数(我国古代称为通分内子,“内”读为纳)等等。其步骤与方法大体与现代的雷同。 分数加减运算,《九章算术》已明确提出先通分,使两分数的分母相同,然后进行加减。加法的步骤是“母互乘子,并以为实,母相乘为法,实如法而一”这里“实”是分子。“法”是分母,“实如法而一”也就是用法去除实,进行除法运算,《九章算术》还注意到两点:其一是运算结果如出现“不满法者,以法命之”。就是分子小于分母时便以分数形式保留。其二是“其母同者,直相从之”,就是分母相同的分数进行加减,运算时不必通分,使分子直接加减即可。 关于分数乘法,《九章算术》中提出的步骤是“母相乘为法,子相乘为实,实如法而一”。 《九章算术》对分数除法虽然没有提出一般法则,但算法也很清楚。 2.最大公约数与最小公倍数 《九章算术》中还有求最大公约数和约分的方法。求最大公约数的方法称为“更相减损”法,其具体步骤是“可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也。以等数约之。”这里所说的“等数”就是我们现在的最大公约数。可半者是指分子分母都是偶数,可以折半的先把它们折半,即可先约去2。不都是偶数了,则另外摆(即副置)分子分母算筹进行计算,从大数中减去小数,辗转相减,减到余数和减数相等,即得等数。 如方田章第六题:“又有九十一分之四十九,问约之得几何”。将更相减损这一运算写成现代的图式就是 法实质上 是辗转相减法。辗转相减法与欧几里得的辗转相除法在步骤上虽然略有不同,但在理论上却是一致的。 《九章算术》在分数的加减运算中,已知用最小公倍数作公分母,例如少广章第六题相当于分数

(直接开平方法)练习题

§23.2一元二次方程的解法练习题(一) (第1课时) 授课班级____ 上课时间:______ 第____ 节 典例分析 用直接开平方法解下列一元二次方程: 2249(3)16(6)x x -=+ 解:开平方得,7(3)4(6)x x -=±+ 7(3)4(6)x x -=+由115.x =得 7(3)4(6)x x -=-+由得23 .11 x =- 点评:直接开平方法解一元二次方程的要点是:通过等式变形变出2 x n =或2 ()x m n -=的形式, 再直接开平方;另外注意方程解得书写格式1x 、 2x . 课下作业 一、选择题: 1.下列方程中,不能用直接开平方法的是( ) A. 230x -= B. 2 (1)40x --= C. 2 20x x += D. 2 2 (1)(21)x x -=+ 2. 下列说法中正确的是( ) A. 方程2 4x =两边开平方,得原方程的解为 2x = B. 3x =是方程2 9x =的根,所以得根是3x = C. 方程2 250x -=的根是5x =± D. 方程232640x x -+=有两个相等的根 3.已知0a ≠,方程22 2 9160a x b -=的解是_____ A. 169b x a = B.43b x a = C.43b x a =± D.2243b x a =± 4. 方程2 20(0)x m m +=<的根为_____ A.2 m - B.2- C.2± D.2 ± 5. 若2 (1)10x +-=,则x 得值等于_____ A. 1± B. 2± C. 0或2 D. 0或-2 二、填空题: 1.当x =________时,分式29 3x x -+无意义;当 x =________时,分式 29 3 x x -+的值为零。 2. 若2 2 2 (3)25a b +-=,则22 a b +=_________ 3.一元二次方程2 2 (21)(3)x x -=-的解是___________ 4.方程()412 =-x 的解是______________。 三、用直接开平方法解下列一元二次方程 (1)2 435x -= (2)(2)(2)21x x -+= (3 )2 2 ((1x =+ (4)2 2 69(52)x x x -+=- 四、设α和β是方程2 (2)9x +=的两个根,求 αβ+的值。

相关主题
文本预览
相关文档 最新文档