当前位置:文档之家› 吸收式热泵原理和计算

吸收式热泵原理和计算

吸收式热泵

吸收式热泵的工作原理 吸收循环按用途不同可以分为制冷、热泵、热变换器三类,其中后两者都可以称为吸收式热泵。通常所说吸收式热泵(Absorption heat pumps,简称AHP)指的是第一类吸收式热泵,利用高温热能驱动,回收低温热量,提高能源利用率;第二类吸收式热泵又称吸收式热变换器(Absorption heat transformer,简称AHT),AHT利用中低温废热驱动,将部分废热能量转移到更高温位加以利用。 暖通百科 无论是哪一类吸收式热泵,其节能的方法都是充分利用了低级能源,从而减少了高级能源的消耗。因此,利用吸收式热泵回收余热等低级能源,可提高一次能源利用率,同时还可以减少因燃料燃烧产生SO2、NO2、烟尘等所造成的环境污染。 吸收式热泵的工作原理与制冷机相同,都是按照逆卡诺循环工作的,所不同的只是工作温度范围不一样。热泵在工作时,它本身消耗一部分能量,把环境介质中储存的能量加以挖掘,通过传热工质循环系统提高温度进行利用,而整个热泵装置所消耗的功仅为输出功中的一小部分,因此,采用热泵技术可以节约大量高品位能源。水从高处流向低处,热由高温物体传递到低温物体,这是自然规律。然而,在现实生活中,为了农业灌溉、生活用水等的需要,人们利用水泵将水从低处送到高处。同样,在能源日益紧张的今天,为了回收通常排到大气中的低温热气、排到河川中的低温热水等中的热量,热泵被用来将低温物体中的热能传送至高温物体,然后高温物体来加热水或采暖,使热量得到充分利用。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体)。 吸收式热泵工作原理示意图

一类、二类溴化锂吸收式热泵工作原理图

一类、二类溴化锂吸收式热泵工作原理图 一类吸收式热泵工作原理 一类吸收式热泵是以高品位热能(如蒸汽、高温热水、燃气等)为动力,回收低温热源(如废热水)的热量,制取较高温度的热水以供采暖或工艺等之需求的设备。 蒸发器中的冷剂水吸取废热水的热量后(即余热回收过程),蒸发成冷剂蒸汽进入吸收器。吸收器中溴化锂浓溶液吸收冷剂蒸汽变成稀溶液,同时放出吸收热,该吸收热加热热水,使热水温度升高得到制热效果。而稀溶液由溶液泵送

往发生器,被工作蒸汽(热水)加热浓缩成浓溶液返回到吸收器。浓缩过程产生的冷剂蒸汽进入冷凝器,继续加热热水,使其温度进一步升高得到最终制热效果,此时冷剂蒸汽也凝结成冷剂水进入蒸发器进入下一个循环,如此反复循环,从而形成了一个完整的工艺流程。 二类两段吸收式热泵工作原理

二类吸收式热泵通常情况下以温度较低的余热(或废热)做为动力,通过溴化 锂吸收式热泵特有功能“吸收热”,制取比余热温度高的热水的一种设备。这 种设备的一个典型特征是:在没有其它热源(或动力)的情况下,制取的热水 温度比余热(也是驱动热源)的温度要高。所以,二类吸收式热泵也称为升温 型吸收式热泵。 废热水以串连形式分别进入蒸发器2、蒸发器1和发生器1和发生器2。在蒸 发器1与蒸发器2中冷剂水吸取废热水的热量后(即余热回收过程),蒸发成冷剂蒸汽进入吸收器1与吸收器2,吸收器中溴化锂浓溶液吸收冷剂蒸汽变成 稀溶液,同时放出吸收热,该吸收热加热热水,使热水温度升高得到制热效果。而稀溶液流经换热器与浓溶液换热,温度降低后分别回到发生器1和发生器2。在压力较低的发生器内被废热水加,热浓缩成浓溶液后,再由溶液泵分别送往 吸收器1和吸收器2。产生的冷剂蒸汽则分别进入冷凝器1和冷凝器2。冷剂 蒸汽在冷凝器被低温冷却水凝结成冷剂水,由冷剂泵送到蒸发器1和蒸发器2,这样往复循环达到连续制取热水的目的。

风冷热泵机组工作原理

风冷热泵机组工作原理 风冷热泵机组是中央空调机组的一部分,它主要区别于风冷冷水机组,风冷热泵机组通过强制换热,来满足室内温度的需要。风冷热泵主要用于家用中央空调领域,大型中央空调则一般采用水冷热泵机组,这和风冷热泵工作原理是分不开的,下面我们一起来认识一下风冷热泵以及风冷热泵原理。 什么是风冷热泵 “热泵”是一种能从自然界的空气、水或土壤中获取低品位热能,经过电力做功,提供可被人们所用的高品位热能的装置。 风冷热泵的风为何物,即是流动的空气,流动的空气作为热媒的热泵,即是空气源热泵只是在设置上,风冷热泵可能借助风机等设备加速空气流动,空气源热泵多数为自然流通。 风冷热泵机组应当放在空气对流良好的地方也就是说,他应当就是放在室外的,放室内,空气不流通,那么空气就会越来越冷,最后效率越来越低从低温环境中吸收热量,高温环境获得热量。 风冷热泵机组工作原理图 风冷热泵工作原理 风冷热泵机组是空调系统中的主机,由于采用风冷冷凝器不需要冷却塔,而

蒸发器是水冷的,夏天制冷时提供冷水,冬季制热时提供热水,风机盘管是空调系统的末端装置,装在室内如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其工作原理与制冷机相同,都是按照逆卡诺循环工作的、风冷热泵相对于空气源热泵来说他的能力要低一点,他的进出水温是5摄氏度左右(大部分公司的设置参数),而空气源的进出水温差能达到40摄氏度。 风冷热泵机组与风机盘管共同使用,前者提供冷水或热水,后者将冷水或热水通过热交换,吸出冷风或热风。我们可以形象的把风冷热泵机组比作是中央空调的大脑,如果大脑不工作了,那中央空调将丧失全部功能,系统也将停止运行。 本文由舒适100网编辑部整理发布

太阳能热泵原理及技术分析

太阳能热泵原理及技术分析 热泵技术是一种新型的节能制冷供热技术,长期以来主要应用于建筑物的采暖空调领域。因热泵制热在节能降耗及环保方面的良好表现,卫生热水供应系统也越来越多的采用热泵设备作为热源[2]。其中以室外空气为热源的空气源热泵,结构简单,不需要专用机房,安装使用方便,在卫生热水供应方面具有不可替代的优势,除了比较大型的空气源热泵热水系统外,现在已有多个品牌的小型的家用空气源热泵热水器也投放市场。但空气源热泵的一个主要缺点是供热能力和供热性能系数随着室外气温的降低而降低,所以它的使用受到环境温度的限制,一般适用于最低温度-10℃以上的地区[3]。 将热泵技术与太阳能结合供应生活热水,国内外进行了许多这方面的研究,主要有两种方式,一种是直接以空气源热泵作为太阳能系统的辅助加热设备,另一种是利用太阳能热水为低温热源或将太阳能集热器作为热泵的蒸发器的太阳能热泵系统。前者以太阳能直接加热为主以空气源热泵为辅,解决太阳能供热的连续性问题,但仍旧无法摆脱环境温度对热泵制热性能的影响;后者完全以太阳能作为热泵热源,大大提高了太阳能的利用效率,但太阳能资源不足时仍需要增加其它辅助热源,并且热泵供热能力受太阳能集热量的限制,规模一般比较小。 在大型的太阳能中央热水系统中,空气源热泵无疑是一种比较理想的辅助加热设备,为了改善空气源热泵在低温环境下制热运行的性能,扩大它的使用区域,结合国内外太阳能热泵研究中的先进经验,我们研制了一种适合于低温环境中工作的太阳能—热泵中央热水系统。该系统采用一种新型的采用低温太阳能辅助的空气源热泵机组和太阳能集热系统结合,太阳能和热泵互为辅助热源,最大限度的利用太阳能,解决阴雨天气及冬季环境温度较低太阳能资源不足时热水供应保证率,做到全年、全天候供应热水。 1太阳能—热泵中央热水系统组成 1.1太阳能—热泵中央热水系统基本组成 太阳能—热泵中央热水系统的主要组成部分为太阳能集热器和太阳能辅助加热空气源热泵机组,其他辅助设备与常规的中央热水系统相同,包括太阳能循环泵、热水加热环泵、换热器、热水箱及控制器等。 1.2太阳能辅助加热空气源热泵机组 1.2.1太阳能辅助加热空气源热泵机组工作原理 为使空气源热泵在低温环境中高效、稳定、可靠的运行,国内外众多科研单位和生产企业进行了研发和改进,归纳起来主要有三种方式。一是依靠外界辅助热源来提高热泵低温制热性能,比如通过电加热提高热泵制热出水温度、采用燃烧器辅助加热室外换热器、在压缩机周围敷设相变蓄热材料以增加低温条件下制热运行出力等等;二是通过改善制冷剂循环系统来提高热泵的低温制热性能,比如采用双级压缩的空气源热泵,设中间补气回路的空气源热泵等;三是采用变频系统,低温工况下让压缩机高速工作增加工质循环量,同时向压缩机工作腔喷液以防止其过热,从而使热泵机组能够正常运行。 太阳能辅助加热空气源热泵机组是基于上述第一种方式而产生的,如图2所示。在机组的蒸发器上增加了一辅助换热器。热泵在低温环境下制热运行时,高于环境温度的太阳能热水流经该辅助换热器,与将进入蒸发器的室外空气进行热量交换提高其温度,从而使制冷剂在

溴化锂热泵介绍

第一类溴化锂吸收式 热泵介绍

一、第一类溴化锂吸收式热泵 第一类吸收式热泵是利用工质的吸收循环实现热泵功能的一种装置,以少量的高温热源(蒸汽、燃气)为驱动热源,溴化锂溶液为吸收剂,水为载冷剂,回收利用低温热源(废热水)的热能,制取所需的工艺或采暖用高温热媒,实现从低温向高温输送热能的设备。 第一类吸收式热泵(AHP):也称增热型热泵,是利用少量的高温热源,提取低温热源的热量,产生大量能被利用的中温热能。即利用高温热能驱动, 把低温热源的热能提高到中温,从而提高了热能的利用效率。 驱动热源+ 废热源= 用热需求 1)可利用的废热:一般可以使用温度在10℃~70℃的废热水、单组分或多组分气体或液体。 2)可提供的热媒:可获得比废热源温度高40℃左右,不超过100℃的热媒。 3)驱动热源:0.1~0.8MPa蒸汽、燃气或高温烟气。 4)制热COP在1.6~1.8左右:就是利用1MW的驱动热源可以得到1.8MW左右的生产生活需要的热量。 5)废热水进出水温度越高获得的热媒温度越高,效率越高。 二、第一类吸收式热泵工作原理图

三、第一类吸收式热泵采暖原理图 四、吸收式热泵供暖方案论证说明 1、电厂余热 火力发电厂在能量传送和转化过程中是不可能把所有燃烧煤的

能量转化成电能的。按1Kg 标煤(7000 kcal/Kg )发电3度电(860 kcal/KW)考虑,发电厂的煤的能量只有35%左右转化成为电能时。除去设备及管道能量损失,电厂无论是水冷还是空冷,都将冷凝热排入大气,近60%的能量通过锅炉烟筒和汽轮机凝汽器的循环冷却水排放到环境当中。 排放到环境中的能量其中乏汽造成比例非常大,如果机组容量为25MW,那么循环水量每天为2424t ,如果温升为8~10度,那么每年向大气中排放掉的热量相当于3.4万吨标煤的发热量。 热力学第二定律告诉我们,一个巨大的热量损失时热机生产过程中不可避免的,因此只有通过其他途径进行利用,以期全部或部分回收,才能提高综合热效率,降低电厂煤耗,同时减少对环境的污染。 现在我们可以通过溴化锂吸收式热泵将这些以往排放到环境中的热量进行回收,在冬季时用作供暖使用。利用吸收式热泵回收汽机 排汽中量大、集中、品位低的冷凝热,实现城市集中供热,这种供热方式节能、节水、环保。每发25MW 电可以回收汽机的冷凝热30MW 。能量输入 100% 转变为电力 30-40% 循环水(通过冷却塔、海水 或河水)带走的热量 50-60% 其他损失 10-20%

吸收式制冷分析

第七章 吸收式制冷 吸收式制冷是液体气化制冷的另一种形式,它和蒸气压缩式制冷一样,是利用液态制冷剂在低温低压下气化以达到制冷目的的。所不同的是:蒸气压缩式制冷是靠消耗机械功(或电能)使热量从低温物体向高温物体转移,而吸收式制冷则依靠消耗热能来完成这种非自发过程。 第一节 吸收式制冷的基本原理 一、基本原理 对于吸收剂循环而言,可以将吸收器、发生器和溶液泵看作是一个“热力压缩机”,吸收器相当于压缩机的吸入侧,发生器相当于压缩机的压出侧。吸收剂可视为将已产生制冷效应的制冷剂蒸气从循环的低压侧输送到高压侧的运载液体。 二、吸收式制冷机的热力系数 蒸气压缩式制冷机用制冷系数ε评价其经济性,由于吸收式制冷机所消耗的能量主要是热能,故常以“热力系数”作为其经济性评价指标。热力系数ζ是吸收式制冷机所获得的制冷量0φ与消耗的热量g φ之比。 g φζφ= (7-1) 图7-1 吸收式与蒸气压缩式制冷循环的比较 (a )蒸气压缩式制冷循环 (b )吸收式制冷循环 (b ) (a )

0g a k e P φφφφφ++=+= (7-2) 00g e S S S S ?=?+?+?≥ (7-3) 0g e g e S T T T φφφ?=- - + ≥ (7-4) g e e g g T T T T P T T φφ--≥- (7-5) ) () (000T T T T T T e g e g g --≤ =φφζ (7-6) 最大热力系数ζmax 为 c c 0 max εηζ=--= T T T T T T e g e g (7-6a) 热力系数ζ与最大热力系数ζmax 之比称为热力完善度ηa ,即 max a ζηζ= (7-7) 第二节 二元溶液的特性 一、二元溶液的基本特性 B A v v V )1(1ξξ-+= (7-8) 两种液体混合前的比焓 k 蒸发器冷媒 环境 发生器热媒 图7-2 吸收式制冷系统与外界 的能量交换 图7-3 可逆吸收式制冷循环

第一类溴化锂吸收式热泵的设计

毕业设计(论文)中文摘要

2012届本科毕业设计

毕业设计(论文)外文摘要

目录 1 绪论 (1) 1.1 热泵的发展简介 (1) 1.2 热泵的热源及其分类 (1) 2 第一类溴化锂热泵特点及原理 (2) 3 溴化锂吸收式热泵的理论计算 (6) 3.1 溴化锂溶液的物理化学特性 (6) 3.2 吸收式热泵的设计计算 (8) 3.2.1热力计算 (8) 3.2.1.1参数选定 (9) 3.2.1.2设备热负荷计算 (12) 3.2.1.3各个流体流量的统计 (13) 3.2.2吸收热泵各部件的传热参数计算 (14) 3.2.3各换热设备管程数、单管程管子数计算 (17) 4 第一类溴化锂吸收式热泵结构及装配示意图 (20) 4.1各换热器配管接管及其法兰设计计算 (21) 4.2发生器和冷凝器的装配示意图 (23) 4.3吸收器和蒸发器的装配示意图 (24) 4.4溶液热交换器的装配示意图 (25) 4.5溴化锂吸收式热泵总装配示意图 (26) 4.6本章小结 (26) 全文总结 (27) 参考文献 (28) 致谢............................................. 错误!未定义书签。

主要符号Cp 定压比热,kJ/(kg·K) COP 性能系数 K 传热系数,W/(m·K) H 焓,kJ/kg D 制冷工质质量流量,kg/s t 温度,℃ △t 传热温差,℃ P 压力,Pa △P 压力差,Pa Q 总的热负荷,KW a 溶液循环倍率 F 表面积,2 m L 管长,m XL 吸收器出口稀溶液浓度,% XH 发生器出口浓溶液浓度,% δ圆管壁厚,m d 管径,m 下角标: e 蒸发器 g 发生器 c 冷凝器 a 吸收器 ex 溶液换热器 i 内侧 o 外侧 l 液体 v 蒸汽

空气源热泵热水机组工作原理图

空气源热泵热水机组工作原理图 冷水水源直接进入热水机组入水口,热水机组按设定的温度进行加热,加热后的热水进贮水保温水箱,然后通过循环泵从保温水箱抽水送入系统中。它是吸收空气中的热能,利用电能驱动压缩机工作,把空气中的低品位热能吸收并提升,再传输到热水中。它是以电能来驱动工作,而非电能来制热。燃油锅炉由于燃油的价格高,产生的效能并不高。电资源虽丰富,但用电直接制热的方式不但耗电量大,运行成本高,而且电热管容易损坏。 热泵是通过消耗一部分高品质的能量从低温热源(空气)转移到高温热源(热水)中的一种装置。转移到高温热泵(热水)中的热量QH包括消耗掉的高品质电能W和从低温热源(空气)中吸收的热量QL,根据能量守恒原理及热力学第一定律,有QH=W+QL (1)

(1)式两边同除以W则QH=1+QL ……(2)式中QH为机组所获得的能量,储存于热水中;W为机组所消耗的电能;QL为来自空气中的热量,这部分能量来自于大自然的馈赠,不论环境温度如何变化,它总是以热焓的形式寄存于空气之中,所以热泵是一种高效节能的制热装置。定义能效比(COP)为热泵机组产出的热量与投入的电能之比,即产出投入比COP=QH代入(2)式,即WCOP=1+QL …… (3)WCOP是与低温热源的热力参数相关的函数,对空气源热泵而言,其值随空气的温度、湿度等参数的改变而变化,但无论如何变化,由(3)式可知:显然COP值恒大于1,即热泵的热效率突破了传统加热设备的热效率极限100%,这就是热泵节能的热力学依据。 热泵不是热能的转换而是热量的搬运设备,热泵制热的效率,不受能量的转换效率(100%为其极限)的制约,而是受到逆向卡诺循环效率的制约,其理论上的最高效率为(工作温度+273.15)/高低温差。只要有效降低工作温差就可以提高制热效率。

除湿热泵的工作原理

除湿热泵的工作原理 首先从设备选型上,避免了原有单独分散的设备,而采用了带有除湿功能的带机电一体化控制的除湿热回收组。这种一体化游泳池过滤设备,具有避免管道泄漏、不需传统机房节省建筑空间、节能节水、运行费用较低、便于维护管理、出水水质高的优点。其主要组成部分是除湿热泵机组,它的工作原理如图所示。 设备的风机从室内游泳馆上空抽入温暖潮湿的空气,该空气流经蒸发器(除湿机)盘管,将热能传递给冷液态制冷剂,进行除湿降温。这种能量交换可使空气温度降至其露点以下,在蒸发器盘管上形成结露。凝结的水分流入设备的滴水盘中。液态制冷剂流过蒸发器膨胀之后就变为一种低温低压的气态制冷剂。然后低温气态制冷剂进入压缩机,经压缩低温低压的气态制冷剂变为高温高压气态。在进入压缩机期间,制冷剂吸收了用于操作压缩的能量。这种高温高压气态制冷剂流过空气再加热盘管(冷凝器)、池水冷凝器,或流过任选空调冷凝器(可以是风冷式,也可以是水冷式)。需要对空气加热时使用再加热盘管,高温的制冷剂与来自蒸发器的较冷的经过除湿的气流进行能量交换,这可使空气的温度升高达到加热空气的目的。如果池水需要加热,高温的制冷剂就流入池水冷凝器,将能量施加给进入的池水。在给池水加热的同时,高温的制冷剂也被冷凝成低温高压的液态。如果需要进行空气冷却时,制冷剂就绕过再加热盘管和池水冷凝器流向辅助风冷式泠凝器。让来自蒸发器的冷空气给室内游泳馆提供干燥凉爽的空气环境。热泵加热能力=消耗的电能+从环境中吸收的热量。目前国际先进的除湿热泵设备通过全自动微电脑精确控制室内相对湿度在65%±5%,确保室内不会因为相对湿度过高而导致结构腐蚀和装修破坏。

空气源热泵工作原理

主讲人:刘海棠 职务:技术部部长 课题:空气源工作原理

㈠空气源热水器工作原理 一、空气源热水器的定义 空气源热泵热水器又称热泵热水器,由热泵吸收空气热源制取热水。空气源热水器就是通过热泵用逆卡诺原理,以极少的电能,吸收空气中大量的低温热能,通过压缩机的压缩变为高温热能,传输至水箱,加热热水,这种通过热泵运动来获得加热的热水器叫做空气源热水器。 目前,空气能热泵热水生产厂家和市场集中分布在长江以南。主要生产厂家集中在珠江三角洲的佛山、东莞、深圳、珠海以及长江三角洲的杭州、宁波地区。消费市场主要分布在长江以南的广东、广西、福建、江西、上海、浙江、安徽等省区,并逐步从长江以南向长江以北扩展。 二、空气源热水器的组成部分 热泵热水装置,主要由蒸发器、压缩机、冷凝器、膨胀阀、风机五大部件组成,通过让工质(制冷剂)不断完成蒸发(吸取环境中的热量)→压缩→冷凝(放出热量)→节流→再蒸发的热力循环过程,从而将环境里的热量转移到水中。 蒸发器直接从空气中吸取热量,将节流后的制冷剂吸热气化达到预期效果的设备。 压缩机是空气源热水器的心脏,把制冷剂从低压提升为高压,并使制冷剂不断循环流动。 冷凝器就是将压缩机排出的高温高压气体释放出热量后冷凝成低温高压液体的换热设备。 膨胀阀是一种节流装置,控制制冷剂的流量,可提高系统的能效比和可靠性。 风机主要是起加强气体流通量的作用,是依靠输入的机械能,提高气体压力并排送气体的设备。 制冷剂是热泵系统中实现制热循环的工作介质,也称冷媒。作为一种特殊的物质,制冷剂的物质状态在热泵循环过程中不断发生变化:在蒸发器中,制冷剂在较低的压力状态下吸收热能由液态变为气态;压缩机将此低压的气态制冷剂压缩升温为高压气态制冷剂;在冷凝器中,制冷剂在较高压力状态下放出热能由气态便为液态。 三、空气源热水器的基本工作原理 热泵技术是基于逆卡诺循环原理实现的;如同在自然界中水总是由高处流向低处一样,热量也总是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温热源传递到高温热源,所以热泵实质上是一种热

风冷热泵机组工作原理图解

风冷热泵机组: 风冷热泵机组是由压缩机——换热器——节流器——吸热器——压缩机等装置构成的一个循环系统。冷媒在压缩机的作用下在系统内循环流动。它在压缩机内完成气态的升压升温过程(温度高达100℃),它进入换热器后与风进行热量交换,被冷却并转化为流液态,当它运行到吸热器后,液态迅速吸热蒸发再次转化为气态,同时温度下降至零下20℃——30℃,这时吸热器周边的空气就会源源不断地将低温热量传递给冷媒。冷媒不断地循环就实现了空气中的低温热量转变为高温热量并加热冷水过程。 特点: 1.风冷热泵机组属中小型机组,适用于200-10000平方米的建筑物。 2.空调系统冷热源合一,更适用于同时具有采暖和制冷需求的用户,省去了锅炉房。 3.机组户外安装,省去了冷冻机房,节约了建筑投资。 4.风冷热泵机组的一次能源利用率可达90%,节约了能源消耗,大大降低了用户成本。 5.无须冷却塔,同时省去了冷却水泵和管路,减少了附加设备的投资。 6.风冷系统替代冷却水系统,更适用于缺水地区。 性能: 冷热量

这个参数是决定风冷热泵正常使用的最关键参数,它是指风冷热泵的进风温度、进出水温度在设计工况下时其所具备的制冷量或制热量。它可从有关厂家提供的产品样本中查得。但在设计中也发现这样的情况,那就是有的厂商所提供的样本参数并未经过测试而是抄自其它厂家的相关样本。这给设计人员的正确选型带来了一定困难。因此笔者建议在有条件的情况下设计人员可根据有关厂家的风冷热泵所配置的压缩机型号,从压缩机生产厂家处获得该压缩机的变工况性能曲线,根据热泵的设计工况查得该压缩机在热泵设计工况下的制冷量和制热量,从而判断该样本所提供参数的真伪。 COP值 该值是确定风冷热泵性能好坏的重要参数,其值的高低直接影响到风冷热泵使用中的耗电量,因此,应尽量选择COP值高的机组。我国国家标准是COP值为2.57,多数进口或合资品牌的COP在3左右,个别进口品牌的高效型机组其值可达到3.8。 噪声 噪声也是衡量一台风冷热泵机组的重要参数,它直接关系到热泵运行时对周围环境的影响。国内有关专家曾根据工程实测对各类进口热泵的噪声划分为三档,第一档在85dB以上、第二档在75~85dB 之间、第三档在75dB以下。我们在进行工程设计选型中应优先选择噪声在80dB以下的机组。 外型尺寸 风冷热泵机组大多布置在室外屋顶,它在进行设备布置时对设备

溴化锂吸收式热泵性能实验报告

溴化锂吸收式热泵性能实验报告 一、实验目的 1.研究蒸汽型溴化锂吸收式热泵机组制热工况机组性能系数COP h变化规律。 2.研究蒸汽型溴化锂吸收式热泵机组制冷工况机组性能系数COP c变化规律。 3.研究蒸汽型溴化锂吸收式热泵机组制热工况机组热力完善度βh变化规律。 4.研究蒸汽型溴化锂吸收式热泵机组制冷工况机组热力完善度βc变化规律。 二、实验仪器设备 1. 实验仪器 300kW蒸汽型单效溴化锂吸收式热泵机器本体、5台36kW蒸汽发生器(电加热锅炉)、2个10m3冷热水水箱、1个140L高温蒸汽凝结水箱、1个1m3低温热源循环水箱及其附属动力设备等。 2. 测量仪器 3个玻璃转子流量计(量程6t/h、16t/h、0.4t/h)测量冷水流量、低温热源的流量以及驱动热源的凝结水流量。12个温度传感器、1个压力传感器。 图1. 蒸汽型吸收式热泵测点布置图

三、实验方法 1.实验方案 (1)选定热源蒸汽的温度 通过调节蒸汽发生器(电加热锅炉)上部热源蒸汽压力阀的开度,将热源蒸汽的温度调整为100℃(0.0142MPa )、105℃(0.2090MPa )、110℃(0.4338MPa )、115℃(0.6918MPa )、120℃(0.9867MPa )、125℃(0.13MPa )、130℃(0.17MPa )其中的一组。 (2)改变热水出口的温度 在选定的蒸汽工况下,通过热泵控制盘的设置依次改变热水出口的温度,将热水出口温度(下限40℃、上限120℃)分别依次调整至50℃、52.5℃、55℃、57.5℃、60℃、62.5℃、65℃、67.5℃、70℃、72.5℃、75℃、,获取不同温度下的运行状态参数。达到要求工况后,稳定运行2分钟,记录一组数据。 冷水箱 热水箱 热泵 凝结水箱 低温热源循环水箱 电加热 锅炉 图2.实验设备流程示意图 2.实验步骤 (1)开机要求 1)检查热泵真空度,发生器绝对压力在20kPa 左右,方可开机。 2)热水泵与热源水泵等辅机是否处于正常状态,热水系统、热源水系统的水封应完好,并排净空气。

空气源热泵热水机组工作原理及节能分析

空气源热泵热水机组工作原理及节能分析 、空气能热水中心机组工作原理 空气源热泵热水机组是一种新型、可替代热水锅炉的热水装置。与传统太阳能相比,空气能源热泵热水机组不仅可吸收空气中的热量,还可吸收太阳能,它是将电热水器和太阳能热水器的优点完美的结合于一体的新型热水器。该产品以制冷剂为媒介,通过制冷剂状态、温度的变化和压缩机压缩制取热量,通过换热装置将热量传递给水,使水的温度升高来,升高温度的水通过水循环系统送入用户散热器进行采暖或直接用于卫生热水的供应。 空气源热热泵热水机组技术是基于逆卡诺循环原理建立起来的一种节能、环保制热技术。空气源热泵热水中机组系统通过自然能(空气蓄热)获取低温热源,经热泵系统高效集热整合后成为高温热源,用来制取供暖或卫生热水。整个系统集热效率较电热水机组(锅炉)、燃油、燃气热水机组有了很大提高。 空气源热热泵热水中心机组遵循能量守恒定律和热力学第二定律,运用热泵的原理,只需要消耗一小部分的机械功(电能),将处于低温环境(大气)中的热量转移到水中,去加热制取高温的热水。热泵可以与水泵相比拟,水是不能自发地从低处流向高处,要将低处的水输送到高处,必须用一台水泵,消耗一部分电力,才能将水送到高处的水箱中。同样,根据热力学第二定律,热量也是不能自发地从低温环境向高温环境中转移(传送),而要实现这个目的,必须要有一台机器,消耗一部分机械功(例如电能),才能将低温环境中的热量传送到高温环境中去。这样的机器就称之为“热泵”。热泵的作用是将空气中的热量取出,连同本身所用的电能转变成的热能,一起送到水中。 空气源热泵热水机组由压缩机、冷凝器、蒸发器和膨胀阀等部件组成。它运用逆卡诺循环原理,通过压缩机做功使工质产生相变(气态—液态—气态),在这种往复循环相变的过程中,通过蒸发器不间断的从环境吸取热量,通过冷凝器(换热器)不间断的放出热量,使冷水逐步升温,制取的热水通过热水管网循环装置输出到用户使用终端。 空气源热泵热水机组工作原理图 二、空气源热泵热水机组特点:目前市场上空气源热泵热水机组大部分属于技术成熟产品,压缩机一般采用涡 旋式或活塞式,也有采用螺杆式的,每台机组一般有单台或两台,一般机组有如下特点: (1)高效节能:其输出能量与输入电能之比即能效比(COP 一般可达到3.0 以上,而普通电热水锅炉的能效比(COP不大于0.90,燃气、燃油锅炉的能

热泵工作原理

热泵热水器原理 热泵热水器机组根据逆卡诺循环原理,采用极少的电能驱动,通过吸热工质把空气中零下15以上的空气热源传递到空气发生器导致空气交换器内的冷媒受热升温气化产生的热量被释放到水中,致使水温升高。 一、热泵热水器节能原理: 空气源热泵热水器是目前世界上能效比最高的热水设备之一。它根据逆卡诺循环原理,采用电能驱动,通过制冷剂把自然界的空气、水等其它难利用的低品位热能吸收,提升为可用的高品位热能对水进行加热的设备。空气源热泵热水器一般由压缩机、蒸发器、过滤器、节流器、储液罐、冷凝器、储水箱等几个部组成。 二、热泵热水器工作原理: 采用制冷剂的能量传递特点,让制冷剂压缩机的作用下循环工作,不断地在蒸发器中被蒸发而吸收空气(或水)中的热能,同时又不断地在冷凝器中释放热量从而使制冷剂循环工作,最大程度地减少热传递所需的用电量,达到高效节能的目的。 三、热泵热水器机组构成、原理及运行: 热泵式热水器机组是由一个制冷循环组成,包括主机和冷凝器两部分。其中主机部分包括蒸发器、风扇、压缩机及膨胀阀;冷凝器为内放冷凝盘管的保温箱。制冷剂在蒸发器内吸收外部空气的热量,通过热泵循环在冷凝盘管内释放热量,加热水箱内的水。水箱的保温层采用闭孔橡胶海绵或聚氨脂发泡,且具有良好的保温性能。 热泵热水器机组设备内专置一种吸热媒质——冷媒(制冷剂),它在液化的状态下常温低于零下20℃,故此,它与外界温度存在着温差,冷媒吸收了外界的温度,在蒸发器内部产生压力并蒸发汽化,通过热交换器(热泵)的工作,使冷媒从汽化状态转化为液化状态时,客观存在的热量便释放给热泵热水器机组水箱中的储用水。电只用在使热能释放出来,而不是用在直接加热,故用电很少,在夏季气温高时,生产一吨热水约损耗5——6度电,冬季寒冷的天气约损耗20——25度电。 空气能热泵热水器是创新一代的热水设备,是一种高效集热并转移热量的装置,用电能驱动热泵,由热泵装置中的压缩机、电子膨胀阀、干燥过滤器、四通阀、蒸发器、套管冷凝器、风机等主要部件组成,它成功地运用了逆卡诺原理,压缩机从蒸发器中吸入低温低压气体制冷剂,通过做功将制冷剂压缩成高温高压气体,高温高压气体进入冷凝器与水交换热量,在冷凝器中被冷凝成低温液体而释放出大量的热量,水吸收其释放出的热量而温度不断上升。被冷凝的高压低温液体经膨胀阀节流降压后,在蒸发器中通过风扇的作用,吸收周围空气热量从而挥发成低压气体,又被吸入压缩机中压缩,这样反复循环,从而制取热水。

风冷热泵机组工作原理图解

风冷热泵机组工作原理图解 风冷热泵机组这个新的名词对于大家来说很陌生,这种系统对用于空调中使用,在汽车空调中就也有使用,这个涉及到的很多就是专业方面的知识,所以很多消费者即使每天都在使用也不是很了解这个系统的工作原理,就更不要提系统在出现问题问题自己动手解决了,所以小编今天就来给大家介绍一下风冷热泵机组系统的工作原理,大家一起来了解一下,即使再以后的生活中不能自己动手修理也可以知道一些。 风冷热泵机组工作原理介绍:简介 风冷热泵机组是由压缩机——换热器——节流器——吸热器——压缩机等装置构成的一个循环系统。冷媒在压缩机的作用下在系统内循

环流动。它在压缩机内完成气态的升压升温过程(温度高达100℃),它进入换热器后与风进行热量交换,被冷却并转化为流液态,当它运行到吸热器后,液态迅速吸热蒸发再次转化为气态,同时温度下降至零下20℃——30℃,这时吸热器周边的空气就会源源不断地将低温热量传递给冷媒。冷媒不断地循环就实现了空气中的低温热量转变为高温热量并加热冷水过程。 风冷热泵机组工作原理介绍:原理 风冷热泵机组在使用中不同程度的都存在这样一种现象,即夏季制冷量不足,冬季制热量不足的现象。造成这种现象的原因是多方面的,这里除了设备本身的因素外也有工程设计中的问题。主要是设备布置不合理造成气流短路,夏季机组高温排风被重新吸入,造成进风温度过高冷凝压力上升,导致机组制冷量下降;冬季正在融霜的机组排出的湿空气被旁边正在供暖的机组吸入造成吸入空气湿度过高,加剧了

供暖机组的结霜速度,从而使其融霜时间延长,供暖时间减少,从而使机组的供热量减少。 因此风冷热泵应尽可能布置在室外,进风应通畅,排风不应受到阻挡。避免造成气流短路。如有阻挡物,应符合一定的要求。许多生产等单位提供的设计手册中对机组之间的间距及机组与墙间的距离均有明确要求,大致如下:机组间的距离应保持在2米以上,机组与主体建筑(或高度较高的女儿墙)间的距离应保持在3米以上。另外为避免排风短路在机组上部不应设置挡雨棚之类的遮挡物。如果机组必须布置在室内,应采取提高风机静压的办法,接风管将排风排至室外。排风口的风速要大(7米/秒),使其具有一定的射程,而进风口速度则要小(2米/秒),进排风口垂直高差应尽可能大,以避免气流短路。风冷热泵机组工作原理介绍:特点

热泵分类、原理、和比较

第2章热泵的分类及工作原理 2.1热泵的概念 “热泵”(heat pumps)这一术语是借鉴“水泵”一词得来的。在自然界中,水从高处自发流向低处,水泵可将水从低处送到高处利用。同样,热量可自发从高温热源传向低温热源,而热泵可将低温热源的热量“泵送”(交换传递)到高温热源加以利用,所以热泵实质上是一种热量提升装置。我国《暖通空调术语标准》(GB50155-92)对热泵的解释是“能实现蒸发器和冷凝器功能转换的制冷机”,《新国际制冷词典》(New International Dictionary of Refrigeration )对热泵的解释是“以冷凝器放出的热量来供热的制冷系统”。 2.2 热泵的分类【3】 由于热泵系统构成、设备特性、热源的种类以及用途的多样性,热泵的分类也多种多样,常见的分类方法有按驱动能源种类分类、按工作原理分类、按热源的种类分类、按主要用途分类、按供热温度分类、按热源和供冷供热介质的组合方式分类、按热泵机组安装方式分类、安热泵的功能方式分类、按能俩热泵的功能方式分类、按能量提升级数分类等。主要内容如下。 2.2.1 按驱动能源种类分类 (1)电动机驱动 (2)热驱动热驱动又可分为热能驱动(如吸收式热泵、蒸汽喷射式热泵)及发动机驱动(如内燃机驱动、汽轮机驱动等)。 2.2.2 按工作原理分类 (1)蒸汽压缩式这是热泵中最为普遍而广泛应用的一种形式。这类热泵中,热泵工质通常在由压缩机、冷凝器、节流装置及蒸发器等部件组成的系统中进行循环,并通过工质的状态变化及相变来实现将低品味热能泵送至高品位温度区的目的。 (2)气体压缩式与蒸汽压缩式热泵的区别在于这类热泵中工质始终以气态进行循环而不发生相变、如飞行器中空调系统多采用空气压缩式。 (3)吸收式消耗较高品位的热能来实现将低品位的热能向高品位温度区传送的目的。吸收式热泵通常由蒸发器、冷凝器、吸收器、发生器及节流阀等组 2

污水源热泵工作原理及效益分析

污水源热本调研报告 所谓污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,借助热泵机组系统内部制冷剂的物态循环变化,消耗少量的电能,从而达到制冷制暖效果的一种创新技术。 城市污水源热泵空调技术能实现冬季供暖、夏季空调、全年生活热水供应(很廉价的热水供应方案)、夏季部分免费生活热水供应。 城市污水热泵空调是一项高新技术,具有节能、环保及经济效益,符合经济与社会的可持续性发展战略。城市污水源热泵机组以污水为冷热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能(1份),将所取得的能量(大于4份)供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。 1、污水源热泵的工作原理 污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。 污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种方式。直接利用方式是指将污水中的热量通过热泵回收后输送到采暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到采暖空调建筑物。 2、污水源热泵系统的特点: (1)环保效益显著

城市污水源热泵是利用了污水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。 (2)高效节能 冬季,污水温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季污水温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 (3)运行稳定可靠 污水的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 (4)一机多用,应用xx 此热泵系统可供暖、空调,生活热水供应(夏季免费)等。一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。 (5)投资运行费用低 城市污水源热泵具有初投资低,运行费低的巨大经济优势。运行效果良好,经济效益显著。污水热泵系统的机房面积仅为其他系统的50%。系统根据室外温度及室内温度要求自动调节,可做到无人看管,同时也可做到联网监控。污水源热泵系统原理简单,设备的可靠性强,维护量小,平时无设备的维护问题。 3、污水源热泵系统目前在国内主要有两种应用方式 一种是利用防堵机技术把污水过滤后直接进入热泵机组,此种是对污水的直接利用,污水直接利用,进入热泵机组的热源温度较高,从理论上,系统能效比较高;但是在实际应用中,防堵机和污水热泵需要经常清洗,防堵机和热

太阳能热泵中央热水系统设计原理

太阳能热泵中央热水系统 摘要:太阳能中央热水系统一般采用各种能源的锅炉作为辅助热源,本文提出了一种太阳能—热泵中央热水系统形式,介绍了其工作原理和各组成部分的设计要求以及工程应用实例。太阳能—热泵中央热水系统以太阳能辅助加热的空气源热泵机组作为太阳能系统的辅助热源,在北方寒冷地区冬季运行可靠稳定,全年综合节能率85%以上,是一种实用的环保节能技术,具有一定的推广应用价值。 0 引言 目前,越来越多的住宅、宾馆、游泳池、公共浴池等场所采用太阳能作为其中央热水系统的主要热源。这些场所一般要求卫生热水在一定的时间段内或全天24小时连续供应,为满足太阳能不足时的用热需求,使太阳能集热系统的投资更加经济,通常采用电加热器或电锅炉、燃煤或燃油(气)锅炉、市政热力等作为太阳能中央热水系统的辅助热源。 热泵技术是一种新型的节能制冷供热技术,长期以来主要应用于建筑物的采暖空调领域。因热泵制热在节能降耗及环保方面的良好表现,卫生热水供应系统也越来越多的采用热泵设备作为热源[2]。其中以室外空气为热源的空气源热泵,结构简单,不需要专用机房,安装使用方便,在卫生热水供应方面具有不可替代的优势,除了比较大型的空气源热泵热水系统外,现在已有多个品牌的小型的家用空气源热泵热水器也投放市场。但空气源热泵的一个主要缺点是供热能力和供热性能系数随着室外气温的降低而降低,所以它的使用受到环境温度的限制,一般适用于最低温度-10℃以上的地区[3]。 将热泵技术与太阳能结合供应生活热水,国内外进行了许多这方面的研究,主要有两种方式,一种是直接以空气源热泵作为太阳能系统的辅助加热设备,另一种是利用太阳能热水为低温热源或将太阳能集热器作为热泵的蒸发器的太阳能热泵系统。前者以太阳能直接加热为主以空气源热泵为辅,解决太阳能供热的连续性问题,但仍旧无法摆脱环境温度对热泵制热性能的影响;后者完全以太阳能作为热泵热源,大大提高了太阳能的利用效率,但太阳能资源不足时仍需要增加其它辅助热源,并且热泵供热能力受太阳能集热量的限制,规模一般比较小。 在大型的太阳能中央热水系统中,空气源热泵无疑是一种比较理想的辅助加热设备,为了改善空气源热泵在低温环境下制热运行的性能,扩大它的使用区域,结合国内外太阳能热泵研究中的先进经验,我们研制了一种适合于低温环境中工作的太阳能—热泵中央热水系统。该系统采用一种新型的采用低温太阳能辅助的空气源热泵机组和太阳能集热系统结合,太阳能和热泵互为辅助热源,最大限度的利用太阳能,解决阴雨天气及冬季环境温度较低太阳能资源不足时热水供应保证率,做到全年、全天候供应热水。 1 太阳能—热泵中央热水系统组成 1.1 太阳能—热泵中央热水系统基本组成

空气源热泵工作原理

主讲人:刘海棠 职务:技术部部长课题:空气源工作原理

㈠空气源热水器工作原理 一、空气源热水器的定义 空气源热泵热水器又称热泵热水器,由热泵吸收空气热源制取热水。空气源热水器就是通过热泵用逆卡诺原理,以极少的电能,吸收空气中大量的低温热能,通过压缩机的压缩变为高温热能,传输至水箱,加热热水,这种通过热泵运动来获得加热的热水器叫做空气源热水器。 目前,空气能热泵热水生产厂家和市场集中分布在长江以南。主要生产厂家集中在珠江三角洲的佛山、东莞、深圳、珠海以及长江三角洲的杭州、宁波地区。消费市场主要分布在长江以南的广东、广西、福建、江西、上海、浙江、安徽等省区,并逐步从长江以南向长江以北扩展。 二、空气源热水器的组成部分 热泵热水装置,主要由蒸发器、压缩机、冷凝器、膨胀阀、风机五大部件组成,通过让工质(制冷剂)不断完成蒸发(吸取环境中的热量)→压缩→冷凝(放出热量)→节流→再蒸发的热力循环过程,从而将环境里的热量转移到水中。 蒸发器直接从空气中吸取热量,将节流后的制冷剂吸热气化达到预期效果的设备。 压缩机是空气源热水器的心脏,把制冷剂从低压提升为高压,并使制冷剂不断循环流动。 冷凝器就是将压缩机排出的高温高压气体释放出热量后冷凝成低温高压液体的换热设备。 膨胀阀是一种节流装置,控制制冷剂的流量,可提高系统的能效比和可靠性。 风机主要是起加强气体流通量的作用,是依靠输入的机械能,提高气体压力并排送气体的设备。 制冷剂是热泵系统中实现制热循环的工作介质,也称冷媒。作为一种特殊的物质,制冷剂的物质状态在热泵循环过程中不断发生变化:在蒸发器中,制冷剂在较低的压力状态下吸收热能由液态变为气态;压缩机将此低压的气态制冷剂压缩升温为高压气态制冷剂;在冷凝器中,制冷剂在较高压力状态下放出热能由气态便为液态。 三、空气源热水器的基本工作原理 热泵技术是基于逆卡诺循环原理实现的;如同在自然界中水总是由高处流向低处一样,热量也总是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温热源传递到高温热源,所以热泵实质上是一种热

吸收式制热

吸收式热泵是一种利用低品位热源,实现将热量从低温热源向高温热源泵送的循环系统。是回收利用低温位热能的有效装置,具有节约能源、保护环境的双重作用。吸收式热泵可以分为两类。 第一类吸收式热泵,也称增热型热泵,是利用少量的高温热源,产生大量的中温有用热能。即利用高温热能驱动,把低温热源的热能提高到中温,从而提高了热能的利用效率。第一类 吸收式热泵的性能系数大于1,一般为1.5~2.5。 第二类吸收式热泵,也称升温型热泵,是利用大量的中温热源产生少量的高温有用热能。即利用中低温热能驱动,用大量中温热源和低温热源的热势差,制取热量少于但温度高于中 温热源的热量,将部分中低热能转移到更高温位,从而提高了热源的利用品位。第二类吸收式热泵性能系数总是小于1,一般为0.4~0.5。两类热泵应用目的不同,工作方式亦不同。 但都是工作于三热源之间,三个热源温度的变化对热泵循环会产生直接影响,升温能力增大,性能系数下降。 目前,吸收式热泵使用的工质为LiBr--H2O或NH3--H2O,其输出的最高温度不超过150℃。升温能力ΔT一般为30-50℃。制冷性能系数为0.8~1.6,增热性能系数为1.2~2.5,升温性能系数为0.4~0.5。 第一类溴化锂吸收式热泵原理简介: 第一类溴化锂吸收式热泵机组是一种以高温热源(蒸汽、高温热水、燃油、燃气)为驱动热源,溴化锂溶液为吸收剂,水为制冷剂,回收利用低温热源(如废热水)的热能,制取所需要的工艺或采暖用高温热媒(热水),实现从低温向高温输送热能的设备。热泵由发生器、冷凝器、蒸发器、吸收器和热交换器等主要部件及抽气装置,屏蔽泵(溶液泵和冷剂泵)等辅助部分组成。抽气装置抽除了热泵内的不凝性气体,并保持热泵内一直处于高真空状态。 第二类溴化锂吸收式热泵原理简介: 第二类溴化锂吸收式热泵机组也是回收利用低温热源(如废热水)的热能,制取所需要的工艺或采暖用高温热媒(热水),实现从低温向高温输送热能的设备。它以低温热源(废热水)为驱动热源,在采用低温冷却水的条件下,制取比低温热源温度高的热媒(热水)。它与第一类溴化锂吸收式热泵机组的区别在于,它不需要更高温度的热源来驱动,但需要较低温度的冷却水。 第二类热泵也是由发生器、冷凝器、蒸发器、吸收器和热交换器等主要部件及抽气装置、屏蔽泵(溶液泵和冷却泵)等辅助部分组成。抽气装置抽除了热泵内的空气等不凝性气体,并保持热泵内一直处于高真空状态。 二段第二类溴化锂吸收式热泵原理简介: 二段第二类溴化锂吸收式热泵机组是将第二类热泵的蒸发器、吸收器、发生器和冷凝器各分为完全隔开的两个,驱动热源(废热水)、热媒(热水)和冷却水分别顺序流经分隔成两个的各部件,使各部件分别均形成一个高温段和一个低温段。高温段的发生器、蒸发器分别与高温段的冷凝器、吸收器对应,利用高温段的驱动热源温度较高的优势,尽量提高热媒出口温度;低温段的发生器、蒸发器则分别与低温段的冷凝器、吸收器对应,充分利用低温段冷却水和热媒温度较低的优势,尽量利用温度已降低的驱动热源的热量,使驱动热源(废热水)温度降得更低,从而回收利用更多的驱动热源(废热水)热量。

相关主题
文本预览
相关文档 最新文档