当前位置:文档之家› 实验3 流量计性能测定实验

实验3 流量计性能测定实验

实验3 流量计性能测定实验
实验3 流量计性能测定实验

实验3 流量计性能测定实验

一、实验目的

⒈了解几种常用流量计的构造、工作原理和主要特点。

⒉掌握流量计的标定方法(例如标准流量计法)。

⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。

⒋学习合理选择坐标系的方法。

二、实验内容

⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。

⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。

⒊测定节流式流量计的雷诺数Re和流量系数C的关系。

三、实验原理

流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为:

式中:被测流体(水)的体积流量,m3/s;

流量系数,无因次;

流量计节流孔截面积,m2;

流量计上、下游两取压口之间的压强差,Pa ;

被测流体(水)的密度,kg/m3。

用涡轮流量计和转子流量计作为标准流量计来测量流量V S。每一个流量在压差计上都有一对应的读数,将压差计读数△P和流量V s

绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。

四、实验装置

该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。

⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。

⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。

⒊压差测量:用第一路差压变送器直接读取。

图1 流动过程综合实验流程图

⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀;⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—截止阀;a—出口压力取压点;b—吸入压力取压点;1-1’—流量计压差;2-2’—光滑管压差;3-3’—粗糙管压差;4-4’—闸阀近点压差; 5-5’—闸阀远点压差;6-6’—截止阀近点压差;7-7’—截止阀远点压差;J-M—光滑管;K-L—粗糙管

五、实验方法:

⒈按下电源的绿色按钮,使数字显示仪表通电预热,调节第1路差压变送器的零点,关闭流量调节阀⑵⑶。

⒉按下离心泵的绿色按钮,启动离心泵;开启流量调节阀⑵⑶,将回流阀⒀全开,并旋开平衡阀⑿,赶净管路和导压管路内的气泡。

⒊在流量为0时,检查压差数字显示器第1路是否为零。若不为零,则说明系统内有气泡存在,需赶净气泡方可测取数据。

⒋用阀⑴⑵调节流量,从小流量至大流量或从大流量至小流量测取12~15组数据(同时测量压差和流量),并记录水温。

⒌继续其它实验。实验结束后,关闭流量调节阀,切断电源。

六、注意事项

⒈启动离心泵之前,必须检查流量调节阀⑵⑶是否关闭。

⒉赶气时,务必先打开平衡阀,但测数据时则必须关闭平衡阀。

七、报告内容

⒈将实验数据和整理结果列在数据表格中,并以其中一组数据计算举例。

⒉在合适的坐标系上,标绘节流式流量计的流量V S与压差△P的关系曲线(即流量标定曲线)、流量系数C与雷诺数Re的关系曲线。

⒊回答下列思考题:

⑴试验管路及导压管中如果积存有空气,为什么要排除?

⑵什么情况下的流量计需要标定?标定方法有几种?本实验是用哪一种?

⑶U管压差计上装设的平衡阀有何作用?在什么情况下应开着?在什么情况下应该关死?

八、设备主要参数

YUYJD55制冷压缩机性能测试实训装置

YUY-JD55制冷压缩机性能测试实训装置 实 验 指 书 导 上海育仰科教设备有限公司

一、实验目的 1、了解压缩机性能测定的原理及方法; 2、了解压缩式制冷的循环流程及各组成设备; 3、测定蒸气压缩式制冷循环的性能; 4、理解与认识回热循环; 5、比较单级压缩制冷机在实际循环中有回热与无回热性能上的差异; 6、熟悉实验装置的有关仪器、仪表,掌握其操作方法。 二、实验原理 1、单级压缩制冷机的理论循环 图1显示了压力-比焓图上单级蒸气压缩制冷机的理论循环。压缩机吸入的是以点1表示的饱和蒸气,1-2表示制冷剂在压缩机中的等熵压缩过程;2-3表示制冷剂在冷凝器中的等压放热过程,在冷却过程22'-中制冷剂与环境介质有温差,放出过热热量,在冷凝过程32'-'中制冷剂与环境介质无温差,放出比潜热,在冷却和冷凝过程中制冷剂的压力保持不变,且等于冷凝温度T K 下的饱和蒸气压力P K ;(33-')是液态再冷却放出的热量;3-4表示节流过程,制冷剂在节流过程中压力和温度都降低,且焓值保持不变,进入两相区;4-1表示制冷剂在蒸发器中的蒸发过程,制冷剂在温度T 0、饱和压力P 0保持不变的情况下蒸发,而被冷却物体或载冷剂的温度得以降低。 图 1

2、有回热的单级蒸气压缩制冷理论循环 为了使膨胀阀前液态制冷剂的温度降得更低(即增加再冷度),以便进一步减少节流损失,同时又能保证压缩机吸入具有一定过热度的蒸气,可以采用蒸气回热循环。 图3示为来自蒸发器的低温气态制冷剂1,在进入压缩机前先经过一个热交换器——回热器。在回热器中低温蒸气与来自冷凝器的饱和液体3进行热交换,低温蒸气1定压过热到状态1',而温度较高的液体3被定压再冷却到状态3',回热循环1'—2'—3—3'—4'—1—1'中,3—3'为液体的再冷却过程,过热后的蒸气温度称为过热温度,过热温度与蒸发温度之差称为过热度。 根据稳定流动连续定理,流经回热器的液态制冷剂和气态制冷剂的质量流量相等。因此,在对外无热损失情况下,每公斤液态制冷剂放出的热量应等于每公斤气态制冷剂吸收的热量。也就是说,单位质量制冷剂再冷却所增加的制冷能力△q0(面积b'4'4bb')等于单位质量气体制冷剂所吸收的热量△q(面积a11'a'a)。由于有了回热器,虽然单位质量制冷能力有所增加,但是,压缩机的耗功量也增加了△w0(面积11'2'21)。因此,回热式蒸气压缩制冷循环的理论制冷系数有可能提高,也有可能降低,应具体分析。 图3 采用回热器的优点: (1)对于一个给定的制冷量,制冷剂流量减少。 (2)在液体管路上气化的可能性减少(特别是在管路较长的情况下)。 (3)在压缩机的吸气管道上,可减少吸入外界热量。 (4)在压缩机吸气口消除液滴,防止失压缩。

流量计性能测试实验(DOC)

中南大学 仪器与自动检测实验报告 冶金科学与工程院系冶金专业班级 姓名学号同组者同班同学 实验日期2013 年 4 月 08 日指导教师 实验名称:流量计性能测试实验 一、实验目的 1.掌握流量计性能测试的一般实验方法; 2.了解倒U型压差计的使用方法; 3.应用体积法,测定孔板流量计、文丘里流量计的标定曲线; 4.验证孔板流量计、文丘里流量计的孔流系数C0与雷诺数Re的关系曲线。 二、实验原理 流体流过孔板流量计或文丘里流量计时,都会产生一定的压差,而这个压差与流体流过的流速存在着一定的关系。 1.孔板流量计或文丘里流量计的标定 流体在管内的流量可用体积法测量: V= a·?h /τ(1) 式中:V——管内流体的流量,L/s; a——体积系数,即计量筒内水位每增加1cm所增加的水的体积,本实验中a=0.6154 L/cm;

?h ——计量筒液位上升高度,?h = h1- h0,cm ; h1——计量筒内水位的初始读数,cm ; h0——计量筒内水位的终了读数,cm ; τ ——与?h 相对应的计量时间,s 。 测出与V 相对应的孔板流量计(或文丘里流量计)的压差读数R ,即可在直角坐标纸上标绘出对应流量计的V ~R 标定曲线。 其中, R ——孔板流量计(或文丘里流量计)的压差读数,cm 。 2.孔流系数C0与雷诺数Re 关系测定 流体在管内的流量和被测流量计的压差R 存在如下的关系: 3 00102??? ?=ρ P C A V (2) 其中,2 10-???=?g R P ρ (3) 2 00102??= Rg A V C (4) 式中: A0——孔板流量计的孔径(或文丘里流量计喉径)的截面积,m2,本实验中孔板孔d0=17.786mm ,文丘里流量计喉径d0=19.0mm ; C0——孔板流量计(或文丘里流量计)的孔流系数; g ——重力加速度,g=9.807m/s2。 又知 μ ρ du = Re (5) 式中: Re ——雷诺数; d ——水管的内径,m ,本实验中d =0.0238m ; ρ—— 流体的密度,kg/m3; μ—— 流体的粘度,Pa ·s 。 u ——水管内流体流速,m/s,

文丘里流量计实验实验报告

文丘里流量计实验实验报告 实验日期:2011.12.22 一、实验目的: 1、学会使用测压管与U 型压差计的测量原理; 2、掌握文丘里流量计测量流量的方法和原理; 3、掌握文丘里流量计测定流量系数的方法。 二、实验原理: 流体流径文丘里管时,根据连续性方程和伯努利方程 Q vA =(常数) H g v p z =++22 γ(常数) 得不计阻力作用时的文丘里管过水能力关系式(1、2断面) h K p z p z g d d d Q ?=?????????? ??+-???? ? ?+???? ??-=γγπ221141222214 1 由于阻力的存在,实际通过的流量Q '恒小于Q 。引入一无量纲系数Q Q '=μ(μ称为流量系数),对计算所得的流量值进行修正。 h K Q Q ?=='μμ h K Q ?' =μ 在实验中,测得流量Q '和测压管水头差h ?,即可求得流量系数μ,μ一般在0.92~0.99之间。 上式中 K —仪器常数 g d d d K 214 141222???? ??-=π h ?—两断面测压管水头差 ??? ? ??+-???? ??+=?γγ2211p z p z h h ?用气—水多管压差计或电测仪测得,气—水多管压差计测量原理如下图所示。

1h ? 2h ? H 3 1H 2H 1z 2z 气—水多管压差计原理图 根据流体静力学方程 γγ22231311 p H h H h H H p = +?-+?--- 得 221121H h h H p p -?+?++=γγ 则 )()(222211212211γγγγp z H h h H p z p z p z +--?+?+++=??? ? ??+-???? ?? + 212211)()(h h H z H z ?+?++-+= 由图可知 )()(4321h h h h h -+-=? 式中,1h 、2h 、3h 、4h 分别为各测压管的液面读数。 三、实验数据记录及整理计算(附表) 文丘里流量计实验装置台号:2 d1=1.4cm d2=0.7cm 水温t=13.1℃ v=0.01226cm 2/s 水箱液面标尺值▽0=38cm 管轴线高程标尺值▽=35.7cm 实验数据记录表见附表 四、成果分析及小结: 经计算 K=17.60cm 2.5/s u=1.064 由实验计算结果看各组数据的相差较大,可以判断实验的精密度不高,实验 与理论值有偏差。误差来源主要有实验测量值的不准确,人为造成的主管因素较大。 五、问题讨论: 为什么计算流量Q 理论与实际流量Q 实际不相等? 答:因为实际流体在流动过程中受到阻力作用、有能量损失(或水头损失),而计算流量是假设流体没有阻力时计算得到的,所以计算流量恒大于实际流量。

空压机的性能检测

1空压机的概述 1.1 NPT5 空压机的组成结构和工作原理 (1)组成结构 NPT5空气压缩机是一种常用的空气压缩机,目前为止,它也是机车中使用最多的一种空气压缩机。当环境温度小于30 0C时,它能够连续稳定运转。前面也介绍了,它主要用于铁路机车的制动系统,还包括其它的气源部件,如鸣笛等。NPT5是三缸,立式,风冷,两级压缩的活塞式空气压缩机。其结构图如图1所示。 图1空压机的结构图 NPT5主要由运动部件,空气压缩系统,润滑系统和冷却系统组成,下面分别对各个部分作简单的介绍。 1)运动部件 曲轴是空压缩机中很重要的一个部件。原动机经由曲轴带动,使电机的旋转运动转换成活塞的上下来回运动。在曲轴的一端装有油泵的联轴器带动油泵旋转。连杆是受力部件。活塞环是个密封部件,主要负责布油和导热。 2)空气压缩系统 曲轴由原动机带动作规律的旋转,通过连杆使活塞作规律的往复运动。在活塞不断运动的过程中,气缸内工作容积也在随之不断变化。因为气阀的原因,空气也会按照一定规律在运动,从而形成对空气的压缩作用。 3)润滑系统 对于空压机的运行,润滑系统是一个必不可少也非常关键的系统分。NPT5空压机主要是采用压力润滑的解决办法。 4)冷却系统 压缩机的冷却系统是非常有必要的,不然超过了它的运行温度,会导致空压机不能正常的工作。空压机的冷去系统主要包括对压缩空气的冷却和受热机件的冷却。本压缩机采用了强迫通风的冷却装置,结构很简单,主要部件为风扇和冷却器。 ( 2) NPT5空压机的工作原理 电动机通过联轴器将动力输入,然后带动空压机的曲轴按指定的方向作旋转运动。由于

连杆的作用,然后带动装在连杆小端的活塞在气缸内做活塞运动。在活塞的不停运动中,活塞的顶部与气缸之间形成进气和排气的空气压缩过程。气阀的工作原理如图2所示。 图2气阀的工作原理 1.2 NPT5 空压机的主要参数 表1为NPT5 的主要参数 表1 NPT5 的主要参数

流量计性能测定实验报告doc

流量计性能测定实验报告 篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验 实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中: 被测流体(水)的体积流量,m3/s; 流量系数,无因次;

流量计节流孔截面积,m2; 流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3 。 用涡轮流量计和转子流量计作为标准流量计来测量流量VS。每一 个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。 图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀; ⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—

实验实训12 空调压缩机的性能测试实验

实验实训12 空调压缩机的性能测试实验 一、测试原理 压缩机制冷量定义为试验直接测得的流经压缩机的制冷剂流量乘以压缩机吸气口的制冷剂气体比焓与排气口压力对应的膨胀阀前制冷剂液体比焓的差值。本压缩机性能测试系统采用第二制冷剂量热器法对压缩机的制冷量进行测试,其构造为蒸发器盘管悬置在一压力容器上部,下面是第二制冷剂液体,电加热器安装在第二制冷剂液面下,用电加热量平衡压缩机制冷量,用电加热量去计算出流经压缩机的流量。 二、设备概述 本测试系统由水冷冷凝器、储液器、膨胀阀、过冷器、量热器(第二制冷为环保制冷剂R123)、控制系统、测量系统。 1. 控制系统需控制五个参数,分别为压缩机吸气温度、压缩机吸气压力、过冷温度、压缩 2. 测量系统由五个压力变送器、四支PT100铂电阻及数据记录仪DA100及测试程序组成,各传感器及DA100配置如下表: 三、测试软件使用说明 压缩机测试平台软件是整个测试平台的终端软件,用来采集、处理、保存测试数据,以及

生成测试报告。 1.界面功能介绍 整个界面可以分为菜单、状态栏、调节器控制显示、实时数据图形显示、计算数据显示、功能选择按钮、页面显示选择和通讯状态指示栏,共8个部分。 菜单包括所有功能选择按钮的功能,同时包括高级控制功能和不常使用的功能; 状态栏用来指示当前系统的工作状态,用于提示; 调节器控制显示用于显示调节器当前的工作状态,和设定调节器的输出值; 实时数据图形显示用来显示实时数据和整个过程的数据变化状况; 计算数据显示用来显示瞬态计算数据; 功能选择按钮用来选择不通的功能,控制测试平台的工作以及查看设定相关数据; 页面显示用来选择实时数据的显示方式; 通讯状态指示栏用来显示上位机(PC)和下位机(数据采集仪DA100、调节器UT350、可编程控制器PLC、压缩机电量采集仪8902F、量热器电量采集仪8905F)的通讯状态; 2.菜单 菜单包括系统、系统设置、数据处理和帮助四个一级菜单,每个菜单都有相应的子菜单。 2.1 系统菜单 系统菜单主要用于管理系统用户和控制测试开始、停止和退出,如下图所示: 高级用户登陆用于系统权限管理,高级用户登陆后可以使用用 户管理、硬件配置等高级功能。如右图所示,在未登陆前,用户 无权限进行用户管理,同时也无权限对硬件进行配置(系统设置菜 单内容),快捷键(Ctrl+L)。 用户管理用来管理使用该平台用户的权限,快捷键(Ctrl+M)。 注销用户用来退出当前使用者的权限设置功能。 开始测试用来启动、停止测试功能,和开始测试按钮具有完全相同的功能,快捷键(Ctrl+R)。退出菜单用来退出整个测试平台,快捷键(Ctrl+Q)。 2.2 系统配置菜单 注:本菜单只有在设备更换或测量不正常时使用,在设备正常使用时切无操作,不然可能会引起错误。 系统设置菜单包括工况设置、铭牌设置和硬件初始化设置(权限设置,有效登陆后激活)。 工况设定(Ctrl+T)用来设定工况控制的目 标值,自动更新调节器的设定值,和按钮工 况设定功能完全相同; 铭牌设定(Ctrl+N)用来设置压缩机铭牌,和 铭牌设定按钮功能完全相同; 硬件初始化菜单在测试进行过程中无效; 通讯端口配置(Ctrl+O)用来设置下位机设 备的通信端口; 冷凝温度(排气压力)调节器初始化、蒸发温 度(吸气压力)调节器初始化、过冷温度调节器初始化、吸气温度调节器初始化、环境温度调节器分别用来初始化相应的调节器; 电量表8902F初始化用来初始化压缩机电量采集仪; 电量表8905F初始化用来初始化量热器电量采集仪; 数据采集仪初始化用来初始化DA100数据采集仪,并恢复数据采集输入类型为系统默认值;

空气流量计的检测方法

空气流量计的检测方法 空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU 根据空气计量传 感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传 感器一一空气流量计。②间接测量方法传感器一一进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1) 机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO 调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2) 卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3) 热线式空气流量计。热线式空气流量计按其热线形又分为 3 种。 ①热丝式一一将加热丝均匀分布在计量通道内。热丝式空气流量计(图1) 精度高、分布均匀,可精确计量空气量,但由于热丝很细(0.01~0.05mm)且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。 ②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由 于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导 较差,影响计量精度。

流量计实验报告

流量计实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号:姓名:教师:李成华 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的校正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。

F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计;C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A)。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道流量的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,就可计算管道的理论流量Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,可计算管道的理论流量

往复活塞式压缩机性能测定实验汇总

一、目的要求 1.了解往复活塞式压缩机的结构特点; 2.了解温度、压差等参数的测定方法,计算机数据采集与处理;3.掌握压缩机排气量的测定原理及方法; 4.掌握压缩机示功图的测试原理、测量方法和测量过程; 5.了解脉冲计数法测量转速的方法; 6.掌握测试过程中,计算机的使用和测量。 单作用压缩机工作原理图

二、实验仪器、设备、工具和材料

往复活塞式压缩机性能测定实验验装置简图 1-消音器2-喷嘴3-压力传感器4-温度传感器5-减压箱6-调节阀7-压力表8-安全阀9-稳压罐10-单向阀11-温度传感器12-压力传感器13-温度传感器14-吸入阀15-控制柜16-计算机17-接近开关18-冷却水排空阀19-进水阀20-排水管 注:图中虚线为信号传输线 三、实验原理和设计要求 活塞式压缩机原理示意简图 1.活塞压缩机排气量的测定实验的实验原理

用喷嘴法测量活塞式压缩机的排气量是目前广泛采用的一种方法。它是利用流体流经排气管道的喷嘴时,在喷嘴出口处形成局部收缩,从而使流速增加,经压力降低,并在喷嘴的前后产生压力差,流体的流量越大,在喷嘴前后产生的压力差就越大,两者具有一定的关系。因此测出喷嘴前后的压力差值,就可以间接地测量气体的流量。排气量的计算公式如下: 式中: q V:压缩机的排气量,m3/min, C:喷嘴系数,根据喷嘴前后的压力差,喷嘴前气体的绝对温度,在喷嘴系数表中查取,见本实验教材; D:喷嘴直径,D=19.05mm: H:喷嘴前后的压力差,mmH20; p0:吸入气体的绝对压力,Pa; T0:压缩机吸入气体的绝对温度,K; T1:压缩机排出气体的绝对温度,K。 通过测量装置,计算机采集吸入气体温度T0、排出气体温度T1、喷嘴压差H,并由计算机已存储的喷嘴系数表,计算出喷嘴系数,用上述公式计算出排气量q V。 2.传感器的布置和安装 排气量的测试需要测量出喷嘴前后的压力差、环境温度、排气温度三个参数,因此需要安装测量这三个参数的传感器。它们的布置如图1-2所示。

离心泵的性能测试实验报告

实验名称:离心泵的性能测试 班级: 姓名: 学号: 一、 实验目的 1、 熟悉离心泵的操作,了解离心泵的结构和特性。 2、 学会离心泵特性曲线的测定方法。 3、了解单级离心泵在一定转速下的扬程、轴功率、效率和流量之间的关系。 二、 实验原理 离心泵的特性主要是指泵的流量、扬程、功率和效率,在一定转速下,离心泵的流量、扬程、功率和效率均随流量的大小改变。即扬程和流量的特性曲线H=f (Q );功率消耗和流量的特性曲线N 轴=f (Q e );及效率和流量的特性曲线?=f(Qe);这三条曲线为离心泵的特性曲线。他们与离心泵的设计、加工情况有关,必须由实验测定。 三条特性曲线中的Qe 和N 轴由实验测定。He 和?由以下各式计算,由伯努利方程可知: He=H 压强表+H 真空表+h 0+g u u 22 1 20- 式中: He ——泵的扬程(m ——液柱) H 压强表——压强表测得的表压(m ——液柱) H 真空表——真空表测得的真空度(m ——液柱) h 0——压强表和真空表中心的垂直距离(m ) u 0——泵的出口管内流体的速度(m/s ) u1——泵的进口管内流体的速度(m/s ) g ——重力加速度(m/s 2 ) 流体流过泵之后,实际得到的有效功率:Ne= 102ρ HeQe ;离心泵的效率:轴 N N e =η。在实验中,泵的周效率由所测得的电机的输入功率N 入计算:N 轴=η传η电N 入 式中: Ne ——离心泵的有效功率(kw ) Qe ——离心泵的输液量(m3/s) ρ——被输进液体的密度(kg/m3) N 入——电机的输入功率(kw ) N 轴——离心泵的轴效率(kw ) η——离心泵的效率 η传——传动效率,联轴器直接传动时取1.00 η电——电机效率,一般取0.90 三、 实验装置和流程

实验二气体流量测定与流量计标定(精)

实验二气体流量测定与流量计标定 一、实验目的 气体属于可压缩流体。气体流量的测量,虽然有一些与用于不可压缩流体相同的测量仪表但也有不少专用于气体的测量仪表,在测量方法和检定方法上也有一些特殊之处。显然,气体流量的测量与液体一样,在工业生产上和科学研究中,都是十分重要的。尤其是在近代,工业生产规摸的大型化和科学实验的微型化,往往这些流量、温度、压力等的检测仪表就成为关键问题。 目前,工业用有LZB 系列转子流量计,实验室用有LZW 系列微型转子流量计,可供选用。对于市售定型仪表,若流体种类和使用条件都按照规格规定,则读出刻度就能知道流量。但从精度上考虑,仍有必要重新进行校正。转子流量计自制是有困难的,因锥形玻璃管的锥度手工难于制作。但是,在科学研究中或其它某种场合,有时,不免还要根据某种特殊需要,创制一些新型测量仪表和自制一些简易的流量计。不论是市售的标准系列产品还是自制的简易仪表,使用前,尤其是使用一段时间后,都需要进行校正,这样才能保证计量的准确、可靠。 气体流量计的标定,一般采用容积法,用标准容量瓶量体积,或者用校准过的流量计作比较标定。在实验室里,一般采用湿式气体流量计作为标准计量器。它属于容积式仪表,事先应经标准容量瓶校准。实验用的湿式流量计的额定流量,一般有 0.2m3h 1和0.5m3h 1两种。若要标定更大流量的仪表,一般采用气柜计量体积。实验室往往又需用微型流量计,现时一般采用皂膜流量计来标定。 本实验采用标准系列中的转子流量计和自制的毛细管流量计来测量空气流量。并用经标准容量瓶直接校准好的湿式流量作为标准,用比较法对上述两种流量计进行检定,标定出流量曲线.,对毛细管流量计标定。通过本实验学习气体流量的测量方法,以及气体流量计的原理、使用方法和检定方法。同时,这些知识和实验方法对学习者在进行以下各项实验时,肯定会有帮助,尤其时对今后所从事的各种实验研究工作,也是有益处的。 二、实验原理 1.湿式气体流量计 该仪器属于容积式流量计。它是实验室常用的一种仪器,其构造主要由圆鼓形壳

Ⅱ型压缩机性能测定实验指导书

活塞式压缩机性能测定 实验指导书 V3.0 北京化工大学

活塞式压缩机性能测定实验 一、实验目的 1.活塞式压缩机性能曲线测试 压力比—排气量曲线(ε— Q ) 压力比—轴功率曲线(ε— Ne ) 压力比—效率曲线(ε—η) 2.活塞式压缩机闭式示功图 3.实验数据、实验曲线的显示存储和打印。 二、实验设备 1.实验装置如图1所示。 2.压缩机性能参数: 1)型号:TA-80型一级三缸风冷移动式空气压缩机; 2) 气缸直径:D=80毫米×3个 3) 活塞行程:S=60毫米 =0.5立方米/分(额定工况下) 4) 排气量:Q 5) 轴功率:Nz<4千瓦(额定工况下) 6) 回转速:n=875 rpm =0.8 Mpa(表) 7) 额定排气压力:P 2 3.三相交流异步电动机型号:Y112M-2FSY 1) 额定功率 4 kW 2) 转速 875 rpm 3) 额定电压 V=380V 4) 额定电流 I=8.2A 5) 频率 50Hz 6) 电机效率η=0.882 7) 功率因数 cosφ=0.88 =97% 8) 皮带传动效率η C 4.辅助装置 1) 控制箱和操作台 2) 储罐:容积V=0.17米3;直径D=400毫米长度L=1.7米 3) 低压箱及喷嘴喷嘴直径d=9.52 mm 4) 导管及调节阀 5.主要测量仪器及仪表 1)喷嘴流量测量装置

2)差压变送器 3)压力变送器 4)温度变送器 5)磁电式齿轮转速传感器 图1 空气压缩机性能实验装置简图 1.喷嘴 2.差压变送器 3.温度变送器 4.出口调节阀 5.压力变送器 6.压力变送器 7.气缸 8.电动机 9.电气控制箱 10.储气罐 三、实验步骤 1.方法:本实验用调节压缩机储罐出口调节阀来改变压力比ε大小,以得到不同的排气量、功率、效率; 根据GB3853-83《一般用容积式空气压缩机性能试验方法》标准规定,采用喷嘴测量压缩机的排气流量,标准喷嘴系数为C。 2.步骤: 1) 启动测量装置:启动计算机,运行“压缩机试验”程序,点击“试验”按钮进入试验条件输入画面,输入实验条件。点击“确认”按钮进入试验画面; 2) 压缩机启动:a.盘车——用手转动皮带轮一周以上;b.将储气罐出口调节阀完全打开;c.转动压缩机控制箱旋钮——启动压缩机; 3)点击“清空数据”按钮, 4)调储气罐出口调节阀,改变排气压力(间隔0.05Mpa),等试验系统稳定后,记录各项数据。(运转中,如发现有不正常现象应及时停车); 5)停车:转动压缩机控制箱旋钮——关闭压缩机(注意:此时不得转动储气罐出口调节阀)。 四、压缩机参数计算 1.实测排气量计算

超声波流量计检定规程

附件2: 明渠堰槽流量计型式评价大纲 1范围 本型式评价大纲适用于分类代码为12185000的明渠堰槽流量计(以下简称流量计)的型式评价。 2引用文件 本大纲引用了下列文件: JJG 711-1990 明渠堰槽流量计 GB/T 9359-2001 水文仪器基本环境试验条件及方法 GB/T 11606-2007 分析仪器环境试验方法 GB/T 17626.2电磁兼容试验和测量技术静电放电抗扰度试验 GB/T 17626.3电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 GB/T 17626.8电磁兼容试验和测量技术工频磁场抗扰度试验 JB/T 9329-1999 仪器仪表运输、运输贮存基本环境条件及试验方法 HJ/T 15-2007 环境保护产品技术要求超声波明渠污水流量计 凡是注日期的引用文件,仅注日期的版本适用于本规范。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。 3术语 3.1 明渠堰槽流量计weirs and flumes for flow measurement 在明渠中利用量水堰槽和水位~流量转换仪表(二次仪表)来测量流量的流量计。 3.2 水位stage 从测量基准点(或零点)高程算起,加上某一水面的距离后所得到的高程值,单位m。 3.3 喉道throat 测流堰槽内截面面积最小的区段。 4概述 4.1工作原理 在明渠中设置标准量水堰槽,液位计安装在规定位置上测量流过堰槽的水位。将测出的水位值代入相应的流量公式或经验关系式,即可计算出流量值。明渠堰槽

流量计的水位与流量呈单值关系。 4.2结构型式 明渠堰槽流量计包括:薄壁堰、宽顶堰、三角形剖面堰、流线型三角形剖面堰、平坦V形堰、巴歇尔(Parshall)槽、孙奈利(SANIIRI)槽、P-B(Palmer-Boulus)槽等槽体及与之配套的液位计和水位、流量显示仪表。 明渠堰槽流量计由量水堰槽和水位~流量转换仪表(二次仪表)所组成。水位~流量转换仪表包括:液位计、换算器和显示器。 为准确计量流量,明渠堰槽流量计还应包括:堰体上游行近段、下游渠槽衔接段和水位观测设施。 量水堰槽有多种形式,如:薄壁堰、宽顶堰、三角形剖面堰、喉道槽等,可根据现场条件、流量范围和使用要求选取。 5法制管理要求 5.1计量单位 流量计应采用法定计量单位。选用的流量计量单位为m3/h、m3/s或m3,温度单位为℃。 5.2 外部结构 流量计应具有防护装置及不经破坏不能打开的封印。凡能影响计量准确度的任何人为机械干扰,都将在流量计或保护标记上产生永久性的有形损坏痕迹。 5.3 标志 5.3.1计量法制标志的内容 试验样机应预留出位置,以标出制造计量器具许可证的标志和编号,流量计型式批准标志和编号以及产品合格印、证。 5.3.2铭牌 铭牌应包括: a)制造商名称(商标); b)产品名称及型号; c)出厂编号; d)制造计量器具许可证标志和编号; e)工作温度范围; f)在工作条件下的最大、最小流量或流速;

化工原理实验-流量计校核实验分析报告

化工原理实验-流量计校核实验报告

————————————————————————————————作者:————————————————————————————————日期:

流量计校核 一、实验操作 1. 熟悉实验装置,了解各阀门的位置及作用。 2. 对装置中有关管道、导压管、压差计进行排气,使倒U 形压差计处于工作状态。 3. 对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流量时测量8-9个点,大流量时测量5-6个点。为保证标定精度,最好再从大流量到小流量重复一次,然后取其平均值。 4. 测量流量时应保证每次测量中,计量桶液位差不小于100mm 或测量时间不少于40s 。 二、数据处理 1.数据记录 计量水箱规格:长 400mm ;宽 300mm 管径d (mm ):25 孔板取喉径d 0(mm ):15.347 查出实验温度下水的物性: 密度 ρ= 996.2542 kg/m3 粘度 μ= 0.000958 PaS 2.数据处理 d V d V d du πμρ πμ ρ μρ 44Re 2=? == ρ/20000p A C A u V ?== 则 ρ /200p u C ?= 孔板流量计试验数据处理 左/cm 右/cm ΔR/m 时间t/s 水箱 高度h/cm 体积V/m 3 流量Qv/m 3·s -1 流速V/m ·s -1 空流系数C0 雷诺数 Re min 57.0 57.0 Qv=h.S/t V=∏ 24d qv V=C 0.gR 2 Re=dv ρ/μ max 33.1 45.3 1 33.7 46.3 0.126 40 6.7 0.008193 2.05E-04 1.1078 0.7049 16916.60 2 38.2 47.1 0.089 41 6.1 0.007454 1.82E-04 0.983 3 0.7445 15014.92 3 40.6 48.8 0.082 41 5.7 0.007022 1.71E-04 0.9264 0.7307 14146.29

压缩机性能测试实验.doc

制冷压缩机性能测试实验 一、实验目的 通过制冷压缩机实际运行测试实验,使学生了解并掌握以下内容: 1、制冷压缩机制冷量的测试方法; 2、蒸发温度、冷凝温度与制冷量的关系; 3、制冷系统主要运行参数及其相互之间的影响; 4、有关测试仪器、仪表的使用方法; 5、测试数据处理及误差分析方法。 二、实验原理 1、制冷压缩机的性能随蒸发温度和冷凝温度的变化而变化,因此需要在国家标准规定的工况下进行制冷压缩机的性能测试。 2、压缩机的性能可由其工作工况的性能系数COP 来衡量: Q COP W = 式中,0Q 为压缩机的制冷量; W 为压缩机输入功率。 3、在一个确定的工况下,蒸发温度、冷凝温度、吸气温度以及过冷度都是已知的。这样,对于单级蒸气压缩式制冷机来说,其循环p-h 图如图3 所示。 图3 图中,1点为压缩机吸气状态;4-5为过冷段。 在特定工况下,压缩机的单位质量制冷量是确定的,即:015q h h =- 。这样只要测得流经压缩机的制冷剂质量流量m G ,就可计算出压缩机的制冷量,即 0015()m m Q G q G h h =?=?- 4、压缩机的输入功率:开启式压缩机为输入压缩机的轴功率,封闭式(包括半封闭式和全封闭式)压缩机为电动机输入功率。 三、实验设备

整个实验装置由制冷系统及换热系统、参数测量采集和控制系统共三部分组成: 1、制冷系统采用全封闭涡旋式制冷压缩机,蒸发器为板式换热器,冷凝器为壳管式换热器,节流装置为电子膨胀阀。 1.1冷却水换热系统由冷却水泵、冷却水塔、调节冷凝器进水温度的恒温器和水流量调节阀门及管路组成; 1.2冷媒水换热系统由冷媒水泵、调节蒸发器进水温度的恒温器、调节水流量的阀门组成; 2、六个绝对压力变送器、十个PT100温度传感器、两个涡轮流量变送器分别对应原理图位置及安捷伦34970型数据采集仪和压缩机性能测试软件; 3、控制系统:通过三块山武SCD36数字调节器分别根据设定值与实测值的差值来调节冷却水、冷媒水的加热量和电子膨胀阀的开度,将机组运行控制在设定工况允许的范围内。 图4 四、实验方法 制冷工况由两个主要参数来决定,即蒸发温度和冷凝温度,制冷压缩机性能测试的国家工况名称 蒸发温度 ℃ 冷凝温度 ℃ 吸气温度 ℃ 标准工况 -15 +30 +15±3 最大压差工况 -30 +50 最大轴功率工况 +10 +50 空调工况(水冷) +5 +35 空调工况(风冷) +5 +55 试验工况的稳定与否,是关系到测试数据是否准确的关键问题,工况稳定的标志是主要的测试参数都不随时间变化。调节时需要特别地耐心、细致。 实际试验中是根据吸气压力来确定蒸发温度,冷凝温度是根据排气压力来确定。如果吸气温度也达到稳定,表明制冷量也达到稳定。本装置是通过: 1、调整冷却水流量和温度来稳定压缩机的排气压力; 2、调整冷媒水流量和温度来稳定压缩机的吸气温度;

流量计流量的校正实验

流量计流量的校正实验 一. 实验目的 1. 熟悉孔板流量计、文丘里流量计的构造、性能及安装方法。 2. 掌握流量计的标定方法之一——容量法。 3. 测定孔板流量计、文丘里流量计的孔流系数与雷诺准数的关系。 二. 基本原理 对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺(如转子流量计)、给出孔流系数(如涡轮流量计)、给出校正曲线(如孔板流量计)。使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。 孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。 1、孔板流量计的校核 孔板流量计是应用最广泛的节流式流量计之一,本实验采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺准数的关系。 孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。其基本构造如图1所示。 若管路直径为d 1,孔板锐孔直径为d 0,流体流经孔板前后所形成的缩脉直径为d 2,流体的密度为ρ,则根据柏 努利方程,在界面1、2处有: 图1 孔板流量计 2 2 21 12 2 u u p p p ρ ρ --?= = 或 = 由于缩脉处位置随流速而变化,截面积2A 又难以指导,而孔板孔径的面积0A 是已知的,因此,用孔板孔径处流速0u 来替代上式中的2u ,又考虑这种替代带来的误差以及实际流体局部阻力造成的能

实验3 流量计性能测定实验

实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中:被测流体(水)的体积流量,m3/s; 流量系数,无因次; 流量计节流孔截面积,m2;

流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3。 用涡轮流量计和转子流量计作为标准流量计来测量流量V S。每一个流量在压差计上都有一对应的读数,将压差计读数△P和流量V s 绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。

图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀;⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—截止阀;a—出口压力取压点;b—吸入压力取压点;1-1’—流量计压差;2-2’—光滑管压差;3-3’—粗糙管压差;4-4’—闸阀近点压差; 5-5’—闸阀远点压差;6-6’—截止阀近点压差;7-7’—截止阀远点压差;J-M—光滑管;K-L—粗糙管

制冷压缩机性能测试实验

制冷压缩机性能测试实验 试验台简介 本试验台采用图1所示系统,通过阀门的转换,可进行制冷压缩机性能测试实验、冷水机组性能实验、水-水换热器性能实验和水泵性能实验。 制冷压缩机性能实验系统由压缩机、冷凝器、蒸发器、电子膨胀阀、恒温器电参数仪等设备组成。压缩机吸气压力、吸气温度、排气压力分别控制在国家标准规定的状态下。吸气温度由恒温器2调节蒸发器冷媒水进口温度T9控制,吸气压力由电子膨胀阀控制,排气压力由恒温器1调节冷凝器冷却水进口温度T7控制。压缩机的实际制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。由此得到压缩机的主辅测质量流量,进而计算出标准工况下的主辅侧制冷量。压缩机的输入功率由电参数仪测得。在制冷系统内部安装多个压力和温度测点,可以方便地确定系统内部的状态。 冷水机组性能实验系统,由压缩机、冷凝器、蒸发器、热力膨胀阀、恒温器等设备组成。实验时,可以设置不同的冷媒水和冷却水温度。冷水机组冷媒水进口温度通过调节恒温器2中的电加热器控制,冷却水进口温度通过调节恒温器1中的电加热器控制,而出口温度则通过阀门调节。冷水机组的输入功率通过电参数仪表测得。冷水机组的制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。同时在系统中加入了相应的温度和压力测点,可以使学生能更加深入地了解冷水机组的工作特性。 水-水换热器性能实验系统,由冷水机组、恒温器、流量计、水泵等设备组成。冷热侧流体分别通过冷水机组和恒温器1获得。换热器冷侧和热侧流体进口温度分别通过恒温器2和恒温器1控制。通过测量换热器两侧流体进出口温度和两侧的流量,可以求出换热量,在已知换热面积的前提下,可以求出换热器的换热系数K。 水泵性能实验系统,由水泵、流量计、电参数仪等设备组成。水泵的流量通过流量计测得,水泵的扬程通过水泵进出口压力变送器测得。在水泵的出口处设立调节阀,通过改变阀门的开度来改变水泵进口处的参数,获得水泵变工况运行特性曲线。

新版流量计标定实验讲义

实验二 流量计的标定 一、实验目的 1、了解孔板流量计和文丘里流量计的操作原理和特性,掌握流量计的一般标定方法; 2、测定孔板流量计和文丘里流量计的流量系数的C 0和Cv 与管内Re 的关系。 3、通过C 0和Cv 与管内Re 的关系,比较两种流量计。 二、基本原理 工厂生产的流量计大都是按标准规范生产的,出厂时一般都在标准技术状况下(101325Pa ,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,或将流量读数直接刻在显示仪表上。然而在使用时,所处温度、压强及被测介质的性质与标定状况多数并不相同,因此为了测量准确和方便使用,应在现场进行流量计的标定或校正。对已校正过的流量计,在长时间使用磨损较大时也需要再次校正。对于自制的非标准流量计,则必须进行校正,以确定其流量系数C 0或C v 。本实验通过改变流体流量q 和压差ΔP f ,获得一系列Re 与C 0或C v ,采用半对数坐标绘制出C 0或C v 与Re 的关系曲线进而实现流量计的标定或校正。 1、流体在管内Re 的测定: 式中:ρ、μ— 流体在测量温度下的密度和粘度 [Kg/m 3 ]、[Pa ·s] q — 管内流体体积流量 [m 3/s] 2、孔板流量计和文丘里流量计 孔板流量计和文丘里流量计是应用最广的节流式流量计,其结构如图2-1所示。 a 孔板流量计 b 文丘里流量计 图2-1 节流式流量计结构 孔板流量计是利用动能和静压能相互转换的原理设计的,它是以消耗大量机械能为代价的。孔板的开孔越小、通过孔口的平均流速u 0越大,孔前后的压差ΔP 也越大,阻力损失也随之增大。为了减小流体通过孔口后由于突然扩大而引起的大量旋涡能耗,在孔板后开一渐扩形圆角。因此孔板流量计的安装是有方向的。若是方向弄反,不光是能耗增大,同时其流量系数也将改变,实际上这样使用没有意义。 以孔板流量计为例,若用f P ?表示节流前后两截面之间的压差,根据两截面之间的柏努利方程,可知: 222222121 1u P gZ u P gZ ++=++ρρ,则有:ρ f P u u ?=-22122 以孔口速度u 0代替上式中的u 2,并将质量守恒式u 1A 1= u 0A 0代入,得:

相关主题
文本预览
相关文档 最新文档