当前位置:文档之家› 挖掘机回转减速机运动学及动力学仿真

挖掘机回转减速机运动学及动力学仿真

挖掘机回转减速机运动学及动力学仿真
挖掘机回转减速机运动学及动力学仿真

挖掘机回转减速机运动学及动力学仿真

摘要:以某挖掘机回转减速机为研究对象,通过UG建立减速机的三维模型,将模型导入到ADAMS中建立减速机的虚拟样机,再对虚拟样机进行运动学与动力学仿真,得到各级转速、齿轮啮合力等曲线。将仿真结果与理论计算进行对比,证明虚拟样机建立正确,也为减速机动态特性优化提供一定的指导。

关键词:UG;行星减速;ADAMS;动力学仿真

引言

行星减速机具有结构紧凑、传递速度范围大、运行平稳等优点,被广泛地应用于建筑、冶金等领域。由于其结构相对复杂,使用传统方法不易对其动力学特性进行精确计算,也无法准确预测其工作性能。本文在ADAMS中建立虚拟样机,可得到所需的各种数据曲线。为零件的强度校核、寿命预测和工程设计等提供支持。

1.行星减速机的工作原理

本文研究的行星减速机采用2级行星轮系组成,每一级结构都采用NGW型传动。如图1是此行星减速机的传动结构简图。

此减速机属于周转轮系[1],由于内齿圈

固定不动,所以=0(m,n,H分别代表太阳轮、内齿圈、行星架),所以减速比:

即:

得出n级NGW型的减速比

各级太阳轮齿数各级内齿圈齿数

图1.二级行星减速机结构简图

1.一级太阳轮

2.一级行星轮

3.一级行星架

4.二级太阳轮

5.二级行星轮

6.二级行星架

7.内齿圈

本文的减速机一级太阳轮、一级行星轮、内齿圈、二级太阳轮、二级行星轮的齿数分别为:21、33、87、21、23。所以总减速比为(1+87/21)2=26.45。

平衡吊的动力学与运动学仿真

平衡吊的运动学与动力学仿真 作者:** 指导老师:** ********** *************** 1 绪论 1.1 平衡吊的概要平衡吊是的主要结构是平行四边形连杆机构的放大形态和螺母升降结构,通过外力的作用下达到重物的上升和下降的目的,平衡吊可以满足重物随时停留在需要的工作区域。比其他的吊装设备更具有优越性,它比一般吊装设备更加的灵活,从而更加的精准,与机械手相比等其他吊装设备比,其结构更加得合理,性能较好,广泛的使用于重工业的生产中,在机床厂中更是被用作吊装作业,在小型企业装卸货物,例如码头的施工,集装箱的搬运,非常适合于作业区域窄,时间间隔短的作业方式。其极大减少了人力使用,有效地节约了人力资源。平衡吊在市场上主要常见的有3 种,机械式,气动式,液压式,机械式,顾名思义,通过外力的使用,使其达到升降的目的,主要在生产,搬运的的领域中常见,后期,更是添加了电动装置,优化了他的配置,有效地提高了生产效率。气动式平衡吊主要是对于气压的控制原理实现升降功能的我们成为气动式平衡吊,液压式,主要是根据液压系统来设置的,在大多数重工业生产地使用广泛。现在主要使用的为气动式平衡吊,主要省力,都是自动化进行的,按照平衡吊臂的类型还可以将平衡吊分为通用和专用类型,他们各有各的特色,相对于大型的吊车来说,其缺点是工作的行程围较小,区域局限化。 平衡吊的种类及其特点:液压平衡吊的特点:液压平衡吊有3 大类,有级,单级,无级变速的,他们通过不同的油路控制来达到不同的工作地点; 气动平衡吊的特点:体积不大,比一般的平衡吊具有灵活的特色;电动平衡吊:又称为机械式平衡吊,具有控制重物在任意指定地点的特点,一般为定速转动; Cad(2D)+solidworks(3D) 图纸整套免费获取,需要的 加QQ1162401387 1.2 平衡吊的结构 平衡吊主要有大小臂,起重臂,短臂,电机,立柱,丝杆螺母传动副构成的,其中的几个臂件通过平行四边形连杆机构构成的。在外力的作用下起到升降重物的作用。

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

液压挖掘机工作装置在ADAMS中的运动仿真解析

液压挖掘机工作装置在ADAMS中的运动 仿真解析 姓名:XXX 部门:XXX 日期:XXX

液压挖掘机工作装置在ADAMS中的运动仿真解析虚拟样机技术在使用过程中为液压挖掘机设计提供了有效的方法 和手段,在使用过程中受到了条件限制,较少的单位会对运行学进行仿真研究,降低了色剂方案可行性。文章基于动力学仿真软件ADAMS建立起了挖掘机工作装置虚拟系统,更好的完成了前期处理工作,使得建模正确性更高。 液压缸顺序工作的运动仿真分析 1.1.基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确定下来之后,该挖掘机的工作范围也基本确定下来。简单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。在包括图中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 1.2.顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方式, 第 2 页共 5 页

将其更换成位移运动方式。运动的函数输入时,需要注意相匹配的的STEP函数。对液压缸进行STEP函数值设置时,应该满足运动函数需求。当完成了函数值输入之后,在运行状态下可以启动ADAMS软件的仿真模块。 1.3.仿真过程 当工作面从最初的范围逐渐移动时,一般最初的指的是停机状态下。可以适当的对斗杆、铲斗液压缸进行调整,将其保持在全缩的状态中,逐渐对动臂液压缸拉伸,将其缩小到CD弧线上。这个伸缩过程需要得到弧线支撑,基于保障弧线运动轨迹基础上做好控制工作。其中在进行一次姿态调整之后,作业范围会缩小,而且包络图中的各个点会逐渐深入挖掘机的底部,在这个范围上可以实现挖掘,但是可能出现塌陷实现,导致机械无法正常施工。因此,一般除了有条件的挖沟作业之外进行使用,其他施工一般都不会使用。可以在模型中建立起一个处于回转中心轴的三维坐标,将坐标点确定为(608,.0,0.0,1254.3306),这样就可以测量出方向移动值,可以得出这个位置的位移,这样便可以达到最大高度值,其实这个测量方法比较简单,也比较容易掌握。根据曲线变化得出,从得到的曲线中得出最终的数值,可以查看到最大值,平均值以及最小值等。 工作装置模型的运动学仿真分析 2.1.参数范围 运动学仿真中的参数范围确定一般都包含速度、位移以及加速度,这些参数会有一个变化范围。在进行运动学仿真分析中,需要基于ADAMS/Solver求解,就可以得出代数方程。因此,在进行仿真系统自由度确认时,一般自由度的必须为零。如果这个时候会考虑到物体的惯性 第 3 页共 5 页

平衡吊的动力学与运动学仿真

平衡吊得运动学与动力学仿真 作者:** 指导老师:** ********** *************** 1绪论 1、1平衡吊得概要 平衡吊就是得主要结构就是平行四边形连杆机构得放大形态与螺母升降结构,通过外力得作用下达到重物得上升与下降得目得,平衡吊可以满足重物随时停留在需要得工作区域内。比其她得吊装设备更具有优越性,它比一般吊装设备更加得灵活,从而更加得精准,与机械手相比等其她吊装设备比,其结构更加得合理,性能较好,广泛得使用于重工业得生产中,在机床厂中更就是被用作吊装作业,在小型企业装卸货物,例如码头得施工,集装箱得搬运,非常适合于作业区域窄,时间间隔短得作业方式。其极大减少了人力使用,有效地节约了人力资源。 平衡吊在市场上主要常见得有3种,机械式,气动式,液压式,机械式,顾名思义,通过外力得使用,使其达到升降得目得,主要在生产,搬运得得领域中常见,后期,更就是添加了电动装置,优化了她得配置,有效地提高了生产效率。气动式平衡吊主要就是对于气压得控制原理实现升降功能得我们成为气动式平衡吊,液压式,主要就是根据液压系统来设置得,在大多数重工业生产地使用广泛。现在主要使用得为气动式平衡吊,主要省力,都就是自动化进行得,按照平衡吊臂得类型还可以将平衡吊分为通用与专用类型,她们各有各得特色,相对于大型得吊车来说,其缺点就是工作得行程范围较小,区域局限化。 平衡吊得种类及其特点: 液压平衡吊得特点:液压平衡吊有3大类,有级,单级,无级变速得,她们通过不同得油路控制来达到不同得工作地点; 气动平衡吊得特点:体积不大,比一般得平衡吊具有灵活得特色; 电动平衡吊:又称为机械式平衡吊,具有控制重物在任意指定地点得特点,一般为定速转动; Cad(2D)+solidworks(3D)图纸整套免费获取,需要得 加QQ1162401387 1、2平衡吊得结构 平衡吊主要有大小臂,起重臂,短臂,电机,立柱,丝杆螺母传动副构成得,其中得几个臂件通过平行四边形连杆机构构成得。在外力得作用下起到升降重物得作用。

小型履带液压挖掘机工作装置的结构设计及其运动学分析

目录 摘要.......................................................... (1) 第一章绪论 (1) 1.1 小型挖掘机的进展现 状 (2) 1.2 小型挖掘机工作装置简介 (3) 第二章总体方案设计 (3) 2.1 工作装置构成及工作原理 (3) 2.2 工作装置坐标设定 (6) 2.3 工作装置各部分方案选择 (6) 2.3.1 动臂种类选择 (6) 2.3.2 动臂油缸布置方案选择 (8) 2.3.3 铲斗与铲斗油缸的连接方案选择 (8) 2.3.4 铲斗结构形式及斗齿的安装形

式 (8) 2.4 设计差不多参数以及设计作业范围 (9) 第三章工作装置运动学分析 (9) 3.1 动臂的运动分析 (9) 3.2 斗杆的运动分析 (11) 3.3 铲斗的运动分析 (12) 3.4 专门工作位置计算 (11) 3.4.1 最大挖掘半径 (11) 3.4.2 最大挖掘深度 (14) 3.4.3最大卸载高度 (15) 3.4.4 最大挖掘高度 (16) 3.5 工作范围包络图 (16) 第四章差不多尺寸的确定 (18)

4.1 斗形参数的选择 (18) 4.2 动臂机构参数的选择 (18) 4.3 斗杆机构差不多参数的选择 (20) 4.4 连杆机构差不多参数的选择 (21) 第五章工作装置结构受力分析与校核 (26) 5.1 挖掘阻力分析 (26) 5.1.1 铲斗挖掘切向阻力计算 (27) 5.1.2 斗齿侧向力分析 (28) 5.2 工作装置结构强度校核的工况介绍 (28) 5.2.1 斗杆结构强度校核的工况介绍 (28) 5.2.2 动臂结构强度校核的工况介绍 (29) 5.3 斗杆的力学分析 (29) 5.3.1 斗杆工况1受力计算及内力图的绘

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

第二章挖掘装置动力学及运动学分析.

第二章挖掘装置运动学及动力学分析 2.1 挖掘装置的结构及工作特点 挖掘装载机反铲工作装置的结构,其基本型式见图 2-1 所示。 图2-1反铲结构简图 工作特点:反铲工作装置主要用于挖掘停机面以下的土壤,其挖掘轨迹决定于各液压缸的运动及其相互配合的情况。当采用动臂液压缸工作进行挖掘时(斗杆、铲斗液压缸不工作可以得到最大的挖掘半径和最大的挖掘行程,此时铲斗的挖掘轨迹系以动臂下铰点 C 为中心,斗齿尖 V 至 C 的距离|CV|为半径而作的圆弧线,其极限挖掘高度和挖掘深度(不是最大挖掘深度,分别决定于动臂的最大上倾角和下倾角(动臂对水平线的夹角,也即决定于动臂液压缸的行程由于这种挖掘方式时间

长,并且稳定条件限制了挖掘力的发挥,实际工作中基本上不采用。 当仅以斗杆液压缸工作进行挖掘时,铲斗的挖掘轨迹系以动臂与斗杆的铰点 F 为中心,斗齿尖 V 至 F 的距离|FV|为半径所作的圆弧线,同样,弧线的长度与包角决定于斗杆液压缸的行程 。当动臂位于最大下倾角时,可以得到最大挖掘深度,并且有较大的挖掘行程,在较硬的土质条件下工作时,能够保证装满铲斗,故中小型挖掘机构在实际工作中常以斗杆挖掘进行工作。 反铲装置如果仅以铲斗液压缸工作进行挖掘时,挖掘轨迹则为以铲斗与斗杆的铰点 Q 为中心,该铰点 Q 至斗齿尖 V 的距离 |QV|为半径所作的圆弧线。同理,圆弧线的包角( 铲斗的转角及弧长决定于铲斗液压缸的行程(|GH|–|GH|)。显然,以铲斗液压缸进行挖掘时的挖掘行程较短,如使铲斗在挖掘行程结束时能够装满土壤,需要有较大的挖掘力以保证能够挖掘较大厚度的土壤。所以,一般挖掘机构的斗齿最大挖掘力都在采用铲斗液压缸工作时实现。用铲斗液压缸进行挖掘常用于清除障碍,挖掘较松软的土壤以提高生产率,因此在一般土方工程机械中(土壤多为Ⅲ级土以下,转斗挖掘最常采用。在实际挖掘中,往往需要采

QJ1E47FMD发动机运动学及动力学仿真计算

QJ147FMD发动机运动学及动力学仿真计算 一、QJ147FMD发动机的参数: 标定转速:6000r/min 曲轴半径:19.6mm 连杆长度:80mm 缸径:47mm 曲柄连杆比:0.245 二、曲柄连杆机构再ADAMS软件中的仿真计算: 上图是燃气的爆发压力和往复惯性力以及合力的曲线图。 上图是用ADAMS软件仿真计算出的往复惯性力和理论计算的比较图。粉色——理论计算,蓝色——仿真计算。理论计算:max=745N,min=-1230N; 仿真计算:max=546.6316N,min=-901.3991N. 出现上诉的原因个人理解是: (1)仿真计算的往复加速度=理论计算的往复加速度,那么产生仿真计算所得到的往复惯性力和理论计算所得到的往复惯性力之所以不同的原因就在于往复质量的计算;(2)在理论计算中,往复质量的计算是由活塞组的质量+连杆小头的质量,而在小头质量的换算过程中教科书上介绍的方法一般有两种,即两质量和三质量系统来等效代替

连杆。并且可以确定的是用三质量系统来代替两质量系统计算的更为精确只是计算起来比较困难。那么我们可以推想如果可以的话用四质量系统来代替连杆所得到的结果应该比三质量系统来代替连杆是不是更为精确?如果答案是肯定的,那么我们就有理由相信:用无数个质量点来代替连杆系统所计算得到的结果将会比2质量系统来代替连杆计算的精度要高很多,这一点用ADAMS软件可以轻松的做到。(3)现在我们来做一个对比,即同一个连杆用两质量系统和三质量系统分别来代替的时候,同一个连杆在换算到连杆小头质量是如何变化的?很容易想到用三质量系统来代替连杆的时候换算到连杆小头的质量应该比两质量换算到连杆小头的质量要小,那么我们有理由相信:当用无数个质量点来代替连杆的时候,换算到连杆小头的质量要比教科书上按两质量系统来代替连杆换算到连杆小头出的往复质量要小。(4)由于摩托车的发动机的转速很高,所以他的往复加速度很大。我们这次所研究的发动机的加速度的数量级:几千。可见,当往复质量减少1%时,则往复惯性力将减少几十牛。(这也是我们在设计高速发动机的时候要注意减少往复惯性质量的原因,而我们按照理论公式来计算的时候,实际上已经人为的增大了往复质量。)由以上的分析,我们有理由认为用ADAMS仿真软件来进行计算,所得到的结果比按纯理论方法所计算的更为精确。 三、主轴径的受力分析: (1)我们用ADAMS软件,将所研究的发动机的轴径作为刚体并且还考虑到了轴承的安装位置以及曲柄系统的质心位置的影响之后所得到的曲轴主轴径的受力分析图。 上图是曲轴的两个轴径受力的极坐标图。

基于ADAMS的并联机器人运动学和动力学仿真

第22卷第8期计算机仿真2005年8月文章编号:1006—9348(2005)08—0181—05 基于ADAMS的并联机器人运动学和动力学仿真 游世明,陈思忠,梁贺明 (北京理工大学机械与车辆工程学院,北京100081) 摘要:应用机械系统动力学仿真分析软件ADAMS,建立了Stewart型并联机构的虚拟样机模型,包括对并联机器人各部件的筒化方法、在ADAMS中的模型描述及仿真过程控制,并利用该虚拟样机模型对并联机器人进行了运动学和动力学分析。为并联机器人系统的设计、制造和模拟运动作业提供了理论依据和主要参数。实现了在计算机上通过使用CAE仿真软件来对并联机器人的运动和动力性能进行分析,为并联机器人的设计提供了一套有效的分析方法。 关键词:并联机器人;运动学;动力学;虚拟样机 中图分类号:TP391.9文献标识码:A KinematicsandDynamicsSimulationofPMTBasedOnADAMS YOUShi—ming,CHENSi—zhong,LIANGHe—ming (SchoolofMechanicalandVehicleEngineering,BeijingInstituteofTechnology,Bering100081,China)ABSTRACT:ThispaperusesmechanicdynamicanalysissoftwareADAMStobuildavirtualprototypeoftheStewartParallelKinematicsMachineTool,givesthedetailofsimplifiedmethodofmodel,ADAMSdescriptionofmodel,controlofsimulatingprocess.ThevirtualprototypingmodelofthePMTprovidesthetheoreticfoundationandmainparametersforthesystemdesign,productionandapplicationinexperiment.ItshowsthesimulationforthekinematicsanddynamicsofPMT,realizesaneffectivemethodfortheengineeringdesignwiththeCAEsoftwareoncomputer. KEYWORDS:Parallelkinematicsmachinetool;Kinematics;Dynamics;Virtualprototype 1引言 1965年,德国学者Stewart提出了一种新型的、6自由度并联机器人平台机构,称为Stewart平台。由于并联机器人平台不仅能够灵活地实现六个自由度的三维空间运动,而且具有结构稳定、承载能力强、误差小、位置精度高、响应快等一系列突出优点,其应用日益广泛,应用领域不断拓展,使得并联机器人也成为国际上备受关注的研究领域之一。目前,对并联机器人运动学和动力学分析多采用的是解析法。但其动平台空间运动是很难直观想象的,工作空间又十分复杂,所以有必要建立适当的模型并进行仿真。本文从仿真分析的角度,应用ADAMS软件对其进行建模、仿真、分析,为并联机器人的研究提供了一种新的方法。 2并联机构及其仿真简介 Stewart型并联机器人平台由上下两个平台和6个并联收稿日期:2004一04—28的、可独立自由伸缩的杆件组成,伸缩杆和平台之间通过球铰链A1,A2,A3,A4,A,,A6和虎克铰曰1,日2,马,曰。,曰5,眈连接,其结构原理如图1所示。如果将下平台作为基础平台(定平台),以伸缩杆的位移作为输入变量,则可以控制上平台(动平台)的空间位移和姿态。实际机构中通过改变六根可以伸缩的伺服油缸长度来实现机器人动平台的运动,即沿x、y、z轴的平移和绕x、y、z轴的转动,这六个基本运动分别称为纵向(Surge)、横向(Sway)、垂直(Heave)、横滚(Roll)、俯仰(Pitch)、偏航(Yaw)IlJ。 其运动仿真的应用领域,大致可以分为四个方面:(1)训练、教育:主要用于飞行模拟器,训练飞行员等专业人员;(2)试验、实验:在模拟环境下,测试飞机、船舶、潜艇、航天器、汽车等运动载体中的相关仪器设备,本课题即是对用于测试汽车悬架和轮胎性能的实验台的前期仿真设计;(3)娱乐:用于体感模拟娱乐机等。 在并联机构的研究中,理想的仿真应能满足以下要求:建模快速简洁、模型逼真、三维动画以及便于通过调整参数来优化设计。对于并联机器人的运动学和动力学计算,包括正解和逆解。利用ADAMS软件可以将这几项工作结合起来, 一】8】一  万方数据万方数据

管道机器人运动学分析与变径机构仿真

MECHANICAL ENGINEER 机械工程师 管道机器人运动学分析与变径机构仿真 史继新1a,1b,刘芙蓉1a,1b,胡啸2,袁显宝1a,1b,陈保家1a,1b,李响1a,1b (1.三峡大学 a.湖北省水电机械设备设计与维护重点实验室;b.机械与动力学院,湖北宜昌443002;2.中核武汉核电运行技 术股份有限公司,武汉430223) 摘要:基于对核电站压力容器和主管道接管内部检查的需要,研发了一种多履带可变径式管道检查机器人。分析机器人四种不同的运动情况,得出机器人履带轮角速度和机器人在管道内旋转速度及行走线速度的函数,建立了机器人在管道内的运动学模型。针对机器人可变径机构,建立力学模型,得出变径机构中弹簧的理论数据,并运用Inventor运动仿真分析验证了其合理性。 关键词:管道机器人;运动学模型;变径机构;Inventor运动仿真 中图分类号:TP242.3;TH122文献标志码:粤文章编号:员园园圆原圆猿猿猿(圆园员9)04原园014原园3 Kinematics Analysis and Variable Diameter Mechanism Simulation of Pipeline Robot SHI Jixin1a,1b,LIU Furong1a,1b,HU Xiao2,YUAN Xianbao1a,1b,CHEN Baojia1a,1b,LI Xiang1a,1b (1.China Three Gorges University a.Hubei Key Laboratory of Hydroelectric Machinery Design&Maintenance;b.College of Mechanical and Power Engineering,Yichang443002,China;2.China Nuclear Power Operation Technology Co.,Ltd.,Wuhan430223,China) Abstract院Based on the need for internal inspection of nuclear power plant pressure vessels and main pipelines,a multi-track variable-diameter pipeline inspection robot is developed.The four different motions of the robot are analyzed,and the angular velocity of the robot crawler wheel and the rotation speed of the robot in the pipeline and the traveling linear velocity are obtained.The kinematics model of the robot in the pipeline is established.For the robot variable diameter mechanism,the mechanical model is established,the theoretical data of the spring in the variable diameter mechanism is calculated,and the rationality is verified by Inventor motion simulation analysis. Keywords:pipeline robot;kinematics model;variable diameter mechanism;Inventor motion simulation 0引言 随着核电厂运行时间的增加,各种规格管道内表面可能会出现一些问题需要实施检查与维修。因这些部位处于强辐射区,人员无法直接实施这些工作,必须开发具有行走功能的管道机器人携带摄像头完成核电厂管道检查工作。目前,发达国家对于管道机器人的研究处于领先地位[1]:德国ECA公司研制出一系列管道爬行机器人,在满足多尺寸规格管道的前提下,能搭载多种检测工具,其检查的管道范围从150耀2000mm;日本东京工业大学研制出Thes系列管道机器人[2];韩国汉城汉阳大学研制出双模块协作管道检测机器人[3]。中国在管道检查机器人领域起步较晚,北京德朗检视科技有限公司研发的DNC100、DNC150等管道爬行器,已在核电领域中得到运用;东华大学研制除了自主变位履带足管道机器人[4];上海交通大学针对煤气管道的检测,研制出煤气管道检测机器人样机[5]。 针对目前国内外传统机器人在面对垂直、微小、复杂管时,存在通行性能差、稳定性弱、牵引力不足等缺点。本项目所研制的多履带可变径式管道检查机器人,在机器人的机械结构、移动方式等方面做出改进,能适应150耀160mm管径的管道内部运动,分析了其管道内部运动的运动学模型和变径机构的力学模型,并针对变径机构进行了仿真分析,验证设计的合理性。 1管道检查机器人整体结构设计 为了满足核电厂管道内部检查的需要,机器人必须具备三项基本能力:1)机器人的速度调节能力;2)机器人的转向能力;3) 析, 构设计,如图1 道机器人具有三组履带轮, 很好的夹紧力。 立的电动机控制, 每组履带轮的独立运动, 节不同电动机的转速来使机器人顺利通过弯管。履带轮和主体之间的连杆机构配上弹簧的特性使机器人具有很好的管道适应能力,可以适应150耀160mm管道直径的运动。2运动学分析 机器人每组履带轮的角速度决定机器人整体的运动情况,因此本节根据机器人履带轮角速度和机器人整体运动情况的函数关系建立运动学模型。该模型的坐标系、关节变量和参数如图2所示。XY Z表示全局坐标参考系,并且xyz表示附接到管线检查机器人的中心的局部坐标系;i、j 和k是局部坐标系的单位矢量。无论机器人如何移动,x轴 图1管道机器人 三维模型 1.履带轮组 2.变径机构 3.主体 3 2 1 基金项目:国家自然科学基金(11805112);湖北省教育厅 科学技术研究计划重点项目(D2*******);湖北省水电机械 设备设计与维护重点实验室开放基金项目(2016KJX15、 2017KJX04) 14 圆园员9年第4期网址:https://www.doczj.com/doc/337248980.html,电邮:hrbengineer@https://www.doczj.com/doc/337248980.html,

液压挖掘机工作装置在ADAMS中的运动仿真解析(2021版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 液压挖掘机工作装置在ADAMS中的运动仿真解析(2021版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

液压挖掘机工作装置在ADAMS中的运动仿 真解析(2021版) 虚拟样机技术在使用过程中为液压挖掘机设计提供了有效的方法和手段,在使用过程中受到了条件限制,较少的单位会对运行学进行仿真研究,降低了色剂方案可行性。文章基于动力学仿真软件ADAMS建立起了挖掘机工作装置虚拟系统,更好的完成了前期处理工作,使得建模正确性更高。 液压缸顺序工作的运动仿真分析 1.1.基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确定下来之后,该挖掘机的工作范围也基本确定下来。简单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。在包括图中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖

掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 1.2.顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方式,将其更换成位移运动方式。运动的函数输入时,需要注意相匹配的的STEP函数。对液压缸进行STEP函数值设置时,应该满足运动函数需求。当完成了函数值输入之后,在运行状态下可以启动ADAMS软件的仿真模块。

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

《运动学与动力学仿真》实验指导书

《运动学与动力学仿真》实验指导书适用专业:机械电子工程 上海电机学院 2014年10月

实验一虚拟样机几何建模 一、实验目的 1、了解虚拟样机建模的目的 2、掌握利用Adams/View 进行几何体建模的方法,熟悉典型几何体的建模命令和相关的属性调整方法 二、实验要求 实验前预习相关知识和实验内容。 三、实验原理 Adams/view 中的几何建模工具集如图1所示。 图1 几何建模工具集 调用几何建模工具通常有两种方法:使用主工具箱上的建模工具集选择工具图标,或通过菜单选择几何建模工具命令。 使用主工具箱建模方法: 1)在主工具箱中,用鼠标右键选择上部的几何建模按钮,屏幕弹出如图1所示的几何建模工具集; 2)用鼠标选择相应的建模工具集的图标; 3)在参数设置对话框,修改参数值。 4)按照屏幕下方状态栏的提示,绘制几何图形。

图形 图2 基本形体图库 四、实验设备 机房,adams软件 五、实验步骤 1)在几何建模工具集中选取所要建的三维实体建模工具图标; 2)在参数设置栏,设置所建立的几何体是新构件(New Part)、添加到现有构件(Add to Part)还是添加到地基上(On Ground); 3)在参数设置栏,选择输入有个尺寸参数。 4)按照屏幕下方状态栏的提示,用鼠标确定起始绘图点; 5)按住鼠标左键,拖动鼠标,屏幕出现所绘图形。可以在参数设置栏设置形体的尺寸; 6)释放鼠标,完成简单形体建模,绘图结束点定义了几何体的方向和部分形体。 六、实验注意事项 无 七、实验报告要求 1、根据原理和要求画出2个基本的形体

实验二约束类型及工具 一、实验目的 1. 了解运动学与动力学分析中常用的约束类型 2. 掌握 Adams/View中添加运动约束的方法 二、实验要求 实验前预习相关知识和实验内容 三、实验原理 ADANMS/View提供了12种常用的运动副工具。作用:可以将两个构件连接起来。条件:被连接的构件可以是刚体构件、柔性构件或者是点质量。常用运动副如图1所示。 图1 常用的运动副 1)在连接工具集或者在连接对话框,选择连接工具图标。

机械系统动力学作业---平面二自由度机械臂运动学分析

机械系统动力学作业---平面二自由度机械臂运动学分 析 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度机械臂动力学拉格朗日方程 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

(完整版)曲柄连杆机构运动学仿真

课程设计任务书

目录 1 绪论 (1) 1.1CATIA V5软件介绍 (1) 1.2ADAMS软件介绍 (1) 1.3S IM D ESIGNER软件介绍 (2) 1.4本次课程设计的主要内容及目的 (2) 2 曲柄连杆机构的建模 (3) 2.1活塞的建模 (3) 2.2活塞销的建模 (5) 2.3连杆的建模 (5) 2.4曲轴的建模 (6) 2.5汽缸体的建模 (8) 3 曲柄连杆机构的装配 (10) 3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10) 4 曲柄连杆机构导入ADAMS (14) 4.1曲柄连杆机构各个零部件之间运动副分析 (14) 4.2曲柄连杆机构各个零部件之间运动副建立 (14) 4.3曲柄连杆机构导入ADAMS (16) 5 曲柄连杆机构的运动学分析 (17) 结束语 (22) 参考文献 (23)

1 绪论 1.1 CATIA V5软件介绍 CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。 由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。另外,CATIA V5还用于制造米其林轮胎、伊莱克斯电冰箱和洗衣机、3M公司的粘合剂等。CATIA V5不仅给用户提供了详细的解决方案,而且具有先进的开发性、集成性及灵活性。 CATIA V5的主要功能有:三维几何图形设计、二维工程蓝图绘制、复杂空间曲面设计与验证、三维计算机辅助加工制造、加工轨迹模拟、机构设计及运动分析、标准零件管理。 1.2 ADAMS软件介绍 ADAMS即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、

动力学主要仿真软件

车辆动力学主要仿真软件 1960年,美国通用汽车公司研制了动力学软件DYNA,主要解决多自由度无约束的机械系统的动力学问题,进行车辆的“质量-弹簧-阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的诞生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAMS软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR 刚性积分算法,采用稀疏矩阵技术提高计算效率。1977年,美国Iowa 大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLR早在20世纪70年代,Willi Kortüm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA(1984),以及最终享誉业界的SIMPACK(1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MEDYNA软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACK软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPACK软件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACK算法技术的优势,成功地将控制系统和多体

机器人机械臂运动学分析(仅供借鉴)

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

相关主题
文本预览
相关文档 最新文档