当前位置:文档之家› 氟离子选择电极测定饮用水中的氟

氟离子选择电极测定饮用水中的氟

氟离子选择电极测定饮用水中的氟
氟离子选择电极测定饮用水中的氟

图5-1 氟离子电极示意图 1.0.1mol/LNaF,0.1mol/L,NaCl 内充液

2.Ag-AgCl 内参比电极

氟离子选择电极测定饮用水中的氟

一、实验目的

1、了解离子选择电极的主要特性,掌握离子选择电极法测定的原理、方法及实验操作。

2、了解总离子强度调节缓冲液的意义和作用。

3、掌握用标准曲线法、标准加入法和Gran 作图法测定未知物浓度。

二、方法原理

氟离子选择电极(简称氟电极)是晶体膜电极,见示意图5-1。它的敏感膜是由难溶盐LaF 3单晶(定向掺杂EuF 2)薄片制成,电极管内装有0.1mol ?L -1NaF 和0.1mol.L -1NaCl 组成的内充液,浸入一根Ag-AgCl 内参比电极。测定时,氟电极、饱和甘汞电极(外参比电极)和含氟试液组成下列电池:

氟离子选择电极 | F -试液(c =x )║饱和甘汞电极

一般离子计上氟电极接(-),饱和甘汞电极(SCE )接

(+),测得电池的电位差为: j a AgCl Ag SCE E ?????++--=-膜电池 (5.1)

在一定的实验条件下(如溶液的离子强度,温度等),外

参比电极电位?SCE 、活度系数

、内参比电极电位?Ag-AgCl 、氟电极的不对称电位?a 以及液接电位?j 等都可以作为常数处理。而氟电极的膜电位?膜与F -活度的关系符合Nernst 公式,

因此上述电池的电位差E 电池与试液中氟离子浓度的对数呈线

性关系,即 -+=F a F

RT K E log 303.2电池 (5.2) 因此,可以用直接电位法测定F -的浓度。式(2)中K 为常数,R 为摩尔气体常数8.314J ·mol -1·

K -1,T 为热力学温度,F 为法拉第常数96485C ·mol -

1。

当有共存离子时,可用电位选择性系数来表征共存离子对响应离子的干扰程度: )log(303.2/,m z j Pot j i i a K a zF

RT k E ++=电池 (5.3) 本实验用标准工作曲线法、标准加入法测定水中氟离子的含量。测量的pH 值范围为5.5-9,加入含有柠檬酸钠、硝酸钠及HAc-NaAc 的总离子强度调节缓冲溶液(TISAB Total Ionic Strength Adjustment Buffer ;)来控制酸度、保持一定的离子强度和消除干扰离子对测定的影响。

三、仪器和试剂

仪器 PHS-3C 型pH 计或其他型号的离子计;电磁搅拌器;氟离子选择电极和饱和甘汞电极各一支;玻璃器皿一套。

试剂 TISAB 溶液:称取氯化钠58g ,柠檬酸钠10g ,溶于800mL 去离子水中,再加入1

冰醋酸57mL ,用40%的NaOH 溶液调节pH 至5.0,然后加去离子水稀释至总体积为1L 。

0.100mol ?L -1NaF 标准贮备液:准确称取2.100g NaF(已在120℃烘干2h 以上)放入500mL 烧杯中,加入100mLTISAB 溶液和300mL 去离子水溶解后转移至500mL 容量瓶中,用去离子水稀释至刻度,摇匀,保存于聚乙烯塑料瓶中备用。

四、实验步骤

1、氟离子选择电极的准备

按要求调好PHS-3C 型pH 计至mV 档,装上氟电极和参比电极(SCE )。将氟离子选择电极浸泡在1.0×10-1mol/LF -溶液中,约30min ,然后用新鲜制作的去离子水清洗数次,直至测得的电极电位值达到本底值(约-370mV)方可使用(此值各支电极不同,由电极的生产厂标明)。

2、 标准溶液系列的配制:取5个干净的50mL 容量瓶,在第一个容量瓶中加入10mLTISAB 溶液,其余加入9mLTISAB 溶液。用5mL 移液管吸取5.0mL0.1mol ?L -1NaF 标准贮备液放入第一个容量瓶中,加去离子水至刻度,摇匀即为1.0×10-2mol ·L -1F -溶液。再用5mL 移液管从第一个容量瓶中吸取5.0mL 刚配好的1.0×10-2mol ·L -1F -溶液放入第二个容量瓶中,加去离子水至刻度,摇匀即为 1.0×10-3mol ·L -1F -溶液。依此类推配制出10-2~10-6mol ·L -1F -溶液。

3、校准曲线的测绘:将上述(2)所配好的一系列溶液分别倒少量到对应的50mL 干净塑料烧杯中润洗,然后将剩余的溶液全部倒入对应的烧杯中,放入搅拌子,插入氟离子选择电极和饱和甘汞电极,在电磁搅拌器上搅拌3-4min 后读下mV 值。测量的顺序是由稀至浓,这样在转换溶液时电极不必用水洗,仅用滤纸吸去附着电极和搅拌子上的溶液即可。注意电极不要插得太深,以免搅拌子打破电极。

测量完毕后将电极用去离子水清洗,直至测得电极电位值为-370mV 左右待用。

4、试样中氟离子含量的测定:

用小烧杯准确称取约0.5g 牙膏,加少量去离子水溶解,加入10mLTISAB ,煮沸2min ,冷却并转移至50mL 容量瓶中,用去离子水稀释至刻度,待用。

若用自来水,可直接在实验室取样。

(1)标准曲线法 准确移取自来水25mL 于50mL 容量瓶中,加入10mLTISAB ,用去离子水稀释至刻度,摇匀。然后全部倒入一烘干的塑料烧杯中,插入电极,在搅拌条件下,待电极稳定后读取电位值x ?(此溶液别倒掉,留作下部实验用)。

(2)标准加入法 测得实验(1)的电位x ?后,准确加入1.00mL1.00×10-4mol ·L -1F -标准溶液,测得电位值1?(若读得的电位值变化△?小于20mV ,应使用1.00×10-3mol ·L -1F -

标准溶液,此时实验需重新开始)。

(3)空白实验 以去离子水代替试样,重复上述测定。

牙膏试样同样可按上述方式测定。

5、选择性系数Pot j i K ,的测定

(1)取一个洁净的50mL 容量瓶,加入10mLTISAB 溶液,用20mL 胖肚移液管移取20mL 0.1mol/LNaCl 至容量瓶内,然后再移取0.2mL0.1mol/LNaF 溶液至容量瓶内,用去离子水定容。

(2)按上述步骤3,测其电位值。

(3)用式(5.2)计算出常数k 后,即可利用公式(5.3)计算F 离子电极对F -

的电位

选择性系数Pot Cl F K 11,--,此时[F -]/[Cl -]=1:100。显然Pot Cl F K 11,--越小越好。 五、结果处理

1、以测得的电位值?(mV)为纵坐标,以pF (或logC(F))为横坐标,在(半对数)坐标纸上做出校准曲线。从标准曲线上求该氟离子选择电极的实际斜率和线性范围,并由x ?值求试样中F -

的浓度。

2、根据标准加入法公式,求试样中F -离子浓度: 110-?=?

?s c

c x 式中,x

s s V c V c =

?,??为两次测得的电位值之差;s 为电极的实际斜率,可从标准曲线上求出。 六、注意事项

1、 清洗玻璃仪器时,应先用大量的自来水清洗实验所使用的烧杯、容量瓶、移液管,然后用少量去离子水润洗。

2、 测量时浓度由稀至浓,每次测定后用被测试液清洗电极、烧杯以及搅拌子。

3、 制标准曲线时,测定一系列标准溶液后,应将电极清洗至原空白电位值,然后再测定未知试液的电位值。

4、 测定过程中更换溶液时,“测量”键必须处于断开位置,以免损坏离子计。

5、 测定过程中搅拌溶液的速度应恒定。

思考题

1、 写出离子选择电极的电机电位完整表达式。

2、 为什么要加入离子强度调节剂?说明离子选择电极法中用TISAB 溶液的意义。

3、 比较标准曲线法与标准加入法测得的F -浓度有何不同。为什么?

实验六氟离子选择性电极测定水中微量F-

实验六、氟离子选择性电极测定水中微量F-离子 一、实验目的 1.熟悉酸度计的使用方法; 2.了解电位测定法的基本原理与应用; 3.学习并掌握氟离子选择性电极测定微量F-离子的原理和测定方法; 4.了解总离子强度调节缓冲溶液的意义和作用。 二、实验原理 离子选择电极是一种电化学传感器,又叫膜电极,它是将溶液中特定离子的活度转换成相应的电位。氟离子选择电极,简称氟电极,它是LaF3单晶敏感膜电极(掺有微量EuF2,利于导电),电极管内放入NaF + NaCl混合溶液作为内参比溶液,以Ag-AgCl作内参比电极。当将氟电极浸入含F-离子溶液中时,在其敏感膜内外两侧产生膜电位△φM,在一定条件下膜电位△φM与氟离子活度的对数值呈线性关系。 △φM= K-0.059 lg a F-(25 ℃) 以氟电极作指示电极,饱和甘汞电极为参比电极,浸入试液组成工作电池:Hg,Hg2Cl2 | KCl(饱和)‖F- 试液| LaF3 | NaF,NaCl(均为0.1mol/L) | AgCl,Ag 工作电池的电动势: E = K ′- 0.059 lg a F-(25 ℃) (式中K ′值包括内外参比电极的电位、液接电位等的常数。通过测量电池电动势可以测定氟离子的活度。) 在测量时加入以HAc-NaAc,柠檬酸钠和大量NaCl配制成的总离子强度调节缓冲液(TISAB)。由于加入了高离子强度的溶液(本实验所用的TISAB其离子强度I >1.2),可以在测定过程中维持离子强度恒定,因此工作电池电动势与F-离子浓度的对数呈线性关系: E = k - 0.059 lg C F- 本实验采用标准曲线法测定F-离子浓度,即配制成不同浓度的F-标准溶液,测定工作电池的电动势,并在同样条件下测得试液的E x,由E - lg C F-曲线查得未知试液中的F-离子浓度。当试液组成较为复杂时,则应采取标准加入法或Gran

离子选择性电极法测定氟离子

自来水中氟含量的测定(氟离子选择性电极法) 一、实验目的 1、掌握氟离子选择电极测定水中氟离子含量的原理、方法。 2、了解总离子强度调节缓冲溶液的组成和作用。 3、熟悉用标准曲线法和标准加入法测定水中氟的含量。 二、实验原理 用氟离子选择性电极测定水样时,以氟离子选择电极作指示电极,以饱和甘汞电极作参比电极,组成的测量电池为 氟离子选择性电极︱试液‖SCE 如果忽略液接电位,电池的电动势为: E=b-0.0592loga F- 即电池的电动势与试液中的氟离子活度的对数成正比。由此可采用标准曲线法和一次性标准加入法测定氟含量或浓度。 三、仪器与试剂(自己整理) 四、实验步骤(自己整理) (1)电极的准备 (2)标准曲线制作 (3)水样中氟含量的测定 ①标准曲线法②标准加入法 五、实验数据结果处理(自己整理) 六、思考题: 1用离子选择性电极法测定氟离子时加入TISAB的组成和作用各是什么? TISAB的组成成分对应的作用 0.1 mol/L氯化钠溶液控制离子强度,加快平衡响应时间 控制溶液的酸度,使pH=5-6 0.25 mol/L HAc-0.75 mol/L NaAc 溶液 0.001mol/L柠檬酸钠溶液掩蔽自来水中含有的Al3+、Fe3+、Sn4+等干

2标准曲线法和标准加入法各有何特点,比较本实验用这两种方法测得的结果是否相同,如果不同说明原因。 答:⑴.标准曲线法:可以适用于多次测量,并且要求标准溶液和样品具有恒定的离子强度,并维持在适宜的pH 范围内.调节离子强度所用电解质不应对测定有干扰,调节离子强度的溶液,也常加入适当的络合剂或其他试剂以消除干扰离子的影响。 ⑵.标准加入法:是在其他组分共存情况下进行测量的,因此实际上减免了共存组分的影响,古这种方法适合于成分不明或是组成复杂的试样的测定。 标准加入法比标准曲线法操作简便,这两种方法测得的实验结果在排除误差的影响时基本相同。 3为什么控制PH5.0—6.0原因? 较高碱度时,主要的干扰物是-OH 。在膜的表面发生如下反应: -3-33F La(OH)3OH LaF +====+ 反应产生的氟离子干扰电极的响应,同时使氟离子浓度偏高; 在较高酸度时由于形成HF 2-而降低F -的离子活度,测定结果偏低。 扰离子,防止F - 与金属离子形成配合物

大气固定污染源氟化物的测定离子选择电极法方法确认

大气固定污染源氟化物的测定离子选择电极法 HJ/T67-2001方法确认 1.目的 通过离子选择电极法测定吸收液中氟离子的浓度,分析方法检出限、回收率及精密度,判断本实验室的检测方法是否合格 2.适用范围 本标准适用于大气固定污染源有组织排放中氟化物的测定。不能测定碳氟化物,如氟利昂。 3. 职责 3.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验 结果的意外因素,掌握检出限、方法回收率与精密度的计算方法。 3.2 复核人员负责检查原始记录、检出限、方法回收率及精密度的计算方法。 3.3技术负责人负责审核检测结果及检出限、方法回收率、精密度分析结果 4.分析方法 4.1 测量方法简述 4.1.2 样品的采集和保存 污染源中尘氟和气态氟共存时,采样烟尘采样方法进行等速采样,在采样管的出口串联三个装有75ml吸收液的大型冲击式吸收瓶,分别捕集尘氟和气态氟。 若污染源中只存在气态氟时,可采用烟气采样方法,在采集管出口串联两个装有50ml吸收液的多孔玻板吸收瓶,以0.5~2.0L/min的流速采集5~20min。 采样管与吸收瓶之间的连接管,选用聚四氟乙烯管,并应尽量短。 注:连接管液可使用聚乙烯塑料管和橡胶管。 采样点数目,采样点位设置及操作步骤,按GB/T 16157-1996《固定污染源排气中颗粒物的测定和气态污染物采样方法》有关规定进行。采样频次和时间,按GB 16297-1996 《大气污染物综合排放标准》有关规定进行。 采样结束后,将滤筒取出,编号后放入干燥洁净的器皿中,并按照采样要求,做好记录。吸收瓶中的样品全部转移至聚乙烯瓶中,并用少量水洗涤三次吸收瓶,洗涤液并入聚乙烯瓶中。编号做好记录。采样管与连接管先用50ml吸收液洗涤,再用400ml 水冲洗,全部并入聚乙烯瓶中,编号做好记录。样品常温下可保存一周。 4.1.3 分析步骤 取6个50ml聚乙烯烧杯,按表1配制标准系列,也可根据实际样品浓度配制,

水中氯化物含量的测定.doc

成绩 评语 Scor e 教师签字日期 Comment 学时 Signature of Tutor________________ Date:_______ 2 Time 班 组别姓名学号级 Grou Name Student No. Cla p ss 项目编号项目名称 实验三:水中氯化物的测定(沉淀滴定法)Item No. Item 课程名称教材 Course Textbook 一、实验时间、地点 二、实验目的 1.学会用硝酸银标准溶液来滴定水中的氯化物; 2.掌握用莫尔法测定水中氯化物的原理和方法。 三、实验原理 在中性或弱减性溶液中,以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于 铬酸银的溶解度,Cl -首先被完全沉淀后,铬酸银才以铬酸银形式沉淀出来,产生砖红色,指示Cl - 滴定的终点。 +- 2- →Ag CrO↓ 沉淀滴定反应如下:Ag +Cl ? AgCl↓ 2Ag++CrO 4 24 铬酸根离子的浓度,与沉淀形成的迟早有关,必须加入足量的指示剂。 且由于有稍过量的硝酸银与铬酸钾形成铬酸银沉淀的终点较难判断,所以需要以蒸馏水作空白滴定, 以作对照判断( 使终点色调一致) 。 四、实验内容

用移液管移取L 氯化钠标准溶液,加蒸馏水,加一毫升K2CrO4,指示剂。在玻璃棒的不断搅动下,用硝酸银标准溶液滴定至淡橘红色,即为终点。同时做空白试验。根据氯化钠标准溶液的浓度和滴定中所消耗硝酸银溶液的体积,计算硝酸银溶液的准确浓度。 五、实验器材 1.棕色酸式滴定管一支, 25ml; 2.瓷坩埚一个, 250ml; 3.移液管一支, 50ml; 4.烧杯一支, 250ml; 5.玻璃棒 1 支; 6.滴定台、滴定夹。 六、实验步骤 步骤 1: 取水样 25ml 到 250ml 瓷坩埚中,在用量筒量入25ml 的自来水稀释,滴加1ml K CrO 用玻璃棒搅匀; 24, 步骤 2:在滴定管装满水后,扭开活塞,检查滴定管的严密性。检查完毕后,将L 的硝酸银溶液倒入滴定管中; 步骤 3:用烧杯将瓷坩埚固定住,在玻璃棒的搅拌下,用硝酸银溶液滴定至淡橘红色,即为终点。根据氯化钠 标准溶液的浓度和滴定中所消耗硝酸银溶液的体积,计算硝酸银溶液的准确浓度。

实验六 氟离子选择电极测定自来水中的氟含量

实验六 氟离子选择电极测定自来水中的氟含量 一、实验目的 1.了解氟离子选择性电极的基本性能及其使用方法。 2.掌握用氟离子选择性电极测定氟离子浓度的方法。 3.学会使用离子选择性电极的测量方法和数据处理方法。 二、基本原理 饮用水中氟含量的高低,对人的健康有一定的影响。氟含量太低,易得牙龋病,过高则会发生氟中毒,适宜含量为0.5~1.0 mg/L 。 目前测定氟的方法有比色法和直接电位法。比色法测量范围较宽,但干扰因素多,并且要对样品进行预处理;直接电位法,用离子选择性电极进行测量,其测量范围虽不及前者宽,但已能满足环境监测的要求,而且操作简便,干扰因素少,一般不必对样品进行预处理。因此,电位法逐渐取代比色法成为测量氟离子含量的常规方法。 氟离子选择性电极 (简称氟电极) 以LaF 3单晶片为敏感膜,对溶液中的氟离子具有良好的选择性。氟电极、饱和甘汞电极 (SCE) 和待测试液组成的原电池可表示为: Ag│AgCl ,NaCl ,NaF│LaF 3膜│试液‖KCl (饱和),Hg 2Cl 2│Hg 一般pH/mV 计上氟电极接 (-) ,饱和甘汞电极接 (+),测得原电池的电动势为: - -=F SCE E ?? SCE ?和- F ?分别为饱和甘汞电极和氟电极的电位。当其他条件一定时 - -=F K E αlg 059.0 (25℃) (1) 其中,K 为常数,0.059为25℃时电极的理论响应斜率;-F α为待测试液中- F 活度。 用离子选择性电极测量的是离子活度,而通常定量分析需要的是离子浓度。若加入适量惰性电解质作为总离子强度调节缓冲剂 (TISAB),使离子强度保持不变,则(1)可表示为: pF K c K c K E F F ?+=?+=?-=-- 059.0)lg -(059.0lg 059.0 - F c 为待测试液中-F 浓度,- -=F c pF lg 。

水中氯离子含量的测试方法

测定水中氯离子含量的测试方法 1.适用范围* 1.1如下三个测试方法包括了水、污水(仅测试方法C)及盐水中氯离子含量的测定: 部分 测试方法A(汞量滴定法)7~10 测试方法B(硝酸银滴定法)15~21 测试方法C(离子选择电极法)22~29 1.2测试方法A、B和C在应用(practice)D2777-77下有效,仅仅测试方法B在应用D2777-86下也同样有效,详细的信息参照14、21和29部分。 1.3本标准并不意味着罗列了所有的,如果存在,与本标准的使用有关的安全注意事项。本标准的使用者的责任,是采用适当的安全和健康措施并且在使用前确定规章制度上的那些限制措施的适用性。明确的危害声明见26.1.1。 1.4以前的比色法不再继续使用。参照附录X1查看历史信息。 2.参考文献 2.1ASTM标准 D1066蒸汽的取样方法2 D1129与水相关的术语2 D1193试剂水的规范2 D2777D-19水委员会应用方法的精确性及偏差的测定2 D3370管道内取水样的方法2 D4127离子选择电极用术语2 3.专用术语 3.1定义——这些测试方法中使用的术语的定义参照D1129和D4127中的术语。 4.用途及重要性 4.1氯离子是,因此应该被精确的测定。它对高压锅炉系统和不锈钢具有高度危害,所以为防止危害产生监测是必要的。氯分析作为一个工具被广泛的用于评估循环浓度,如在冷却塔的应用。在食品加工工业中使用的处理水和酸洗溶液也需要使用可靠的方法分析氯含量。 5.试剂纯度 5.1在所有的试验中将使用试剂级化学物质。除非另有说明,所有试剂应符合美国化学品协会分析试剂委员会的规范要求。如果能断定其他等级的试剂具有足够高的纯度,使用它不会减少试验的精度,则这种等级的试剂也可以使用。 5.2水的纯度——除非另有说明,关于水的标准应理解为指的是如Specification D1193中由第二类所定义的试剂水。 6.取样 6.1根据标准D1066和标准D3370取样。

离子选择性电极测量氟离子

实验二离子选择电极法测定氟离子 一、实验目的 1. 巩固离子选择电极法的理论 2. 了解并学会通用离子计的操作方法 3. 掌握校正曲线的分析技术 4. 了解氟离子电极测定的测试条件 二、方法原理 氟是人体必需的微量元素。摄入适量的氟有利于牙齿的健康。但摄入过多时,则对人体有害。轻者造成斑釉牙,重者造成氟胃症。 测定溶液中的氟离子,一般由氟离子选择电极作指示,饱和甘汞电极作参比电极,与待测液(或标准溶液)组成测量电池,可表示为: Ag,AgCl,NaCl(0.1mol/L)∣LaF3膜∣(待测液或标准溶液)‖KCl(饱和溶液)Hg2Cl2,Hg 其电池电动势:E电池=φSCE-φF- 而φ F-=φ Ag/Agcl + K - F RT lnα F- 因此:E 电池=φ SCE -φ Ag/Agcl - K + F RT lnα F- 令:K’=φ SCE -φ Ag/Agcl - K,则E 电池 = K’ + F RT lnα F- 在25℃时,E 电池表示为:E 电池 =K’+0.059lgα F- 式中K’为内外参比电极电位及不对称电位常数。 这样通过测定电位值,即可得到氟离子的活度(或浓度)。本实验采用校正曲线法。配制一系列已知浓度的氟离子标准溶液,加入总离子强度调节剂(TISAB), 得到对应的电位值(E),绘制E--lgC F-校正曲线。未知样品测得电位值E x 值后, 在校正曲线上查处对应的氟离子浓度,即得分析结果。 LaF 3 单晶敏感膜电极,在氟离子浓度为1.00×10-1---1.00×10-6mol/L的范围内,氟电极电位与lgC呈线性关系。

三、仪器与试剂 1.仪器:氟离子选择电极,232型饱和甘汞电极,磁力搅拌器,pHS—3C酸度计,塑料小烧杯5只,10ml移液管5支,25ml量筒一个,100ml容量瓶5个,250ml 容量瓶,烧杯2个(250ml、100ml各一个),滴管、玻璃棒、吸耳球各一个。 2.试剂:用去离子水配制以下试剂,且都是用聚氯乙烯塑料瓶储存。 (1)1.000×10-1mol/L F-标准储备液:准确称取NaF(分析纯,120℃烘1h)4.199g溶与容量瓶中,用去离子水稀释至刻度,摇匀。储存与氯乙烯瓶中待用; 1.00×10-2---1.00×10-6mol/L F-标准溶液用上述储备液配制。 (2)总离子强度调节剂(TISAB):称取58g氯化钠,柠檬酸钠10g,溶解于800ml去离子水中,再加入冰醋酸57ml,用40%的氢氧化钠溶液调节pH5.0,然后用去离子水稀释至1000ml。 四、实验步骤 1.氟离子选择电极的准备: 将氟离子选择电极浸泡在10-3---10-4mol/L F-溶液中,活化约30min。然后用去离子水清洗数次至测得的电位值约为-300MV左右(或数值稳定)。 2.绘制标准曲线 在五只100ml容量瓶中分别配制内含有20ml TISAB的1.00×10-2---1.00×10-6mol/L F-标准溶液。将适量标准溶液(浸没电极即可)分别倒入5只塑料小烧杯中,浸入氟离子选择电极和饱和甘汞电极。连接线路,放入磁力搅拌子。在 校正曲线,中速搅拌下,由稀至浓分别测定标准溶液的电位值。然后绘制E--lgC F- 测量完毕后,用去离子水清洗电极至电位值300MV—320MV左右待用。 3.试样中氟的测定 (1)准确移取自来水50ml于100ml容量瓶中,加入20mlTISAB,用去离子水稀释至刻度,摇匀,然后将适量试液倒入小塑料烧杯中,插入氟离子选择电极和参比电极,再同样搅拌速度下读取稳定的电位值Ex1。 (2)准确称取2—3g含氟牙膏,用去离子水溶解稀释至250ml。 然后准确移取一定量上述溶液于100ml容量瓶中,加入20ml的TISAB,用去离子水稀释至刻度,摇匀,然后将试液倒入小塑料烧杯中,插入氟离子选择电极和参比电极,再同样搅拌速度下读取稳定的电位值Ex2。(黑体字部分实验报告中请按自己实际操作撰写) 五、数据处理 1.由标准曲线测的该氟离子选择电极的实际斜率和线性范围

电位滴定法测定水中氯离子的含量

电位滴定法测定水中氯离子的含量 1 / 1 电位滴定法测定水中氯离子的含量 一 实验目的:学习电位滴定法的基本原理和操作技术 掌握了解氯离子的测定过程和现象 二 实验原理 利用滴定分析中化学计量点附近的突跃,以一对适当的电极对监测滴定过程中的电位变化,从而确定滴定终点,并由此求得待测组分的含量的方法称为电位滴定法。本实验根据Nerst 方程E = E θ- RT/nF lgC Cl- ,滴定过程中, Cl - + Ag + = AgCl ↓,使得氯离子浓度降低,电位发生改变,接近化学计量点时,氯离子浓度发生突变,电位相应发生突变,而后继续加入滴定剂,溶液电位变化幅度减缓。以突变时滴定剂的消耗体积(mL )来确定滴定终点(AgNO 3标准溶液的体积)。 三 仪器和试剂 酸度计(mv 计),磁力搅拌器,转子。KNO 3甘汞参比电极,银电极,滴定管,烧杯(电解池),0.05mol·L -1NaCl ,0.05mol·L -1AgNO 3,KNO 3固体 四 实验内容和步骤 1 0.05mol·L -1AgNO 3标准溶液的标定 准确移取0.05mol.L -1NaCl 标准溶液10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。 开启酸度计,开关调在mv 位置,加入滴定剂,记录溶液电位随滴定剂的体积变化情况。随着AgNO 3标准溶液的滴入,电位读数将不断变化,读数间隔可先大些(1-2mL ),至一定量后,电位读数变化较大,则预示临近终点,此时应逐滴加入AgNO 3标准溶液(0.5-0.2mL ),并记录电位变化,直至继续加入AgNO 3标准溶液后电位变化不再明显为止。做E(mv)-V(mL)曲线,求得终点时所消耗AgNO 3标准溶液的确切体积。 2水中氯离子含量的测定 准确移取水样10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。加入滴定剂,记录溶液电位随滴定剂的体积变化情况。同标定的步骤,做E(mv)-V(mL)曲线,求出与水样中氯离子反应至终点所消耗的AgNO 3标准溶液的确切体积。 五数据处理 根据实验数据做E(mv)-V(mL)曲线,从两个图中获得终点所消耗的AgNO 3标准溶液体积,从而根据物质反应平衡公式C Cl-V Cl-=V Ag+C Ag+计算求出水中氯离子的含量(mol·L -1)。 实验过程中的注意事项:1参比电极所装电解液应为饱和KNO 3溶液。 2甘汞电极比银电极略低些,有利于提高灵敏度。 3读数应在相对稳定后再读数,若数据一直变化,可考虑读数时降低转子的转数。 问题:实验中KNO 3的作用? 终点滴定剂体积的确定方法有哪几种?

实验 4 水中氟化物的测定--离子选择电极法

实验四水中氟化物的测定—离子选择电极法水中氟化物的含量是衡量水质的重要指标之一,生活饮用水水质限值为 1.0mg·L-1 。测定氟化物的方法有氟离子选择电极法、离子色谱法、比色法和容量滴定法,前两种方法应用普遍。本实验采用氟离子选择电极法测定游离态氟离子浓度,当水样中含有化合态(如氟硼酸盐)、络合态的氟化物时,应预先蒸馏分离后测定。 一.实验目的和要求 1.掌握用离子活度计或pH计、晶体管毫伏计及离子选择电极测定氟化物的原理和测定方法,分析干扰测定的因素和消除方法。 2.复习教材第二章中的相关内容;在预习报告中列出被测原电池,简要说明测定方法原理和影响测定的因素。 二.仪器 1.氟离子选择电极(使用前在去离子水中充分浸泡)。 2.饱和甘汞电极。 3.精密pH计或离子活度计、晶体管毫伏计,精确到 0.1mV。 4.磁力搅拌器和塑料包裹的搅拌子。 5.100mL、50mL容量瓶。 6.10.00mL、 5.00mL移液管或吸液管。 7.100mL聚乙烯杯。

三.试剂 所用水为去离子水或无氟蒸馏水。 1.氟化物标准贮备液: 称取 0.2210g基准氟钠(NaF)(预先于105~110℃烘干2h或者于500~650℃烘干约40min,冷却),用水溶解后转入1000mL容量瓶中,稀释至标线,摇匀。贮存在聚乙烯瓶中。此溶液每毫升含氟离子100μg。 2.乙酸钠溶液: 称取15g乙酸钠(CH 3COONa)溶于水,并稀释至100mL。 3.盐酸溶液:2mol·L-1。 4.总离子强度调节缓冲溶液(TISAB): 称取 58.8g二水合柠檬酸钠和85g硝酸钠,加水溶解,用盐酸调节pH至5~6,转入1000mL容量瓶中,稀释至标线,摇匀。 5.水样①,②。 四.测定步骤 1.仪器准备和操作: 按照所用测量仪器和电极使用说明,首先接好线路,将个开关置于“关”的位置,开启电源开关,预热15min,以后操作按说明书要求进行。 2.氟化物标准溶液制备:

离子选择性电极法测定水中氟离子

离子选择性电极法测定溶液中氟离子 一、实验目的 1、了解电位分析法的基本原理。 2、掌握电位分析法的操作过程。 3、掌握用标准曲线法测定水中微量氟离子的方法。 4、了解总离子强度调节液的意义和作用。 二、实验原理 一般氟测定最方便、灵敏的方法是氟离子选择电极。氟离子选择电极的敏感膜由LaF 3单晶片制成,为改善导电性能,晶体中还掺杂了少量0.1%~0.5% 的EuF 2和1%~5%的CaF 2。膜导电由离子半径较小、带电荷较少的晶体离子氟 离子来担任。Eu 2+、Ca 2+代替了晶格点阵中的La 3+,形成了较多空的氟离子点阵,降低了晶体膜的电阻。 将氟离子选择电极插入待测溶液中,待测离子可以吸附在膜表面,它与膜上相同离子交换,并通过扩散进入膜相。膜相中存在的晶体缺陷,产生的离子也可以扩散进入溶液相,这样在晶体膜与溶液界面上建立了双电层结构,产生相界电位,氟离子活度的变化符合能斯特方程: --=F a F RT K E lg 303.2 氟离子选择电极对氟离子有良好的选择性,一般阴离子,除OH -外,均不干扰电极对氟离子的响应。氟离子选择电极的适宜pH 范围为5-7。一般氟离子电极的测定范围为10-6~10-1mol /L 。水中氟离子浓度一般为10-5mol /L 。 在测定中为了将活度和浓度联系起来,必须控制离子强度,为此,应该加入惰性电解质(如KNO 3)。一般将含有惰性电解质的溶液称为总离子强度调节液 (total Ionic strength adjustment buffer ,TISAB)。对氟离子选择电极来说,它由KNO 3、柠檬酸三钠溶液组成。 用离子选择电极测定离子浓度有两种基本方法。方法一:标准曲线法。先测定已知离子浓度的标准溶液的电位E ,以电位E 对lgc 作一工作曲线,由测得的未知样品的电位值,在E-lgc 曲线上求出分析物的浓度。方法二:标准加人法。首先测定待分析物的电位E1,然后加人已知浓度的分析物,记录电位E2,通过能斯特方程,由电位E1和E2可以求出待分析物的浓度。本实验测定氟离子采用标准曲线法。 三、仪器与试剂 氟离子选择电极一支;饱和甘汞电极一支;恒温水浴锅一台。100mL 烧杯若干个,50mL 容量瓶若5个,25mL 移液管、10mL 移液管,1mL 和10mL 有分刻度的移液管各一支,100mL 容量瓶一个。 NaF(基准试剂);KNO 3(分析纯);柠檬酸三钠(分析纯);NaOH(分析纯)。 氟标准溶液0.5g/L :称取于120°C 干燥2小时并冷却的NaF 1.106g 溶于去离子水中,而后转移至1000 mL 容量瓶中,稀释至刻度,摇匀,保存在聚乙烯塑料瓶中备用。 氟标准溶液0.2g/L :移取0.5g/L 氟离子标准溶液20mL 稀释到50mL 。实验前随配随用,用完倒掉洗净容量瓶。 依照上述方法依次配制0.01g/L 、0.04g/L 的氟标准溶液。

水中氯离子测定方法

测定氯离子的方法 硝酸银滴定法 一、原理 在中性介质中,硝酸银与氯化物生成白色沉淀,当水样中氯离子全部与硝酸银反应后,过量的硝酸银与铬酸钾指示剂反应生成砖红色铬酸银沉淀,反应如下:NaCl + AgNO3 →AgCl ↓+ NaNO3 2 AgNO 3 + K2CrO 4 →Ag2CrO4↓+ KNO3 二、试剂 1、0.05%酚酞乙醇溶液:称取0.05g的酚酞指示剂,用无水乙醇溶解,称重至100g。 2、0.1410 mol/L氯化钠标准溶液:称取4.121g于500~600℃灼烧至恒重之优级纯氯化钠,溶于水,移至500ml容量瓶中,用水稀释至刻度。此溶液每毫升含 5mg氯离子。 3、0.01410 mol/L氯化钠标准溶液:吸取上述0.1410mol/L标准溶液50ml,移入500ml容量瓶中,用水稀释至刻度。此溶液每毫升含0.5mg氯离子。 4、硝酸银标准溶液:称取2.3950g硝酸银,溶于1000ml水中,溶液保存于棕色瓶中。 5、硝酸银标准溶液的标定:吸取0.01410mol/L(即1毫升含0.5mg氯离子)的氯化钠标准溶液10毫升,体积为V1,于磁蒸发皿中,加90ml蒸馏水,加三滴酚酞指示剂,用氢氧化钠调至红色消失,加约1ml10%铬酸钾指示剂,此时溶液呈纯黄色。用待标定的硝酸银溶液滴定至砖红色不再消失,且能辨认的红色(黄中带红)为止,记录消耗体积为V。以相同条件做100ml蒸馏水空白试验,消耗待标定的硝酸银的体积为V0。 浓度计算如下: C= V1×M×1000 V -V0 式中:C-硝酸银标准溶液的浓度,摩尔/升;

V1-氯化钠标准溶液的吸取量,毫升; M-氯化钠基准溶液的浓度,摩尔/升; V-滴基准物硝酸银溶液消耗的体积,毫升; V0-空白试验,硝酸银溶液消耗的体积,毫升。 调整硝酸银浓度使其摩尔浓度正好为0.0141mol/L。此溶液滴定度为1ml硝酸银溶液相当于0.5mg氯离子。 三、仪器 白磁蒸发皿:150ml 棕色滴定管 四、分析步骤 取50~100ml水样于蒸发皿中,加三滴酚酞指示剂,用0.02mol/L氢氧化钠溶液调成微红色,再加0.05mol/L硝酸调整至红色消失,再加入1滴管(约0.5~1ml)10%铬酸钾指示剂,此时溶液呈黄色,用硝酸银标准溶液滴定至所出现的铬酸银红色沉淀不再消失(即溶液呈黄中带红)为终点,以同样方法做空白试验,终点红色要一致。 五、分析结果的计算 水样中氯离子含量为X(毫克/升),按下式计算: X = (V2-V0)×M×35.45×1000 V W 式中:V2—滴定水样时硝酸银标准溶液的消耗量,毫升; V0—空白试验时硝酸银标准溶液的消耗量,毫升; M—硝酸银标准溶液浓度,摩尔/升; V w水样体积,毫升; 35.45—为氯离子摩尔质量,克/摩尔。 六、注意事项: 1、本方法适用于不含季胺盐的循环冷却水和天然水中氯离子的测定,其范围小于100mg/L。

实验四 用氟离子选择性电极测定水中微量F

实验三用氟离子选择性电极测定水中微量F- 离子----标准曲线法[教学时间]:6学时 [教学方法]: 讲授法与实验法相结合 [教学重点、难点]: 分析化学实验具体要求、安全知识、玻璃仪器的洗涤[教学要求]: 1、要求了解分析化学实验课的任务和具体要求 2、要求了解分析化学实验的一般知识; 3、掌握玻璃仪器的洗涤方法。 [示范操作]: 分析化学实验用玻璃仪器的洗涤 [课堂提问]: 1、移液管、容量瓶、玻璃量具为什么不能用刷子刷洗? 2、已洗净的玻璃器皿是什么样子? [可能出现的问题]: 去污粉用量较大,水槽里面到处都是。 [实验结果要求]: 洗净的玻璃器皿的器壁能被水完全润湿,不挂水珠。 [教学内容] 一、实验目的 1、学习氟离子选择性电极测定微量F-

离子的原理和方法; 2、学习应用最小二乘法处理数据。 二、实验仪器及药品 仪器: 高输入阻抗的电子毫伏计(离子计)、氟离子选择性电极、饱和甘汞电极、电磁搅拌器。 药品: F- 标准溶液 三、实验原理 电位分析法是通过在零电流下测定两电极间的电位差(即构成原电池的电动势)进行测定。将指示电极和参比电极浸入试液中,组成化学电池,电池的电动势为: E = E 指-E 参+E接式中E 指、E 参和E 接分别为指示电极的电极电位、参比电极的电极电位和液接电位。 在某确定的电化学体系中,参比电极的电极电位和液接电位为常数,用K 表示,则: E = E

指+ K 指示电极的电极电位与电活性物质活度的关系服从Nernst方程,在25℃时,E 指= K + 0.0591/n lga ox/Red 表明: 电池的电动势是电活性物质活度的函数,电动势的值反映了试液中电活性物质的大小。 本实验中以氟离子为指示电极,饱和甘汞电极为参比电极,浸入试液组成工作电池。 工作电池的电动势为:E指= K - 0.0591 lga F- 实验测量时,通过加入总离子强度调节缓冲液(TISAB)维持离子强度恒定不变,工作电动势与F- 浓度的对数成线性关系:E指= K - 0.0591 lgc F- 本实验采用标准曲线法测定F- 浓度: 配置不同浓度的F-

使用自动电位滴定仪测定水中氯离子含量

使用自动电位滴定仪测定水中氯离子含量和COD Mn值1.相关标准 《GB/T 13025.5-2012 制盐工业通用试验方法氯离子的测定》 《GB/T 15453-2008 工业循环冷却水和锅炉用水中氯离子的测定》 《GB/T 24890-2010 复混肥料中氯离子含量的测定》 《NY/T 1121.17-2006 土壤检测第17部分:土壤氯离子含量的测定》 《MT/T 201-2008 煤矿水中氯离子的测定》 《ASTM D4458-2009 半咸水、海水和盐水中氯离子的试验方法》 2.测量原理 样品溶液调至中性,用硝酸银标准溶液滴定溶液,通过离子选择性电极的电位突变指示终点。 3.仪器设备 实验仪器:ZDJ-5型自动滴定仪,或其他型号自动电位滴定仪。 实验电极:216-01型银电极+217-01型参比电极(二级参比填充液:饱和硝酸钠溶液)。 其他一般实验室仪器。 4.试剂和溶液 4.10.01mol/L氯化钠标准溶液:称取0.5844克已于600℃灼烧至恒重的氯 化钠基准试剂,溶解于去离子水中,移入1000ml容量瓶中,并用水稀 释至刻度,摇匀。 氯化钠标准溶液的浓度按式(1)计算: (1) 式中: c(NaCl),氯化钠标准溶液的浓度,单位为摩尔每升(mol/L); m,称取氯化钠的质量,单位为克(g) V,配制溶液的体积,单位为升(L) 4.20.01mol/L硝酸银溶液:称取1.70克分析纯的硝酸银,溶解于去离子水 中,移入1000ml容量瓶中,并用水稀释至刻度,摇匀,溶液保存在棕 色瓶中。 5.操作过程 5.1仪器准备,参照ZDJ-5或其他型号自动滴定仪说明书 5.2参数设置(推荐参数) 最小滴定体积:0.02ml。最大滴定体积:0.2ml,预滴定 突跃量:中,80mV。 5.3氯化钠标准溶液的标定:吸取10.00 ml 氯化钠标准溶液,置于150 ml 烧 杯中,使用硝酸银溶液滴定,同时需进行空白实验。

实验一 水中微量氟的测定

实验一水中微量氟的测定(离子选择性电极法) 一、实验目的 1.了解氟离子选择电极测定水中微量氟的原理和方法; 2.掌握离子计的使用方法。 二、实验原理 离子选择电极是一种电化学传感器,它将溶液中特定离子的活度换成相应的电位。当氟离子选择电极(简称氟电极)插入溶液时,其敏感膜对Fˉ产生响应,在膜和溶液间产生一定的膜电位: j n= K-2.303RT/FlgɑF- 在一定条件下膜电位?膜与Fˉ活度的对数成直线关系。当氟电极与饱和甘汞电极插入被测溶液中组成原电池时,电池的电动势E在一定条件下与Fˉ活度的对数成直线关系:E= K'-2.303RT/FlgɑF- 式中K'为常数,通过测量电池电动势可以求出Fˉ的活度。当溶液的总离子强度不变时,离子活度系数为一定值,则有 E= K''-2.303RT/Flgc F- E与Fˉ的浓度c F-的对数成直线关系。因此,为了测定Fˉ的浓度,常在标准溶液与试样溶液中同时加入相等的足够量的中性电解质作总离子强度,调节缓冲溶液(TISAB),保持较高的离子强度,使它们的总离子强度近似一致,不再受样品或标准溶液中原有离子含量的影响。因而样品溶液和标准溶液中待测离子的活度系数可认为相等。 当Fˉ浓度在1.0~1.0?10-6mol/L范围时,氟电极电位与pF成直线关系,可用标准曲线法或标准加入法进行测定。 氟电极只对游离的Fˉ有响应。在酸性溶液中,H+与部分Fˉ形成HF或HF2ˉ,会降低Fˉ的浓度。在碱性溶液中,LaF3薄膜与OHˉ发生交换作用而使测定结果偏高。因此,溶液的酸度对测定有影响。氟电极适宜于测定的pH范围为5-7. 氟电极的最大优点是选择性好。能与Fˉ生成稳定配合物或生成沉淀的元素(如Al、Fe、Zr、Th、Ca、Mg、Li及稀土元素)会干扰测定,通常可用柠檬酸、DCTA、EDTA、磺基水杨酸及磷酸盐等掩蔽。其他阴离子(如Clˉ、Brˉ、Iˉ、SO42ˉ、NO3ˉ、Acˉ、C2O42ˉ等)均不干扰测定。加入总离子强度调节缓冲液,可以起到控制一定的总离子强度和酸度,以及掩蔽干扰离子等多种作用。 三、仪器与试剂 仪器:国产PXD-270型数字离子计(见附图),氟离子选择性电极,饱和甘汞电极,电磁搅拌器,塑料烧杯(50ml),容量瓶(50ml),移液管(25ml),吸量管(10、1ml)。 试剂: ①100.0μg?mL-1氟标准溶液:准确称取于1200C干燥2h并冷却的分析纯NaF0.2210g,溶于去离子水中,转入1000mL容量瓶中,稀释至刻度,贮于聚乙烯瓶中。 ②10.0μg?mL-1氟标准溶液:吸取上述溶液10.0ml,用去离子水稀释成100mL即得。 ③总离子强度调节缓冲溶液:于1000mL烧杯中,加入500mL去离子水和57mL冰醋酸、58gNaCl、12g柠檬酸钠(Na3C6H5O7?2H2O),搅拌至溶解。在冷水溶液中缓慢加入6.0mol?L-1NaOH溶液约125mL,用1%溴甲酚绿作指示剂滴至呈蓝绿色,冷却至室温,稀释至1L。 ④去离子水:用普通蒸馏水经离子纯水器交换一次而得去离子水,用电导仪测量电阻值在1MΩ以上。 1%溴甲酚绿溶液,NaOH(0.1mol?L-1), HNO3(0.1mol?L-1)。

仪器分析实验-氟离子选择电极测定天然水中氟离子含量

仪器分析实验氟离子选择电极测定天然水中氟离子含量2017 年 5 月 12日氟离子选择电极测定天然水中氟离子含量 许诗赫 PB14007321 【实验目的】 1、熟悉电位法的基本原理和一般分析方法; 2、了解离子计的结构并掌握其基本操作技术; 3、了解氟离子选择电极的基本功能,掌握离子计的使用方法。 【基本原理】 0原理概述:氟离子选择电极对F-有选择性响应,并且在一定条件下,电池电势与试液中的氟离子浓度的对数呈线性关系。通过氟离子选择电极可以定量测出自来水中的氟离子浓度。 0氟离子选择电极:电极底部敏感膜由LaF3单晶片制成,单晶中常加入少量的EuF2以增加其导电性,当电极插入含有F-的溶液时,F-在敏感膜与溶液界面扩散及在晶格的空穴中移动产生膜电位,电极电位的能斯特方程为: E F?= k ?2.303RT F lg a F?=k?s lg a F? (k 为常数;s=2.303RT F为电极的斜率) 实际测量时,F-选择电极与一支参比电极(如饱和甘汞电极)一同插入被测溶液中组成测量电池,电池的图解表示式为: 氟离子选择电极︱试液(c=x)︱饱和甘汞电极(SCE) 该电池的电池电势为: E = E SCE? E F?= E SCE? k s+lg a F? 将E SCE和k合并,用E0表示有: E = E0+s lg a F? 当溶液中加入较高浓度的TISAB溶液(总离子强度调节缓冲液)以维持恒定的离子强度时,可改写为: , E = E0+s lg c F? , 25℃时,电池电势E为:E=E0+ 0.0592 lg c F? 可见,在一定条件下,电池电势与试液中的氟离子浓度的对数呈线性关系。 0可以采用的实验方法:工作曲线法、标准加入法、仪器直读等其他方法。

实验4 氟离子选择性电极测定水样中的微量铝

实验五 氟离子选择性电极测定水样中的微量铝 一、实验目的 1、熟悉DELTA 320型酸度计的使用方法。 2、了解电位测定法的基本原理与应用。 3、掌握氟离子选择性电极法测定铝的基本原理与条件。 二、实验原理 在酸性介质中,F -和Al 3+形成稳定的配合物, Al 3+ + 6F 3-6AlF 恒定F -的浓度时,若加入的Al 3+浓度不同,则底液中的F -的浓度就会出现相应的变化,因而导致氟电极的响应值(mV)发生改变。所以,在恒定F -浓度的底液中加入一系列已知浓度的铝标准溶液,并测定在确定实验条件下各溶液对应的电位值,然后,以Al 3+的加入量(μg·m L -1)对因Al 3+的加入而引起氟电极响应值的变化值△E (mV)作图[△E ~C (Al 3+)],经线性拟合后得回归方程。在相同的实验条件下测定样品水样的电动势,计算相应的△E 值后,根据回归方程即可求得样品中Al 3+的浓度。 测定过程中,溶液酸度、Fe 3+离子的存在及NaF 的浓度等,都会对测定结果产生影响。 当溶液的pH 值较高时,在LaF 3单晶膜表面会发生如下反应 LaF 3 + 3OH - La(OH)3 + 3F - 反应释放出的氟离子给测量带来正干扰,且铝离子也会发生水解现象;但若pH 太低,又存在下列平衡 3F - + H + HF + 2F HF -2 + F HF - 3 -2HF HF 或的形成又会降低氟离子的浓度。因此,构建电位测定体系时,须保持 溶液有一定的酸度。研究发现,在pH = 5的介质中,F -和Al 3+能形成稳定的配合物,且Al 3+浓度的变化使氟电极的响应值(mV )发生线性变化。 Fe 3+由于会与F -形成3-6FeF 配离子而影响测定。为消除Fe 3+对Al 3+测定的干扰,可加入0.5 mL 1mol·L -1 的抗坏血酸(Vc)进行掩蔽;NaF 的浓度大小会对△E ~

离子选择性电极法测定水中微量氟

实验一 离子选择性电极法测定水中微量氟 实验日期:______ 同组人:________________ 成绩:____ 一、实验目的 (1)掌握离子选择性电极法测定离子含量的原理和方法; (2)掌握标准曲线法和标准加入法的适用条件; (3)了解使用总离子强度调节缓冲溶液的意义和作用; (4)熟悉氟电极和饱和甘汞电极的结构和使用方法; (5)掌握酸度计的使用方法。 二、实验原理 饮用水中氟含量的高低对人体健康有一定影响,氟的含量太低易得龋齿,过高则会发生氟中毒现象,适宜含量为0.5mg ·L -1 左右。因此,监测饮用水中氟离子含量至关重要。氟离子选择性电极法已被确定为测定饮用水中氟含量的标准方法。 离子选择性电极是一种电化学传感器,它可将溶液中特定离子的活度转换成相应的电位信号。氟离子选择性电极的敏感膜为LaF 3单晶膜(掺有微量EuF 2,利于导电),电极管内装有0.1mol ·L -1 NaCl-NaF 组成的内参比溶液,以Ag-AgCl 作内参比电极。当氟离子选择电极(作指示电极)与饱和甘汞电极(参比电极)插入被测溶液中组成工作电池时,电池的电动势正在一定条件下与F -离子活度的对数值成线性关系: - -=F S K E αlg 式中,K 值在一定条件下为常数;S 为电极线性响应斜率(25℃时为0.059V)。当溶液的总离子强度不变时,离子的活度系数为一定值,工作电池电动势与F -离子浓度的对数成线性关系: - -=F c S K E lg ' 为了测定F - 的浓度,常在标准溶液与试样溶液中同时加入相等的足够量的惰性电解质以固定各溶液的总离子强度。 试液的pH 对氟电极的电位响应有影响。在酸性溶液中H +离子与部分F -离子形成HF 或HF 2-等在氟电极上不响应的形式,从而降低了F - 离子的浓度。在碱性溶液中,OH -在氟电极上与F -产生竞争响应,此外OH -也能与CaF 3晶体膜产生如下反应:

水中氯离子含量测定[1]

标准号:D 512-89 测定水中氯离子含量的测试方法1 1.适用范围* 1.1如下三个测试方法包括了水、污水(仅测试方法C )及盐水中氯离子含量的测定: 部分 测试方法A(汞量滴定法)7~10 测试方法B(硝酸银滴定法)15~21 测试方法C(离子选择电极法)22~29 1.2测试方法A、B和C在应用(practice)D2777-77下有效,仅仅测试方法B在应用D2777-86 下也同样有效,详细的信息参照14、21和29部分。 1.3本标准并不意味着罗列了所有的,如果存在,与本标准的使用有关的安全注意事项。本 标准的使用者的责任,是采用适当的安全和健康措施并且在使用前确定规章制度上的那些限制措施的适用性。明确的危害声明见26.1.1。 1.4以前的比色法不再继续使用。参照附录X1查看历史信息。 2.参考文献 2.1 ASTM标准 D 1066 蒸汽的取样方法2 D 1129 与水相关的术语2 D 1193 试剂水的规范2 D 2777 D-19水委员会应用方法的精确性及偏差的测定2 D 3370 管道内取水样的方法2 D 4127离子选择电极用术语2 3.专用术语 3.1 定义——这些测试方法中使用的术语的定义参照D 1129和D4127中的术语。 4.用途及重要性 4.1 氯离子是,因此应该被精确的测定。它对高压锅炉系统和不锈钢具有高度危害,所以为 防止危害产生监测是必要的。氯分析作为一个工具被广泛的用于评估循环浓度,如在冷却塔的应用。在食品加工工业中使用的处理水和酸洗溶液也需要使用可靠的方法分析氯含量。 5.试剂纯度 5.1在所有的试验中将使用试剂级化学物质。除非另有说明,所有试剂应符合美国化学品协 会分析试剂委员会的规范要求。如果能断定其他等级的试剂具有足够高的纯度,使用它不会减少试验的精度,则这种等级的试剂也可以使用。 5.2 水的纯度——除非另有说明,关于水的标准应理解为指的是如Specification D1193中 由第二类所定义的试剂水。

氟离子选择电极测定饮用水中的氟

图5-1 氟离子电极示意图 1.0.1mol/LNaF,0.1mol/L,NaCl 内充液 2.Ag-AgCl 内参比电极 氟离子选择电极测定饮用水中的氟 一、实验目的 1、了解离子选择电极的主要特性,掌握离子选择电极法测定的原理、方法及实验操作。 2、了解总离子强度调节缓冲液的意义和作用。 3、掌握用标准曲线法、标准加入法和Gran 作图法测定未知物浓度。 二、方法原理 氟离子选择电极(简称氟电极)是晶体膜电极,见示意图5-1。它的敏感膜是由难溶盐LaF 3单晶(定向掺杂EuF 2)薄片制成,电极管内装有0.1mol ?L -1NaF 和0.1mol.L -1NaCl 组成的内充液,浸入一根Ag-AgCl 内参比电极。测定时,氟电极、饱和甘汞电极(外参比电极)和含氟试液组成下列电池: 氟离子选择电极 | F -试液(c =x )║饱和甘汞电极 一般离子计上氟电极接(-),饱和甘汞电极(SCE )接 (+),测得电池的电位差为: j a AgCl Ag SCE E ?????++--=-膜电池 (5.1) 在一定的实验条件下(如溶液的离子强度,温度等),外 参比电极电位?SCE 、活度系数 、内参比电极电位?Ag-AgCl 、氟电极的不对称电位?a 以及液接电位?j 等都可以作为常数处理。而氟电极的膜电位?膜与F -活度的关系符合Nernst 公式, 因此上述电池的电位差E 电池与试液中氟离子浓度的对数呈线 性关系,即 -+=F a F RT K E log 303.2电池 (5.2) 因此,可以用直接电位法测定F -的浓度。式(2)中K 为常数,R 为摩尔气体常数8.314J ·mol -1· K -1,T 为热力学温度,F 为法拉第常数96485C ·mol - 1。 当有共存离子时,可用电位选择性系数来表征共存离子对响应离子的干扰程度: )log(303.2/,m z j Pot j i i a K a zF RT k E ++=电池 (5.3) 本实验用标准工作曲线法、标准加入法测定水中氟离子的含量。测量的pH 值范围为5.5-9,加入含有柠檬酸钠、硝酸钠及HAc-NaAc 的总离子强度调节缓冲溶液(TISAB Total Ionic Strength Adjustment Buffer ;)来控制酸度、保持一定的离子强度和消除干扰离子对测定的影响。 三、仪器和试剂 仪器 PHS-3C 型pH 计或其他型号的离子计;电磁搅拌器;氟离子选择电极和饱和甘汞电极各一支;玻璃器皿一套。 试剂 TISAB 溶液:称取氯化钠58g ,柠檬酸钠10g ,溶于800mL 去离子水中,再加入1

相关主题
文本预览
相关文档 最新文档