当前位置:文档之家› Design and characterization of low-heat and low-alkalinity cements

Design and characterization of low-heat and low-alkalinity cements

Design and characterization of low-heat and low-alkalinity cements
Design and characterization of low-heat and low-alkalinity cements

Design and characterization of low-heat and low-alkalinity cements

M.Codina a,d ,C.Cau-dit-Coumes b,?,P.Le Bescop c ,J.Verdier d ,J.P.Ollivier d

a

ANDRA,Direction Scientifique,Service Colis/Matériaux,Parc de la Croix Blanche,1-7rue Jean Monnet,92298Chatenay-Malabry cedex,France

b

Commissariat àl'Energie Atomique,DTCD/SPDE/L2ED,CEN Marcoule,30207Bagnols-sur-Cèze cedex,France

c

Commissariat àl'Energie Atomique,DPC/SCCME/LECBA,CEN Saclay,91191Gif-sur-Yvette,France

d

Laboratoire Matériaux et Durabilitédes Constructions,INSA Toulouse,135avenue de Rangueil,31077Toulouse cedex 4,France

Received 10May 2007;accepted 4December 2007

Abstract

Investigations were carried out to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment.Several systems comprising Portland cement,a pozzolan (silica fume or fly ash)and blastfurnace slag were compared.All blends were characterized by high amounts of additions,the Portland cement (PC)fraction ranging only from 20to 60%.Cement hydration was studied using several techniques:X-ray Diffraction,TGA-DTA,calorimetry,pore solution extraction and microscopy.The most important result obtained with some ternary blends was the drop in the pore solution pH by more than one unit as compared with control samples elaborated with commercial cements.The alkali content (≈1to 4mmol/L)of the interstitial solution was also strongly reduced.The blends exhibited a low-heat output as required.Leaching tests carried out in pure water indicated a very slow decalcification of the samples.Several techniques such as optical microscopy,SEM/BSE,X-ray microanalysis or X-ray diffraction were compared to estimate the degraded thickness.

?2007Elsevier Ltd.All rights reserved.

Keywords:Waste management;Blended cements;Hydration;Pore solution;Durability

1.Introduction

The French Parliament Act of December 301991defined three complementary lines of research with the objective to find a solution to manage high-level and intermediate-level long-lived radioactive wastes over the very long term.One of the options examined by Andra (The French National radioactive waste management agency)is to dispose radioactive wastes in deep geological structures.The disposal concepts are based on a multibarrier design approach.The barriers would be:the waste package (the waste and the material used to stabilise it in a suitable overpack),the engineered barrier inserted between the waste package and the rock,and the geological barrier,i.e.the actual rock [1].

Clay has been chosen to constitute the geological barrier for its low permeability,which leads to low water flow,and for its stability over geological time scales.Clay may also be used as a main component in the storage framework.For instance,swelling bentonite could be used to seal some tunnels in association with concrete.In this context,it has been pointed out that the clay properties may be altered by the high pH conditions of the cement pore water [1,2].Moreover,a high temperature rise caused by cement hydration in massive concrete elements could induce microcracking with negative consequences on its long term durability.Investigations have thus been carried out to formulate low-alkalinity and low-heat blended cements referred as “low-pH ”binders,which would show an improved compatibility with the repository environ-ment and which could be used to elaborate high-strength concrete.

A list of specifications to be checked by the concrete materi-als has been defined including easy supply of the raw materials,

Available online at https://www.doczj.com/doc/314132507.html,

Cement and Concrete Research 38(2008)437–

448

?Corresponding author.

E-mail address:celine.cau-dit-coumes@cea.fr (C.Cau-dit-Coumes).0008-8846/$-see front matter ?2007Elsevier Ltd.All rights reserved.doi:10.1016/j.cemconres.2007.12.002

pore solution pH around11and temperature rise during hydra-tion less than20°C under semi-adiabatic conditions.

It has been shown that low-pH cements can be designed by replacing significant amounts of Portland cement(PC)by silica fume,which can be associated in some cases to low-CaO fly ash and/or blastfurnace slag[3–7](Table1).Such a blend has several positive effects:(i)conversion of portlandite,which is formed by the hydration of PC and which buffers the pore solution at pH12.5,into calcium–silicate–hydrate(C–S–H)by the pozzolanic reaction[8],(ii)decrease in the CaO/SiO2ratio of the C–S–H and partial substitution of Al3+for Si4+in the silicate chains of the C–S–H,which enhances their sorption capacity of alkalis[9–14],and(iii)dilution of PC,which decreases the heat output during hydration.The pore solution pH of the cement paste is then controlled by the dissolution of the C–S–H gel:the lower the CaO/SiO2ratio of the C–S–H,the lower the pH[15](Table2).

Previous research was mainly focused on the use of low-pH binders to design materials for specific applications such as high-strength and/or low-heat concrete[3–5],or injection grout to seal cracks[7].One concern in those studies was to check that conventional engineering practices could be used despite the unusually high content of silica fume and other additions in the binder.This work is devoted to the chemistry of low-pH binders during hydration and leaching.Cement pastes were prepared from five blends consisting in binary,ternary or quaternary mixes(Table3)and characterized over a one-year period. 7month-old samples were also submitted to leaching by pure water in order to compare their degradation rates and assess the mineralogical evolutions involved.

2.Experimental

2.1.Materials

Table4shows the composition of the products used to design the low-pH blends.

Two hydraulic compounds were tested(PC and blast furnace slag),as well as two pozzolans(Fly Ash(FA)and a more reactive one,Silica Fume(SF)).PC and slag were chosen for their low alkali content.SF was selected in a densified form for easier handling.The quaternary blend(PC/SF/FA/slag)was prepared by adding SF to a commercial ternary blend containing PC clinker,FA and slag(referred as CEM V according to European standard EN197-1).

2.2.Methods

Cement pastes(W/C=0.5)were characterized using mercury intrusion porosimetry(Micromeritics Autopore III—investi-gated pressures ranging0.8to53000psia).Crystalline phases were identified using XRD(Siemens D8—Copper anode

Table1

Low pH blends developed in Canada,Sweden,Japan and Finland

Canadian concrete[4]Swedish concrete[5]Japanese concrete[6]Finnish grout[7,43]

Blends composition 50%PC–50%SF83.3%PC–16.7%SF40%PC–20%SF–40%FA56%PC–38%

SF–1.5%

gypsum–4.2%

alumina cement

49%PC–46%

SF–1.3%

gypsum–3.7%

alumina cement

Reference LHHPC Low-Heat High Performance

Concrete 36F HFSC High Fly ash Silica

fume Cement

f63f64

pH of water equilibrated with crushed solid 10.611.711.010.5

90days of curing,L/S=1mL/g28days of curing,L/S=1.675mL/g28days of curing,

L/S=40mL/g

58days of curing,sample surface/

leachate volume=0.85cm2/mL,

the solution was renewed with the

following kinetic:0.26L/year,

140days of leaching

Use Concrete used in the construction of

seals for underground repositories

(located in granite rock)for heat-

generating,radioactive,nuclear wastes Injection grouts to stabilise the rock

in the fractured zones or stabilisation

concrete that replaces excavated

sections that have collapsed

Cementitious material used

for plug,grout and rock

bolts in deep repository

Injection grout for deep

repositories

Table2

Link between pH and C/S ratio(25°C[15])

Solids pH Amorphous silica 6.38 Amorphous silica+C–S–H(0.8)10.17 C–S–H(0.8)10.88 C–S–H(0.8)+C–S–H(1.1)10.91 C–S–H(1.1)11.03 C–S–H(1.1)+C–S–H(1.8)12.43 C–S–H(1.8)+CH12.53 CH12.52Table3

Composition of the investigated blends(weight%)

PC CEM V?Silica fume Fly ash Slag B60%–40%––

T137.5%–32.5%30%–

T237.5%–32.5%–30% T320%–32.5%–47.5% Q–60%40%––CEM V?:comprising22%slag,22%fly ash and55%clinker.

438M.Codina et al./Cement and Concrete Research38(2008)437–448

λK α1=1.54056?),and the portlandite content was estimated using TGA (TA-SDT 2960)from the loss of water between 460°C and 510°C.The hydrates from PC and low-pH cement pastes were characterized from their Si/Ca and Al/Ca ratios by performing X-ray microanalyses using energy dispersion spectroscopy (Philips XL PW6631/01LaB 6filament,accel-erating voltage =15kV ,and SEM-FEG).

The heat output during hydration was investigated on cement pastes (W/C =0.4except for Q,0.45)using Langavant semi-adiabatic calorimetry (according to European standard EN 196-9).This method consisted in introducing a sample of freshly made grout into a cylindrical container having a volume of approximately 800cm 3.The container was placed into a calibrated calorimeter (with a coefficient of total heat loss below 100J h ?1.K ?1for a temperature rise of 20K)in order to determine the quantity of heat emitted in accordance with the development of temperature.The temperature rise of the sample was compared with the temperature of an inert sample in a reference calorimeter.At a given point in time,the heat of hydration of the binder contained in the sample was calculated by summing the heat accumulated in the calorimeter and the heat lost into the ambient atmosphere throughout the period of the test.

The pore solutions of cement pastes cured for 2,6and 12months in sealed bags at 20°C (W/C =0.5,cylindrical samples h =10cm and ?=6.7cm)were extracted using pressure (WALTER BAI 102/3000—HK4,applied strength within the range 0–1700KN).Their pH value was measured with a high

alkalinity pH electrode,and the Na +,K +,Ca 2+and SO 42?

con-centrations were determined using ionic chromatography.

Measurements of pH and Ca 2+,Na +,K +and SO 42?

concentrations were also carried out on binder suspensions prepared by mixing crushed cement paste samples (cured for 6months and 1year in sealed bag at 20°C)with ultrapure water (liquid to solid ratio of 9mL/g)and stirring for 24h.Experiments and measurements were carried out under nitrogen atmosphere to prevent carbonation.

4×4×16cm specimens of cement pastes (blends B,T1and T2)with a W/C =0.4were prepared and cured for 7months at 95%relative humidity and constant temperature (20°C).They were then cut in 3cm-thick slices and put into 1.8L cylindrical tanks filled with deionized water for calcium leaching tests [16].All trials were carried out at constant temperature (20°C)and pH (7).This latter was regulated automatically by adding nitric acid at a concentration of 0.25mol/L to the leaching solution.To avoid carbonation of the samples during the tests,nitrogen gas was continuously injected in the tanks.The samples were protected from lateral degradation by a polymer coating,and the external attack occurred on two parallel and opposite faces only in one direction.To maintain experimental conditions constant during the tests,the solution was renewed at regular intervals,in connection with the quantity of added nitric acid.This quantity was directly related to the amount of

calcium leached from the paste.The Ca 2+and SO 42?

con-centrations,in the leaching solution,were determined by ionic chromatography,the silicate concentration was measured by ICP-AES,and the OH ?concentration was inferred from the pH values.The solutions were constantly stirred to avoid any local increase in concentration.The mineralogy of the leached zone was assessed by scraping progressively the samples from the external surface to the center of the slices using a micromilling machine [17].The abraded thickness was not monitored very accurately but the residual thickness after scraping was measured to within micrometer.With the help of XRD (Pan

Table 4

Chemical composition (weight %)of the blends components

PC a

CEM V b

SF c

FA d

Slag e

Calculated values for the blends B

T1T2T3Q CaO 67.4146.420.40 5.5242.340.627.038.133.728.0SiO 222.8429.4495.0049.4836.251.754.350.352.655.7Al 2O 3 2.711.360.6029.1711.1 1.910.0 4.5 6.07.1Fe 2O 3 1.84 3.20b 0.05 6.230.97 1.1 2.6 1.00.8 1.9MgO 0.81 3.020.30 2.087.60.6 1.0 2.7 3.9 1.9MnO n.m.0.11n.m.0.080.15Na 2O 0.140.21b 0.200.58b 0.200.20.30.20.20.2K 2O 0.23 1.060.29 1.220.340.30.50.30.30.8SO 3 2.23 2.81b 0.200.64n.m. 1.4

1.1

1.8S 2?b 0.010.16b 0.10n.m.0.90.3

0.5

0.1

P 2O 5n.m.0.58n.m.0.70b 0.70TiO 2

n.m.0.64n.m. 1.610.51Loss of ignition (1000°C)

1.72

1.48

3.10

2.20

b 0.10

(a Portland Cement CEM I (Lafarge,Le Teil),b CEM V/A (Calcia,Airvault),c densified silica fume ChrysoSilica,d fly ash,e blast furnace slag (Calcia,Ranville)).n.m.=not measured.

Table 5

Evolution of the portlandite content (weight %)of the different cement pastes

PC

CEM V B T1T2T3Q 1month 21.610.4 4.8 2.0 3.70 3.32month s 24.79.6 5.20.3 3.50 1.63month s 21.78.8 2.90 2.5006month s 20.17.9 3.60 2.0001year

18.8

6.1

2.0

1.0

439

M.Codina et al./Cement and Concrete Research 38(2008)437–448

Analytical Xpert Pro-Copper anode λK α1=1.54056?)ana-lyses,it was possible by this way to determine the crystallized phases within slices of approximately 100μm thick,parallel to the leached surface.3.Results and discussion 3.1.Hydration of cement pastes 3.1.1.Characterization of the solid

3.1.1.1.Portlandite content.Evolution with time of the portlandite content,measured by TG-DTA,in the pastes is shown in Table 5.

Portlandite was totally depleted in blends T1and Q after 3months of curing,while it could still be detected after 1year in blend T2.T1and T2differed only by the fact that FA (in T1)was replaced by slag in T2.Thus,FA revealed more effective to consume portlandite,which may be explained by its higher silica content.Quite unexpected results were obtained for blend B:despite its high SF content (40%),the most reactive product of the investigated pozzolans,portlandite was still present after 12months.This resulted from an inhomogeneous dispersion of SF in the paste,as it will be shown later from the SEM observations.According to Hong and Glasser [12],SF up to 15–20%cement replacement should be enough to react with all portlandite if properly dispersed.Portlandite was not detected at any age in sample T3,which may result from its very low content of clinker (20%).In the commercial CEM V cement

paste,the amount of portlandite decreased,but more slowly than in the low-pH cement pastes which all contained silica fume.Thus,properly dispersed SF was the most effective pozzolan for a rapid depletion of portlandite.These results were supported by XRD analyses.

3.1.1.2.Heat of hydration.The total heat of hydration of most low-pH cements (excepting B)was lower than that of PC (T2:215J/g,T1:195J/g,T3:150J/g,PC:250J/g)(Fig.1).The hydration rate was lower in the acceleratory period,and it decreased when the substitution level for clinker increased.This result is consistent with data from the literature.(i )The heat production is enhanced by a small addition (10%)of SF [18],but decreased by a large addition due to PC dilution.(ii )Calorimetric studies show that FA retards the reaction of alite in the early stage of hydration [19–22].(iii )In slag cements,slag reacts considerably more slowly than alite,thus reducing the heat output [23].For similar cement replacement levels,the heat release of blend Q was smaller than that of blend B,which was due to the fact that CEM V hydration was less exothermic than PC hydration.In the same way,the heat output of fly ash-containing blend T1was smaller than that of slag-containing blend T2.

3.1.1.3.Porosity.Mercury Intrusion Porosity was used to characterize cement pastes after 1and 3months of curing.Whatever the age of the sample,adding fly ash and slag resulted in an increase in the total porosity (highest values occurred in blends T1and T3,Table 6).While the porosity of the com-mercial cement pastes (PC and CEM V)decreased with time,that of the low-pH cement pastes remained almost constant over the 3-month period of the study.However their pore size distribution showed a progressive refinement.The fraction of pores with a diameter below 20nm (gel pores,associated with C –S –H)increased with time and was much more important than that measured for

PC.

Fig.1.Heat of hydration of low-pH blended cements and Portland cement (PC).

Table 6

Total porosity of cement pastes (volume %)and pore size distribution (diameter)of 1-month-old and 3-month-old cement pastes (%of total porosity)

PC

CEMV B T1T2T3Q 1month

Total porosity 30.933.930.237.134.937.333.9N 100nm 26.014.414.610.113.710.223.620–100nm 54.227.435.442.422.739.149.8b 20nm

19.858.250.047.563.650.726.53month s

Total porosity 25.328.931.936.032.637.536.0N 100nm 4.7 5.316.08.212.39.017.820–100nm 63.09.729.932.6117.531.933.7b 20nm

32.4

85.0

54.1

59.2

70.2

59.1

48.5

Table 7

Mineralogy of the low-pH cement pastes shown by XRD (sealed bag,20°C)

Components of the pastes (age:6months)B C –S –H –Ca(OH)2–ettringite –C 2S –C 3S –hematite –calcite –quartz

T1C –S –H –ettringite –C 2S –C 3S –hematite –calcite –quartz –mullite –magnetite T2C –S –H –Ca(OH)2–ettringite –C 2S –C 3S –calcite –hydrotalcite T3C –S –H –ettringite –C 2S –C 3S –calcite –hydrotalcite

Q

C –S –H –ettringite –C 2S –C 3S –calcite –quartz –hydrotalcite

440M.Codina et al./Cement and Concrete Research 38(2008)437–448

3.1.1.

4.Mineralogy of PC and low-pH binder pastes.The mineralogy of the pastes was investigated by XRD after 6months of curing in sealed bag (Table 7).All samples contained anhydrous phases (alite,belite),ettringite and traces of calcite.Portlandite was detected in blends B and T2,and hydrotalcite in slag-containing blends (T2,T3,Q).Four of them (PC,B,T1and T3)were analysed using EDS [24].Fig.2shows a plot of Al/Ca against Si/Ca ratios for individual X-ray microanalyses from several parts of the microstructures of the samples.Most analyses on the PC paste clustered for Si/Ca ratio between 0.4and 0.5and corresponded to C –S –H.The spots analysed were not chosen at random,thus the number of portlandite (CH,Si/Ca =0)was underestimated.The analyses intermediate between those of C –S –H and CH,AFt or AFm probably corresponded to mixtures below the micrometer scale of C –S –H and the relevant phase.Paste B was characterized by C –S –H with a higher Si/Ca ratio (within the range 0.5–0.6).Mixtures with portlandite were scarce in the blended cement pastes.Analyses performed on cement pastes T3and T1showed much more variation.For most spots in the C –S –H zone,both the Si/Ca and Al/Ca ratios were increased,which could be related to the higher silica and alumina contents of these systems as compared to PC (Table 4).These results could be compared with other researchers'work.Richardson et al.[25,26]have shown that in a slag/PC blend,the S/C ratio of the C –S –H increases with the proportion of slag from around 0.55for plain PC cement paste to 0.8–0.9in the extreme case of a paste of an alkali-activated slag containing no Portland cement.For a blend comprising 50%slag,values around 0.65have been obtained.As for a 3-day-old cement paste containing fly ash,it has been reported that S/C and A/C are higher than in pure Portland cement pastes [9,10,27–30].

3.1.2.Characterization of the interstitial solution

The pore solution pH values of the blended pastes decreased with time and were within the range [11.7–12.4]after 1year of hydration (Table 8).They still exceeded the target pH of 11,but were reduced by more than one unit as compared to PC and CEM V cement pastes.Differences could be noticed between the blends:the smallest pH values were recorded for T1and T3,and the highest for blends B and https://www.doczj.com/doc/314132507.html,paring data relative to blends T1and T2showed that the association of SF and FA

(blend T1)led to a stronger pH reduction than the association of SF and slag (blend T2).Given the difficulty to extract pore solution under pressure,two protocols were compared:(i )pore solution extraction,and (ii )preparation of a suspension by mixing ground cement paste with ultrapure water for 24h (method already investigated by R?s?nen and Pentala [31]).The pH values measured in both cases were very similar except for PC and CEM V .This result will be discussed later in this section.

The compositions of the pore solution extracted from 2,6and 12-month-old samples are presented in Table 9.The extracted interstitial solutions of the low-pH blends exhibited strongly reduced (up to a factor 20to 200)contents of Na +and K +as compared with PC.The calcium concentrations were in fairly good agreement with C –S –H equilibrium data (Fig.3)for all low-pH blends,excepting cement paste Q,which had a higher content of alkalis.In the low-pH blends,the pore solution chemistry was thus controlled by the C –S –H dissolution.The good agreement between the two protocols of pH measurement could then be explained as follows.The dilution factor in the suspension (W/C =9instead of 0.5in cement pastes)was low enough to prevent total dissolution of C –S –H and the equilibrium concentrations thus remained the same.On the other hand,the pore solution pH of PC and CEM V was dominated by highly soluble alkali hydroxides and pH was above 13.Preparing a suspension caused a dilution of the alkalis,and thus a pH reduction.For T2and B,quite unexpected results were obtained after 1year of curing.Despite the presence of portlandite as shown by XRD

and

Fig.2.Al/Ca vs Si/Ca atom ratios for individual X-ray microanalyses of Portland cement paste and low-pH cement pastes (age:6months).

Table 8

Pore solution pH of the cement pastes pH EIS 2months EIS 6months CS 6months EIS 1year CS 1year

PC 13.212.613.112.6CEM V 13.412.613.312.4B 12.412.612.512.212.4T112.412.212.211.711.7T212.312.412.412.212.2T312.112.012.011.711.8Q

12.5

12.5

12.4

12.1

12.0

Measurements carried out on extracted interstitial solutions (EIS)and cement suspensions (CS).

441

M.Codina et al./Cement and Concrete Research 38(2008)437–448

TGA,the pH of the extracted solutions was below the portlandite equilibrium pH.This might be explained by an inhomogeneity of the material,which would locally contain portlandite,this latter being isolated from the interstitial so-lution by the growing hydrates.

The reduced alkali content in the pore solution of low-pH cements pastes could result from various factors:the enhanced sorption capacity of the C –S –H gel due to its increased Si/Ca ratio,the occurrence of badly dispersed silica fume aggregates,since amorphous silica is known to have adsorption properties which result from the hydroxylation of its surface [12,34–36]and,for blends T2and T3,the possible formation of magnesium silicate hydrate gel (magnesium coming from the slag)which has been identified as an effective sorbent for potassium [37,38].The sorption potential of other phases such as hy-drotalcite and str?tlingite has still to be elucidated.

Additional,experiments were performed on the cement suspensions (liquid to solid ratio equal to 9mL/g):once equi-librium was reached,half of the liquid phase was replaced by ultrapure water,and the Na +and K +concentrations were fol-lowed as a function of time.They increased to restore equili-brium and finally reached their initial values,which indicated that under these conditions,the sorption of Na +and K +by the solid phase was reversible.

3.2.Leaching of cement pastes

3.2.1.Characterization of the degraded solid

From samples leached for a 4-month period,we tried to estimate the position of the degradation front.Portlandite is a good indicator for the location of the degradation front for common PC-based materials [39–41].However,in this study,a difficulty arose from the fact that there was no or little portlandite in many of the pastes studied.Different techniques were thus combined:optical microscopy observations,SEM observations and X-ray microanalysis,as well as X-ray dif-fraction of the leached surface.

First,phenolphtaleine tests were carried out.The degraded thickness was visually estimated by optical microscopy observations as shown in Fig.4.On these images,two zones could be distinguished.The bright zone was a part of the cement paste which did not colour phenolphtaleine in purple,which meant that the pH in this zone was below 10.Whatever the sample,the measured thickness of pH b 10was between 600and 700μm after 4months of leaching.

The second approach was to use chemical contrasts from SEM/BSE images,the density of the degraded zone being lower than that of the sound core due to decalcification.A sharp transition was effectively observed between a bright zone (sound core)and a dark one (degraded material)for blends B,T1and T2.The degradation depth was within the range 900–1200μm.For blend T3however,locating the degradation front was much more difficult,which may have resulted from its very low content of clinker (20%).Ca-and Si-mapping clearly showed the decalcification of the cement pastes near the surface exposed to leaching while the silica content seemed to remain quite constant whatever the considered depth.These investiga-tions were supplemented by performing EDS microanalyses to estimate the Ca/Si molar ratio of the pastes as a function of the distance from the leached surface (Fig.5).Three zones could be defined.The first one,near the surface,was characterized by a very low and almost constant Ca/Si ratio (0.3to 0.4for all blends).Its depth varied from 200to 600μm depending on the samples (Table 10).The second one corresponded to a transition:the Ca/Si ratio gradually increased.It was much larger for blend T1(N 1000μm)than for the other samples (400to 600μm).The third one,in which the Ca/Si ratio showed again little variation,could be attributed to the sound core.The

Table 9

[Na +],[K +],[Ca 2+]and [SO 42?

](mmol/L)in the extracted interstitial solutions

2months 6months 12months Na +

K +

Ca 2+

SO 4

2?Na +K +Ca 2+SO 4

2?Na +K +Ca 2+SO 4

2?PC 77.9

71.80.20.892.9

77.10.02 1.1CEMV 47.1172.00.5 2.472.5241.50.03 3.9B 4.7

3.38.90.4 3.1 3.29.50.2 3.1 2.7 5.40.3T1 2.0 1.111.0ND 3.8 1.4 3.80.2

4.5 1.9 1.6 1.4T2 3.6 1.47.3ND 3.0 1.78.40.1 3.0 1.0

5.80.2T3 3.5 1.3 4.50.2 2.9 1.5 4.70.6 2.9 1.1 4.20.9Q

8.715.9 1.5ND

7.5

11.5

3.9

0.17.3

9.3

0.1

0.3

ND:below the detection

limit.

Fig.3.Equilibrium model of pure C –S –H at 20°C according to Nonat [32,33]with data relative to 2,6and 12-month-old low-pH cement pastes.

442M.Codina et al./Cement and Concrete Research 38(2008)437–448

Ca/Si average value depended on the sample:1.5for blend B,0.9for blend T1,1.4for blend T2and 1.0for blend T3.The total degradation depth (zones 1and 2)thus ranged between 800μm (blend T3)to 1300μm (blend T1),which was in rather good agreement with the estimations derived from BSE pictures,but not with those inferred from optical microscopy.In that latter case,the change in colour of phenolphtaleine occurred at pH ≈10,which was lower than the equilibrium pH of the C –S –H from the sound core.The change in colour of phenolphtaleine thus occurred in the degraded zone,but near the sound core.In a third approach,XRD analyses were carried out on the samples surface which was scraped off step by step (thickness ≈100μm for each step)to obtain XRD profiles (Fig.6).Several mineralogical evolutions were noticed near the leached surface:

-decrease in the magnitude of the C –S –H peak,which corresponded to a progressive decalcification of the material,-disappearance of portlandite for pastes B and T2,-disappearance of ettringite whatever the sample,

-enrichment in an hydrotalcite-like phase for pastes T2and T3(containing slag),

-partial (paste B)or total (pastes T1,T2and T3)depletion of C 3S and C 2S,due to dissolution and possibly hydration.Table 10summarises the results inferred from the different characterization techniques.We tried to estimate the degradation depth from the disappearance of portlandite and/or ettringite.

Although the accuracy was not very good,the results were rather consistent with the SEM observations.

3.2.2.Characterization of the leaching solution

Figs.7and 8show the cumulative quantities of OH ?and Ca 2+released in the leaching solution as a function of the square root of time for samples B,T1,T2and T3while Table 11summarises the fluxes of the released species derived from the slopes of the previous curves.

Blend B showed the highest decalcification rate,and blends T1and T3the smallest.The rate values could be compared with reference data:decalcification of the low-pH blends was much slower than that of PC (13±2mmol/dm 2/day 0.5)and rather similar to that of CEM V (3±0.4mmol/dm 2/day 0.5)[42].The ratios between the hydroxyl and calcium fluxes were different from 2(1.86for blend B,1.85for blend T1,2.11for blend T2and 1.96for blend T3).Additional analyses performed for sample B showed that the Ca 2+flux was not only balanced by the release of OH ?but also by that of silica and sulphate anions (resulting from the destabilisation of ettringite).Results showed that for a 21days leaching test,the OH ?/Ca 2+flux

ratio was equal to 1.90and the (OH ?+HSiO 3?+2SO 42?

)/(Ca 2+)

flux ratio was equal to 2.11(SO 42?

flux =0.13±0.01mmol/dm 2/

day 0.5and HSiO 3?

flux =0.76±0.02mmol/dm 2/day 0.5).These values could be compared to those from Adenot for a PC paste

submitted to leaching under the same conditions (SO 42?

flux of

0.22mmol/dm 2/day 0.5,HSiO 3?

flux of 0.29mmol/dm 2/day 0.5)

[16].The SO 42?fluxes were quite similar,while the HSiO 3?

flux

Fig.5.C/S ratio evolution vs degraded thickness of the cement pastes (B,T1,T2and T3).Each point represents an EDS analysis.The curves are plotted from the average values obtained for each investigated depth (erratic points being excluded)and errors bars are calculated from the standard deviation.

444M.Codina et al./Cement and Concrete Research 38(2008)437–448

of paste B was more important due to the much higher silica content of the binder.4.Conclusions

Cement pastes prepared with five blends containing high amounts of silica fume,fly ash and/or slag were investigated.Their main properties can be summarised as follows:-reduced heat of hydration as compared to PC,

-refined porosity,although the total porosity remained higher than that of the reference,

-pore solution with a pH comprised between 11.7and 12.4after 1year of curing,and with very strongly reduced (up to a

factor 20to 200)Na +and K +concentrations as compared to a PC reference,

-decalcification rate under leaching by pure water reduced by a factor 4as compared to PC,

-degraded thickness after 4months of leaching ranging from 800μm (ternary blend with a high slag content)to 1300μm (ternary blend with fly ash).

Different methods were compared to estimate the posi-tion of the degradation front.Estimating the Ca/Si ratio evo-lution from the sound core to the surface submitted to leaching using SEM –EDS analysis as well using the chemical contrast from SEM/BSE pictures seemed to be the most reliable techniques.

Table 10

Summary of results obtained by optical microscopy and SEM/BSE —zone of appearance of portlandite and ettringite in the leaching cement pastes Blends Optical microscopy

observations SEM/BSE observation Schematic graph resulting from C/S ratio evolution

Zone of appearance of portlandite Zone of appearance of ettringite B

700μm

1000

μm

[1100–1300]

[850–1050]

T1600μm 1000

μm –[800–1000]

T2600μm 900

μm [700–100][700–1000]

T3650μm too

indistinct –?

DZ =degraded zone,SC =sound core.

445

M.Codina et al./Cement and Concrete Research 38(2008)437–448

Fig.6.XRD pattern of the degraded zone of paste T2(from the surface (bottom)to the sound core

(top)).

Fig.7.OH ?released during leaching of cement pastes in pure deionized water (pH 7,20

°C).

Fig.8.Ca 2+released during leaching of cement pastes in pure deionized water (pH 7,20°C).

446M.Codina et al./Cement and Concrete Research 38(2008)437–448

The pore solution chemistry of the low-pH cement pastes was dominated by the C–S–H dissolution.An alternative method to pore solution expression for low-pH blends was thus proposed to estimate the pH of the interstitial solution.pH could be more simply measured on a cement suspension(liquid to solid ratio of 9mL/g)stirred for24h under nitrogen atmosphere.

Future work will be focused on modelling leaching ex-periments by taking into account both chemical reactivity and transport through diffusion and the sorption of alkali by the cement pastes will be studied more accurately.

Acknowledgements

This work was financed by ANDRA and supported by EDF. L.Petit and X.Bourbon are greatly acknowledged for their participation to the project.

References

[1]ANDRA,2005Report on Clay—Evaluating the Feasibility of a

Geological Repository in Clay Formation,ISBN:2-951-0108-8-5,2005, p.238.

[2]P.Sellin,F.Karlsson,L.Werme,K.Spahiu,I.Puigdomenech,Effect of pH

on the safety of KBS-3deep repository and the confidence in the safety assessments,Proc.Workshop on Qualification of Low-pH Cement for a Geological Repository,Stockholm,Sweden,October15–16,2003. [3]C.Cau-dit-Coumes,S.Courtois,D.Nectoux,S.Leclercq,X.Bourbon,

Formulating a low-alkalinity,high-resistance and low-heat concrete for radioactive waste repositories,Cem.Concr.Res.36(2006)2152–2163.

[4]M.N.Gray,B.S.Shenton,For better concrete,take out some of the cement,

Proc.6th ACI/CANMET Symposium on the Durability of Concrete, Bangkok,Thailand,1998,May31to June5,1998.

[5]https://www.doczj.com/doc/314132507.html,gerblad,High performing concrete with low pH as bore hole

plugging material,Produced for SKB Seminar on borehole plugging,?sp?,February27th2003,2003.

[6]K.Iriya,A.Matsui,M.Mihara,Study on applicability of HFSC for

radioactive waste repositories,Radioactive Waste Management and Environmental Remediation,ASME Conference,Nagoya,Japan,Septem-ber16–301999,1999.

[7]U.Vuorinen,J.Lehikoinen,Low-pH grouting cements—results of

leaching experiments and modelling,2nd low-pH Workshop,Madrid, Spain,June15–16,2005.

[8]S.Urhan,Alkali silica and pozzolanic reactions in concrete.Part1:

interpretation of published results and an hypothesis concerning the mechanism,Cem.Concr.Res.17(1987)141–152.

[9]S.A.Rodger,G.W.Groves,The microstructure of tricalcium/silicate

pulverized-fuel ash blended cement pastes,Adv.Cem.Res.1(1988)84.

[10]P.L.Rayment,The effect of pulverised fuel ash on the C/S molar ratio of

alkali content of calcium silicate hydrates in cement,Cem.Concr.Res.12–2(1982)133–140.

[11]J.Duchesne,M.A.Bérubé,The effectiveness of supplementary cementing

materials in suppressing expansion due to ASR—another look at the

reaction mechanism—Part2—pore solution chemistry,Cem.Concr.

Res.24–2(1994)221–230.

[12]S.-Y.Hong,F.P.Glasser,Alkali sorption by C–S–H gels.Part II.Role of

alumina,Cem.Concr.Res.32(2002)1101–1111.

[13]H.J.H.Brouwers,R.J.Van Eijk,Alkali concentrations of pore solution in

hydrating OPC,Cem.Concr.Res.33(2003)191–196.

[14]S.-Y.Hong,F.P.Glasser,Alkali binding in cement pastes.Part I.The C–S–H

phase,Cem.Concr.Res.29(1999)1893–1903.

[15]S.A.Stronach,F.P.Glasser,Modelling the impact of abundant geochem-

ical components on the phase stability and solubility of the CaO–SiO2–H2O system at25°C:Na+,K+,SO42?,Cl?and CO32?,Adv.Cem.Res.36 (1997)167–181.

[16]F.Adenot,Durabilitédes bétons:caractérisation et modélisation des

processus physiques et chimiques de dégradation du ciment Ph D Thesis, Universitéd'Orléans,France,1992.

[17]D.Planel,Les effets couples de la précipitation d'espèces secondaires sur

le comportement mécanique et la dégradation chimique des bétons,Ph D Thesis,Universitéde Marne La Vallée,France,2002.

[18]E.H.Kadri,R.Duval,Effect of ultrafine particles on heat of hydration of

cement mortars,ACI Mater.J.(2002)138–142.

[19]A.Ghose,P.L.Pratt,in:S.Diamond(Ed.),Effects of Flyash Incorporation

in Cement and Concrete,Materials Research Society,University Park, 1981,p.82.

[20]Y.Halse,P.L.Pratt,J.A.Dalziel,W.A.Gutteridge,Development of

microstructure and other properties in flyash OPC systems,Cem.Concr.

Res.14(1984)491.

[21]I.Jawed,J.Skalny,in:S.Diamond(Ed.),Effects of flyash incorporation

in cement and concrete,Materials Research Society,University Park,1981, p.60.

[22]F.Wei,M.W.Grutzeck,D.M.Roy,The retarding effects of fly ash upon the

hydration of cement pastes:the first24hours,Cem.Concr.Res.15(1985) 174–184.

[23]H.F.W.Taylor,Cement Chemistry,in:T.Telforf(Ed.),London,1997,p.263.

[24]C.Famy,A.R.Brough,H.F.W.Taylor,The C–S–H gels of Portland

cement mortars:Part I.The interpretation of energy-dispersive X-ray microanalysis from scanning electron microscopy,with some observations on C–S–H,AFm and Aft phase compositions,Cem.Concr.Res.33(2003) 1389–1398.

[25]I.G.Richardson,G.W.Groves,Microstructure and microanalysis of

hardened cement pastes involving ground granulated blast-furnace slag, J.Mater.Sci.27(1992)6204.

[26]I.G.Richardson,Tobermorite/jennite-and tobermorite/calcium hydroxide-

based models for the structure of C–S–H:applicability to hardened pastes of tricalcium silicate,β-dicalcium silicate,Portland cement,and blends of Portland cement with blast-furnace slag,metakaolin,or silica fume,Cem.

Concr.Res.34(2004)1733–1777.

[27]M.Regourd,B.Mortureux,H.Hornain,Fly ash,silica fume,slag and other

mineral by-products in concrete,in:V.M.Malhotra(Ed.),Sp.Publ.SP79, vol.2,American Concrete Institute,Detroit,MI,1983,p.847.

[28]H.F.W.Taylor,K.Mohan,G.K.Moir,Analytical study of pure and ex-

tended Portland cement pastes:II,fly ash-and slag-cement pastes,J.Am.

Ceram.Soc.68(1985)685–690.

[29]H.Uchikawa,Effect of blending components on hydration and structure

formation,8th ICCC,vol.1,1986,p.249.

[30]A.M.Harrisson,N.B.Winter,H.F.W.Taylor,An examination of some pure

and composite Portland cement pastes using scanning electron microscopy with X-ray analytical capability,8th ICCC,vol.3,1986,pp.170–175.

[31]V.R?s?nen,V.Penttala,The pH measurement of concrete and smoothing

mortar using a concrete powder suspension,Cem.Concr.Res.34(2004) 813–820.

[32]A.Nonat,The structure and stoichiometry of C–S–H,Cem.Concr.Res.34

(2004)1521–1528.

[33]R.Barbarulo,Comportement des matériaux cimentaires:Action des

sulfates et de la température,Ph D Thesis,Ecole Normale Supérieure Cachan et Facultédesétudes supérieures de l'UniversitéLaval,Québec, (2002).

[34]M.C.G.Juenger,C.P.Ostertag,Alkali-silica reactivity of large silica fume-

derived particles,Cem.Concr.Res.34(2004)1389–1402.

Table11

Ca2+and OH?fluxes measured during the leaching experiments(inferred from the graphs of Figs.7and8)

mmol/dm2/day0.5OH?flux Ca2+flux

B8.744±0.044 4.709±0.023 T1 4.508±0.014 2.437±0.030 T27.107±0.083 3.363±0.017 T3 4.695±0.080 2.386±0.031 Positive fluxes refer to outward fluxes.447

M.Codina et al./Cement and Concrete Research38(2008)437–448

[35]https://www.doczj.com/doc/314132507.html,rbi,A.L.A.Fraay,J.M.J.M.Bijen,The chemistry of the pore fluid

of silica fume-blended cement systems,Cem.Concr.Res.20(1990) 506–516.

[36]D.Bonen,S.Diamond,Occurrence of large silica fume-derived particles in

hydrated cement paste,Cem.Concr.Res.22(1992)1059–1066. [37]D.R.M.Brew,F.P.Glasser,Synthesis and characterisation of magnesium

silicate hydrate gels,Cem.Concr.Res.35(2005)85–98.

[38]D.R.M.Brew,F.P.Glasser,The magnesia–silica gel phase in slag cements:

alkali(K,Cs)sorption potential of synthetic gels,Cem.Concr.Res.35 (2005)77–83.

[39]M.Buil,E.Revertegat,J.Oliver,A model of the attack of pure water or

undersaturated lime solutions on cement,in:T.M.Gilliam,C.C.Wiles (Eds.),American Society for Testing and Materials,West Conshohocken, USA,1992,pp.227–241.[40]F.Adenot,M.Buil,Modelling of the corrosion of the cement paste by

deionized water,Cem.Concr.Res.22(1992)489–495.

[41]F.Adenot,J.Maury,C.Richet,Long-term prediction of concrete durability

in radioactive waste management:influence of the pH of the aggressive solution,in:A.Al-Manaseer,S.Nagataki,R.C.Joshi(Eds.),Int.Conf.On Eng.Mat.,Ottawa,Canada,vol.2,1997,pp.117–128.

[42]C.Richet,C.Gallé,P.Le Bescop,H.Peycelon,S.Bejaoui,I.Tovena,I.

Pointeau,V.L'Hostis,P.Lovera,Synthèse des connaissances sur le comportementàlong terme des bétons—Applications aux colis cimentés, CEA-R-6050,Saclay,France,2004.

[43]A.Kr?nlof,Injection grout for deep repositories,low pH cementitious

grout for larger fractures,testing technical performance of materials,Proc.

Workshop on Qualification of Low pH Cement for a Geological Repository,Stockholm,Sweden,October15–16,2003.

448M.Codina et al./Cement and Concrete Research38(2008)437–448

多媒体演示文稿的设计与制作

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 多媒体演示文稿的设计与制作 多媒体演示文稿的设计与制作( 初级)策勒县策勒乡托帕学校图尔荪江麦提尼亚孜通过对多媒体演示文稿的设计与制作(初级)课程的学习,我已经掌握了多媒体演示文稿的设计与制作基本知识及制作方法,收获颇多,现就自己的学习谈谈学习体会.一、知识点: 1、创建演示文稿;2、插入多媒体资源;3、多媒体资源的搭配; 4、播放和调用文稿。 二、应用1、PowerPoint 中有多种创建演示文稿的方法,对于一个初学者想要快速制作一个演示文稿可以根据内容提示向导创建演示文稿。 内容提示向导是创建演示文稿最快捷的一种方式,在内容提示向导的引导下,不仅能帮助使用者完成演示文稿相关格式的设置,而且还帮助使用者输入演示文稿的主要内容。 2、在多媒体演示文稿的页面中插入有关的文本、图片等多媒体资源需以下几个步骤: 选择要插入的多媒体资源;调整插入对象的位置和大小;3、(1)配色方案: 配色方案就是由多媒体演示文稿软件预先设计的能够应用于幻灯片中的背景、文本和标题等对象的一套均衡搭配的颜色。 通过配色方案,使多媒体演示文稿色彩绚丽,多呈现的内容更加生动,进行配色时需完成以下几个步骤: 1 / 3

选择配色方案;应用配色方案;(2)利用版式搭配多媒体资源:版式是PowerPoint2003 软件中的一种常规排版的格式,通过幻灯片版式的应用可以对文字、图片等等更加合理简洁完成布局,通常PowerPoint2003 中已经内置文字版式、内容版式等版式类型供使用者使用,利用版式可以轻松完成幻灯片制作和运用。 运用版式搭配多媒体资源需要以下几个步骤: 选择版式;应用版式;(3)、图形组合: 图形组合是 PowerPoint 软件中的一种图形处理功能,可以将多个独立的形状组合成一个图形对象,然后对组合后的图形对象进行移动、修改大小等操作,操作步骤如下: 选择图形;组合图形;4、播放和调用文稿: (1)、自定义播放: 由于一个演示文稿中可能有很多张幻灯片,有些时候我们不需要全部播放出来,这时就需要对演示文稿中的幻灯片设置自定义播放。 自定义播放演示文稿需以下几步: 选择要播放的演示文稿;设置自定义播放;(2)、打包演示文稿:演示文稿制作完成后,往往不是在一台计算机上播放,有时会出现演示文稿中所插入的视音频等资源不能顺利播放的情况。 如张老师把在家做好的演示文稿拿到教室播放,在排除连线、播放软件问题等因素后,演示文稿中插入的资源仍不能播放,请教计算机老师后,计算机老师建议可以通过以下两种方式解决:打包演示文稿;用 U 盘把 PowerPoint 中的所有资源拷到教室重

多媒体演示文稿的设计与制作学习心得体会

多媒体演示文稿的设计与制作学习心得体会 杨保政 作为一名小学数学年教师,我对教学媒体和资源总是充满了兴趣。在上课的时候,我更喜欢利用多媒体,来引导学生学习新知识。但有的时候上课的效果却不尽如人意。这次能参加全员培训中我学到制作演示文稿的时候,清新的ppt 演示,实用的制作技巧,让我眼前一亮,制作攻略更是让我热血沸腾,我终于认识到了我以前为什么很用心的制作PPT,但是效果却不好的原因了,那就是没有人会对着密密麻麻的知识点感兴趣的,不由得想到了初中时候的自己,和他们不是一样的吗? 在本次培训中制作演示文档的部分,我对它进行了简单的总结: 攻略一:少即是多:每页一个主题;巧用备注栏;字少图大;提炼关键词句。呆板无趣的知识点会让学生们昏昏欲睡,如果将知识点精炼再加上图片会提升学生学习的兴趣,而且也减轻了学生的负担,让他们在快乐中获取知识。甚至在PPT中我可以恰当使用高桥法,醒目的字眼跃然眼帘,再不用老师来反复强调这是重点啊重点啊! 攻略二::换位思考:文字不小于24号;及时回顾总结;文字和背景反差鲜明;从学生的角度来思考一堂课的教授方

法,没有那么多过目不忘的学生,怎么讲课才能使学生印象深刻呢?看来我要在这方面多下功夫了。 攻略三:逻辑清晰:顺序播放;逻辑主线简明;格式一致;思想要点图表化。 攻略四:形象表达:适当运用全图型PPT;图表图形化;精心设计封面和目录;用声音烘托气氛。一幅好图胜过一千句话,无关的美景干扰主题;过多的插图分散注意;过于复杂的画面增加认知负荷;插图与背景混杂 攻略五:动静结合:控制长度;加快速度;明确目的;聚焦内容 在本次学习中,有一句话令我印象深刻,一堂课是否精彩,关键是教师而不是工具!是啊,无论ppt做得多么华丽,内容是多么深刻。但是一堂课的精彩与否,还是得靠教师来把握,路漫漫其修远兮,吾将上下而求索!

多媒体演示文稿的设计与制作学习心得体会

多媒体演示文稿的设计 与制作学习心得体会 This model paper was revised by LINDA on December 15, 2012.

多媒体演示文稿的设计与制作 学习心得体会 通过这次培训学习,使我进一步地掌握了制作和应用ppt等网络教学的知识和技能,增长了见识,理论水平、操作水平也有所提高。基本上掌握多媒体教学演示文稿的制作方法,主要有以下几个方面内容: (一)创建多媒体教学演示文稿; (二)编辑幻灯片; (三)编辑超级链接; (四)播放并调试幻灯片; (五)使用动画效果; 对我们教师来说,PowerPoint课件是最早接触的。利用PowerPoint可以创建出非常漂亮的幻灯片文稿,这些幻灯片中既可以有文字,还可以包含图画、表格、统计图表、组织结构图,甚至可以有声音、乐曲和动画效果,还可以为这些幻灯片设计出统一或不同的背景。利用PowerPoint可通过各种形式放映幻灯片,既可以在完全没有人工干预的情况下自动放映,也可以由使用者手工控制播放,可以令每张幻灯片从不同的角度,以不同的方式切入到屏幕上,使得放映效果生动有趣。这次网络研修,主要学习了Powerpoint基础操作、基本编辑;音、视频处理;演示文稿中动画的设置,设置不同的背景,艺术字与自选图形等。通过学习我对制作课件有了新的认识,制作课件既要讲究精美又要讲究实用。不同的制作软件具有不同的特点,在制作课件时,应根据需要选择合适的制作软件。制作课件是一个艰苦的创作过程,优秀的课件应融教育性、科学性、艺术

性、技术性于一体,这样才能最大限度地发挥学习者的潜能,强化教学效果,提高教学质量。 在这一次的学习中,我通过对每个章节的仔细学习,才知道平时经常用的ppt有如此强大的教学课件制作功能,可以说我之前所掌握的只是ppt课件制作功能的冰山一角。 在现代教育教学中多媒本技术在教育教学上的运用越来越多,多媒体以它更直观、更灵活、更易让学生理解的特点,使它成为许多教师教学方法的首选。而之前我只是对ppt课件的制作有一点认识,通过教师深入浅出的讲解和鲜活的实例,让我对ppt课件有了更深的认识,在今后的课件制作方面,我会把所学的制作技能运用其中,制作出更加实用、高效的教学课件。 通过学习,使我更加深刻地了解了多媒体课件制作的方法及技巧,认识到多媒体课件制作为教师专业化的成长提供了一个平台,同时也让我明确了本次学习的目标、内容、使自己由传统化教师向现代化教师发展。 张三

5.演示文稿设计与制作

第5章演示文稿设计与制作 第1节认识演示文稿第1课时(共2课时) 一、教学目标: 1、知识与技能: (1)掌握“ wps演示”的启动和退出方法 (2)了解“ wps演示”窗口的组成和使用 (3)初步掌握“ wps ”基本操作 2、过程与方法:通过观看、欣赏“ WPS演示”范例作品,激发学习兴趣,结合任务认识“WPS 演示”的窗口,掌握标题幻灯片的制作方法,在实践过程中达成技能的形成。 3、情感态度与价值观:知道“ WPS演示”是一种展示、汇报工具软件,知道能用“WPS 演示”制作一些作品来展示自己的风采、想法等,感受信息技术的魅力和价值。 二、教学重点: 知道演示文稿的编辑 三、教学难点: 演示文稿的编辑 四、教学方法: 任务探究,体验学习,实验学习 五、教学过程: (一)情境导入 同学们,大家好!今天老师带了件礼品给大家,想看看吗?看完后请你说一说看到了什 么?听到了什么? 师向学生展示介绍学校的演示文稿。 刚才老师向大家展示的作品是一个演示文稿,它可以将文字、图片、视频和音乐等素材 整合起来。演示文稿在我们的生活中用处可大啦,如产品介绍、自我介绍、辅助教学等。制 作这样的作品,需要专业的软件,你知道有哪些软件可以制作演示文稿呢?今天向大家介绍一款专门用于制作演示文稿的软件一一“WPS演示”。 今天这节课我们就一起来认识“ WPS演示”软件。(板书:第5章第1节认识演示文稿)(二)、新授 自主学习: 1、一个完整的演示文稿一般由___________________________________________________ 构成。 2、演示文稿中包含的素材一般有_________________________________________________ 等。 3、演示文稿的设计包括__________________________ 。 合作探究: 1、任务一:新建演示文稿 学生自学,打开“ wps演示”窗口,新建一个“ wps演示”文档。 2、任务二:新建“封面标题页” 下面我们来新建第一页幻灯片。 单击右侧的“版式”按键,打开“幻灯片版式”任务空格,在“母版版式”中选择“空 白” 3、任务三:插入字标题 插入“中国元素”艺术字 4、任务四:插入背景图片 插入“中国元素背景 1 ”并设置“叠放次序”为“置于底层”

多媒体演示文稿的设计与制作

多媒体演示文稿的设计与制作 ——基于网络环境下任务驱动教学单元教学案例设计 山西省运城市康杰中学赵红冰 【课时安排】8课时 【年级】高一年级 【学习目标】 ◆知识与技能: ①掌握多媒体演示文稿中幻灯片的基本制作方法。 ②熟练掌握幻灯片的自定义动画、幻灯片切换、放映方式等设置。 ③掌握多种媒体的插入方法与超级链接设置。 ④能够对幻灯片进行打包并解包放映。 ⑤能够利用多种途径搜集表现主题所需要的多媒体素材,并能进行筛选规类。 ⑥能利用网络教学软件提交作业。 ◆过程与方法: ①通过作品的制作过程提高学生综合处理多种媒体技术的能力。 ②通过幻灯片版面的整体布局和设计以及背景、色彩的搭配提高学生的艺术表现力和审美能力。 ③通过创建超级链接培养学生对作品的控制能力和交互能力。 ◆情感态度与价值观: ①图文声像并茂,激发学生学习兴趣。 ②友好的交互环境,调动学生积极参与。 ③丰富的信息资源,扩大学生知识面。 ④超文本结构组织信息,提供多种学习路径。 【学习重点】 确定主题并围绕主题搜集、筛选、分类整理素材。 幻灯片版面的设计与布局。 【学习难点】 色彩的搭配与风格的统一、独特。 【学习平台】 基于互联网的多媒体网络教室. 【学习方法】 基于“任务驱动教学方法”下的自主、协作、探究、创新的学习方法。 一、任务设计 (一)、任务描述: 学习完PowerPoint办公软件,我们已了解了这是一个集多种媒体的演示性文稿,通过多媒体的组合可以对主题的表达更形象、生动、丰富多彩。请同学们利用已掌握的制作演示文稿的多种技术来表达一个主题,制作出图文并茂、形象生动的电子演示文稿。 (二)、任务要求: 1、主题要求 自由命题:主题鲜明、内容健康,富有个性。 可参考以下方向: 宣传科普知识或环保知识;介绍本地区旅游资源;介绍本校风貌;介绍本班情况;

多媒体演示文稿的设计与制作学习心得体会

多媒体演示文稿的设计与制作学习心得体会通过这次培训学习,使我进一步地掌握了制作和应用ppt等网络教学的知识和技能,增长了见识,理论水平、操作水平也有所提高。基本上掌握多媒体教学演示文稿的制作方法,这次培训学习心得体会如下: 一、知识点: 这次培训学习主要有以下几个方面内容: (一)创建演示文稿 (二)插入多媒体资源 (三)多媒体资源搭配 (四)播放和调试文稿 二、内容呈现: 1.创建课件页 (1)新建文稿 启动PowerPoint,在"新建演示文稿"对话框中选择"空演示文稿"。 (2)选择版式 默认的是“标题幻灯片”。课根据自己的需要进行选择; (3)输入文本 选择"插入"菜单中"文本框"中"文本框"命令后,在编辑区拖动鼠标,绘出文本框,然后输入相应文字或者粘贴上你所需要的文字。 (4)格式化文本 与其它字处理软件(如WORD)相似 (5)调整文本位置 通过调整文本框的位置来调整文本的位置。先选中要调整的文本框,使其边框上出现8个控制点,然后根据需要拖动控制点,文本框随之改变大小。当鼠标指针放在文本框边上的任何不是控制点的位置时,鼠标指针附带十字箭头,这时拖动鼠标可调整文本框的位置。 通过调整文本框的位置来调整文本的位置。先选中要调整的文本框,使其边框上出现8个控制点,然后根据需要拖动控制点,文本框随之改变大小。当鼠标指针放在文本框边上的任何不是控制点的位置时,鼠标指针附带十字 箭头,这时拖动鼠标可调整文本框的位置。

2、编排与修改 2.1 插入图片 (1)选择"插入"-"图片",选取合适的图片,然后单击"插入"按钮。 2.2 选取模板 单击"格式"菜单中的"幻灯片设计…"命令,选择合适的模板,也可在幻灯片上单击右键,通过快捷菜单选择"幻灯片…"命令。 2.3 应用背景 如果不想对课件页添加模板,而只是希望有一个背景颜色或者是图片,可以单击"格式"菜单中的"背景"命令,在"背景"对话框中,打开下拉列表框,或单击"其他颜色…"选择合适的颜色,也可以选择"填充效果" 2.4影片、声音 执行“文件——插入——影片和声音”选择文件中的影片或者文件中的声音进行操作,为了防止课件到拷贝其他电脑无法获取文件,可将声音或影片文件与幻灯片文件放在同一文件夹下 三、学以致用: 1、PowerPoint中有多种创建演示文稿的方法,对于一个初学者想要快速制作一个演示文稿可以根据内容提示向导创建演示文稿。“内容提示向导”是创建演示文稿最快捷的一种方式,在“内容提示向导”的引导下,不仅能帮助使用者完成演示文稿相关格式的设置,而且还帮助使用者输入演示文稿的主要内容。 2、在多媒体演示文稿的页面中插入有关的文本、图片等多媒体资源需以下几个步骤:选择要插入的多媒体资源;调整插入对象的位置和大小; 3、(1)配色方案:配色方案就是由多媒体演示文稿软件预先设计的能够应用于幻灯片中的背景、文本和标题等对象的一套均衡搭配的颜色。通过配色方案,使多媒体演示文稿色彩绚丽,多呈现的内容更加生动,进行配色时需完成以下几个步骤:选择配色方案;应用配色方案;(2)利用版式搭配多媒体资源:版式是PowerPoint2003软件中的一种常规排版的格式,通过幻灯片版式的应用可以对文字、图片等等更加合理简洁完成布局,通常PowerPoint2003中已经内置文字版式、内容版式等版式类型供使用者使用,利用版式可以轻松完成幻灯片制作和运用。运用版式搭配多媒体资源需要以下几个步骤:选择版式;应用版式;(3)、图形组合:图形组合是PowerPoint软件中的一种图形处理功能,可以将多个独

(完整word版)多媒体演示文稿的设计与制作学习心得

多媒体演示文稿的设计与制作 学习心得体会 最近参加了Powerpoint2010培训,学到了很多的ppt制作相关理论和ppt课件制作技巧,真是受益匪浅。对我们教师来说,PowerPoint课件是最早接触的。利用PowerPoint 可以创建出非常漂亮的幻灯片文稿,这些幻灯片中既可以有文字,还可以包含图画、表格、统计图表、组织结构图,甚至可以有声音、乐曲和动画效果,还可以为这些幻灯片设计出统一或不同的背景。 利用PowerPoint可通过各种形式放映幻灯片,既可以在完全没有人工干预的情况下自动放映,也可以由使用者手工控制播放,可以令每张幻灯片从不同的角度,以不同的方式切入到屏幕上,使得放映效果生动有趣。这次培训,主要学习了在Powerpoint基础操作、基本编辑、音、视频处理、演示文稿中动画的设置,设置不同的背景,艺术字与自选图形,表格等。通过培训我对制作课件有了新的认识,制作课件既要讲究精美又要讲究实用。不同的制作软件具有不同的特点,在制作课件时,应根据需要选择合适的制作软件。制作课件是一个艰苦的创作过程,优秀的课件应融教育性、科学性、艺术性、技术性于一体,这样才能最大限度地发挥学习者的潜能,强化教学效果,提高教学质量。在这一次的学习中,我通过对每个章节的仔细学习,才知道平时经常用的

ppt有如此强大的教学课件制作功能,可以说我之前所掌握的只是ppt课件制作功能的冰山一角。现代教育教育多媒本技术在教育教学上的运用越来越多,多媒体以它更直观、更灵活、更易让学生理解的特点,使它成为许多教师教学方法的首选。而之前我只是对ppt课件的制作有一点认识,通过教师深入浅出的讲解和鲜活的实例,让我对ppt课件有了更深的认识,在今后的课件制作方面,我会把所学的制作技能运用其中,制作出更加实用、高效的教学课件。 通过学习,使我更加深刻地了解了多媒体课件制作的方法及技巧,认识到多媒体课件制作为教师专业化的成长提供了一个平台,同时也让我明确了本次学习的目标、内容、使自己由传统化教师向现代化教师发展。

《多媒体演示文稿的设计与制作》学习心得

《多媒体演示文稿的设计与制作(初级)》学习心得最近参加了多媒体演示文稿的设计与制作的学习培训,学到了很多的ppt制作相关理论和ppt课件制作技巧,真是受益匪浅。 对我们教师来说,PowerPoint课件是最早接触的。利用PowerPoint可以创建出非常漂亮的幻灯片文稿,这些幻灯片中既可以有文字,还可以包含图画、表格、统计图表、组织结构图,甚至可以有声音、乐曲和动画效果,还可以为这些幻灯片设计出统一或不同的背景。 利用PowerPoint可通过各种形式放映幻灯片,既可以在完全没有人工干预的情况下自动放映,也可以由使用者手工控制播放,可以令每张幻灯片从不同的角度,以不同的方式切入到屏幕上,使得放映效果生动有趣。这次培训,主要学习了在Powerpoint基础操作、基本编辑、音、视频处理、演示文稿中动画的设置,设置不同的背景,艺术字与自选图形,表格等。通过培训我对制作课件有了新的认识,制作课件既要讲究精美又要讲究实用。不同的制作软件具有不同的特点,在制作课件时,应根据需要选择合适的制作软件。制作课件是一个艰苦的创作过程,优秀的课件应融教育性、科学性、艺术性、技术性于一体,这样才能最大限度地发挥学习者的潜能,强化教学效果,提高教学质量。在这一次的学习中,我通过对每个章节的仔细学习,才知道平时经常用的 ppt有如此强大的教学课件制作功能,可以说我之前所掌握的只是ppt课件制作功能的冰山一角。现代教育教育多媒本技术在教育教学上的运用越来越多,多媒体以它更直观、更灵活、更易让学生理解的特点,使它成为许多教师教学方法的首选。而之前我只是对ppt课件的制作有一点认识,通过教师深入浅出的讲解和鲜活的实例,让我对ppt课件有了更深的认识,在今后的课件制作方面,我会把所学的制作技能运用其中,制作出更加实用、高效的教学课件。 通过学习,使我更加深刻地了解了多媒体课件制作的方法及技巧,认识到多媒体课件制作为教师专业化的成长提供了一个平台,同时也让我明确了本次学习的目标、内容、使自己由传统化教师向现代化教师发展。我还有很多不懂的,继续学习,继续努力。 虞城高中杨金华

演示文稿设计与制作主题说明认证材料 演示文稿设计与制作

第 5 章演示文稿设计与制作 第 1 节认识演示文稿第 1 课时(共 2 课时) 一、教学目标: 1、知识与技能: (1)掌握“wps 演示”的启动和退出方法 (2)了解“wps 演示”窗口的组成和使用 (3)初步掌握“wps”基本操作 2、过程与方法:通过观看、欣赏“WPS 演示”范例作品,激发学习兴趣,结合任务认识“WPS 演示”的窗口,掌握标题幻灯片的制作方法,在实践过程中达成技能的形成。 3、情感态度与价值观:知道“WPS 演示”是一种展示、汇报工具软件,知道能用 “WPS 演示”制作一些作品来展示自己的风采、想法等,感受信息技术的魅力和价值。 二、教学重点: 知道演示文稿的编辑 三、教学难点: 演示文稿的编辑 四、教学方法: 任务探究,体验学习,实验学习 五、教学过程: (一)情境导入 同学们,大家好!今天老师带了件礼品给大家,想看看吗?看完后请你说一说看到了 什么?听到了什么? 师向学生展示介绍学校的演示文稿。 刚才老师向大家展示的作品是一个演示文稿,它可以将文字、图片、视频和音乐等素 材整合起来。演示文稿在我们的生活中用处可大啦,如产品介绍、自我介绍、辅助教学等。制作这样的作品,需要专业的软件,你知道有哪些软件可以制作演示文稿呢?今天向大家 介绍一款专门用于制作演示文稿的软件——“WPS演示”。 今天这节课我们就一起来认识“WPS演示”软件。(板书:第5章第1节认识演示文稿) (二)、新授 自主学习: 1、一个完整的演示文稿一般由______________________________________________构成。 2、演示文稿中包含的素材一般有___________________________________________等。 3、演示文稿的设计包括________________________。 合作探究: 1、任务一:新建演示文稿 学生自学,打开“wps 演示”窗口,新建一个“wps 演示”文档。 2、任务二:新建“封面标题页” 下面我们来新建第一页幻灯片。 单击右侧的“版式”按键,打开“幻灯片版式”任务空格,在“母版版式”中选择“空 白…… 3、任务三:插入字标题 插入“中国元素”艺术字 4、任务四:插入背景图片

5.演示文稿设计与制作

精品教育 第5章演示文稿设计与制作 第1节认识演示文稿第1课时(共2课时) 一、教学目标: 1、知识与技能: (1)掌握“wps演示”的启动和退出方法 (2)了解“wps演示”窗口的组成和使用 (3)初步掌握“wps”基本操作 2、过程与方法:通过观看、欣赏“WPS演示”范例作品,激发学习兴趣,结合任务认识“WPS 演示”的窗口,掌握标题幻灯片的制作方法,在实践过程中达成技能的形成。 3、情感态度与价值观:知道“WPS演示”是一种展示、汇报工具软件,知道能用“WPS演示”制作一些作品来展示自己的风采、想法等,感受信息技术的魅力和价值。 二、教学重点: 知道演示文稿的编辑 三、教学难点: 演示文稿的编辑 四、教学方法: 任务探究,体验学习,实验学习 五、教学过程: (一)情境导入 同学们,大家好!今天老师带了件礼品给大家,想看看吗?看完后请你说一说看到了什么?听到了什么? 师向学生展示介绍学校的演示文稿。 刚才老师向大家展示的作品是一个演示文稿,它可以将文字、图片、视频和音乐等素材整合起来。演示文稿在我们的生活中用处可大啦,如产品介绍、自我介绍、辅助教学等。制作这样的作品,需要专业的软件,你知道有哪些软件可以制作演示文稿呢?今天向大家介绍一款专门用于制作演示文稿的软件——“WPS演示”。 今天这节课我们就一起来认识“WPS演示”软件。(板书:第5章第1节认识演示文稿) (二)、新授 自主学习: 1、一个完整的演示文稿一般由______________________________________________构成。 2、演示文稿中包含的素材一般有___________________________________________等。 3、演示文稿的设计包括________________________。 合作探究: 1、任务一:新建演示文稿 学生自学,打开“wps演示”窗口,新建一个“wps演示”文档。 2、任务二:新建“封面标题页” 下面我们来新建第一页幻灯片。 单击右侧的“版式”按键,打开“幻灯片版式”任务空格,在“母版版式”中选择“空白…… 3、任务三:插入字标题 插入“中国元素”艺术字

《制作演示文稿》教学设计 (2)

《制作演示文稿》教学设计 一、教材分析 本节选自滇人课标版初中信息技术七年级第10册第四单元第14课《制作演示文稿》,本节课的主要内容有制作封面幻灯片、制作演示文稿中的其他幻灯片、应用设计模板、自己设计模板组成。 本节课的内容是以搜集多媒体素材和加工多媒体素材为基础,学习演示文稿的制作,并对前面学到的知识巩固的升华。通过小组制作自己感兴趣的主题的作品如:我的校园生活、我喜欢的明星等,学习演示文稿的的版面设计、添加文字、插入图片、插入声音视频等操作,提高学生知识和技能的综合应用能力,激发学生学习兴趣,培养小组协作能力及欣赏水平。在制作演示文稿中体会乐趣,认识到自己的不足与优势,在学的过程中提高情感、态度与价值观。 二、学情分析 本节内容是针对七年级学生设计的,七年级的学生开始进入少年期(12-15岁),他们的身体形态发生着显著的变化,心理也相应的发生变化。在这个时期,学习者积极的向上心理和强烈的求知欲望,喜欢新鲜感的刺激,是塑造良好性格的最佳时期。通过小组协作和自主学习及他们多多媒体的新鲜感,来激发他们的创造性。 学生对PowerPoint有了初步的认识学会了一些基本操作,对本节的内容提前做了预习及素材准备。 学生对新鲜的事物有很强的好奇感,积极地探索精神。喜欢信息技术课程,享受网上学习的乐趣。合作与竞争性都十分明显,乐于小组合作且彰显自己的个性。 三、教学目标分析 1.知识与技能 (1)掌握制作封面幻灯片的基本步骤及要求。 (2)掌握制作幻灯片的基本步骤。 (3)学会根据设计风格合理应用幻灯片模板。

(4)掌握自己设计模板的方法。 2.过程与方法 (1)学会设计自己的模板。 (2)熟悉制作多媒体演示文稿的方法。 3.情感态度与价值观 (1)通过小组合作制作自己的模板,增强同学的组织能力和团队合作意识。(2)通过学生亲自提高电脑操作水平并且激发学生学习的兴趣。 (3)通过作品展示,增强学生的审美意识,激发学生的求知欲。 四、教学重难点 1.教学重点 (1)熟练掌握制作幻灯片的基本操作。 (2)学会应用设计幻灯片模板。 2.教学难点 (1)幻灯片制作的合理布局。 (2)有创意的设计小组主题的幻灯片。 五、教法与学法的设计 1.教法设计 (1)多媒体演示法,学生提前预习本节课的内容,已经有充分的基础知识准备。教师快速的应用多媒体形象直观的演示多媒体演示文稿的制作,解决预习中遇到的问题。 (2)启发教学,创设问题情境,使学生在教师的启发下通过对问题情境的分析,从而理解和解决问题。 (3)任务驱动法,学生分小组完成任务,激发学习兴趣,提高实践操作能力和合作学新能力。 2.学法设计 (1)协作学习法,以学生为中心,小组协作完成任务,对小组完成的作品欣赏评价,进一步巩固所学知识且提高了欣赏评价能力。

多媒体演示文稿地设计与制作学习心得体会(20201111110222)

多媒体演示文稿的设计与制作学习心得体会 通过这次培训学习,使我进一步地掌握了制作和应用ppt等网络教学的知识和技能,增长了见识,理论水平、操作水平也有所提高。基本上掌握多媒体教学演示文稿的制作方法,这次培训学习心得体会如下: 一、知识点: 这次培训学习主要有以下几个方面内容: (-)创建演示文稿 (二)插入多媒体资源 (三)多媒体资源搭配 (四)播放和调试文稿 二、内容呈现: 1 ?创建课件页 (1)新建文稿 启动PowerPoint,在〃新建演示文稿〃对话框中选择〃空演示文稿〃。 (2)选择版式 默认的是“标题幻灯片”。课根据自己的需要进行选择; (3)输入文本 选择〃插入〃菜单中〃文本框〃中〃文本框〃命令后,在编辑区拖动鼠标,绘出文本框,然后 输入相应文字或者粘贴上你所需要的文字。 (4)格式化文本 与其它字处理软件(如WORD相似 (5)调整文本位置 通过调整文本框的位置来调整文本的位置。先选中要调整的文本框,使其边框上出现8 个控制点,然后根据需要拖动控制点,文本框随之改变大小。当鼠标指针放在文本框边上的任何不是控制点的位置时,鼠标指针附带十字箭头,这时拖动鼠标可调整文本框的位置。 通过调整文本框的位置来调整文本的位置。先选中要调整的文本框,使其边框上出现8 个控制

点,然后根据需要拖动控制点,文本框随之改变大小。当鼠标指针放在文本框边上的任何不是控制点的位置时,鼠标指针附带十字 箭头,这时拖动鼠标可调整文本框的位置。 2、编排与修改 2. 1插入图片 (1)选择〃插入〃-〃图片〃,选取合适的图片,然后单击〃插入〃按钮。 2. 2选取模板 单击〃格式〃菜单中的〃幻灯片设计,〃命令,选择合适的模板,也可在幻灯片上单击右键, 通过快捷菜单选择〃幻灯片,〃命令。 2.3应用背景 如果不想对课件页添加模板,而只是希望有一个背景颜色或者是图片,可以单击〃格式〃菜单中的〃背景〃命令,在〃背景〃对话框中,打开下拉列表框,或单击〃其他颜色,〃选择合适的颜色,也可以选择〃填充效果〃 2. 4影片、声音 执行“文件一一插入一一影片和声音”选择文件中的影片或者文件中的声音进行操作,为了防止课件到拷贝其他电脑无法获取文件,可将声音或影片文件与幻灯片文件放在同一文件夹下 三、学以致用: 1、PowerPoint中有多种创建演示文稿的方法,对于一个初学者想要快速制作一个演示文稿可以根据内容提示向导创建演示文稿。“内容提示向导”是创建演示文稿最快捷的一种方式,在“内容提示向导”的引导下,不仅能帮助使用者完成演示文稿相关格式的设置,而且还帮助使用者输入演示文稿的主要内容。 2、在多媒体演示文稿的页面中插入有关的文本、图片等多媒体资源需以下几个步骤:选择要插入的多媒体资源;调整插入对象的位置和大小; 3、(1)配色方案:配色方案就是由多媒体演示文稿软件预先设计的能够应用于幻灯片中的背景、文本和标题等对象的一套均衡搭配的颜色。通过配色方案,使多媒体演示文稿色彩绚丽,多呈现的内容更加生动,进行配色时需完成以下几个步骤:选择配色方案;应用配色方案;(2)利用版式搭配多媒体资源:版式是PowerPoint2003软件中的一种常规排版的格式,通过幻灯片版式的应用可以

《多媒体演示文稿的设计与制作(初级)》学习心得

<<多媒体演示文稿的设计与制作>>(初级)学习心得玉林市茂林镇中学梁海玲 通过对<<多媒体演示文稿的设计与制作>>(初级)课程的 学习,我已经掌握了多媒体演示文稿的设计与制作基本知识及 制作方法,收获颇多,现就自己的学习谈谈学习体会. 一、知识点 1、创建演示文稿; 2、插入多媒体资源; 3、多媒体资源的搭配; 4、播放和调用文稿。 二、应用 1、PowerPoint中有多种创建演示文稿的方法,对于一个初学者想要快速制作一个演示文稿可以根据内容提示向导创建演示文稿。“内容提示向导”是创建演示文稿最快捷的一种方式,在“内容提示向导”的引导下,不仅能帮助使用者完成演示文稿相关格式的设置,而且还帮助使用者输入演示文稿的主要内容。 2、在多媒体演示文稿的页面中插入有关的文本、图片等多媒体资源需以下几个步骤:选择要插入的多媒体资源;调整插入对象的位置和大小;

3、(1)配色方案:配色方案就是由多媒体演示文稿软件预先设计的能够应用于幻灯片中的背景、文本和标题等对象的一套均衡搭配的颜色。通过配色方案,使多媒体演示文稿色彩绚丽,多呈现的内容更加生动,进行配色时需完成以下几个步骤:选择配色方案;应用配色方案;(2)利用版式搭配多媒体资源:版式是PowerPoint2003软件中的一种常规排版的格式,通过幻灯片版式的应用可以对文字、图片等等更加合理简洁完成布局,通常PowerPoint2003中已经内置文字版式、内容版式等版式类型供使用者使用,利用版式可以轻松完成幻灯片制作和运用。运用版式搭配多媒体资源需要以下几个步骤:选择版式;应用版式;(3)、图形组合:图形组合是PowerPoint 软件中的一种图形处理功能,可以将多个独立的形状组合成一个图形对象,然后对组合后的图形对象进行移动、修改大小等操作,操作步骤如下:选择图形;组合图形; 4、播放和调用文稿:(1)、自定义播放:由于一个演示文稿中可能有很多张幻灯片,有些时候我们不需要全部播放出来,这时就需要对演示文稿中的幻灯片设置自定义播放。自定义播放演示文稿需以下几步:选择要播放的演示文稿;设置自定义播放;(2)、打包演示文稿:演示文稿制作完成后,往往不是在一台计算机上播放,有时会出现演示文稿中所插入的视音频等资源不能顺利播放的情况。如张老师把在家做好的演示文稿拿到教室播放,在排除连线、播放软件问题等因素后,演示文

多媒体演示文稿的设计与制作的学习心得与体会

多媒体演示文稿的设计与制作学习心得通过对<<多媒体演示文稿的设计与制作(初级)>>课程的学习,我已经基本掌握了多媒体演示文稿的设计与制作基本知识及制作方法,收获颇多,现就自己的学习谈一下几点. 一、知识点 1、创建演示文稿; 2、插入多媒体资源; 3、多媒体资源的搭配; 二、技能应用 1、PPT中有多种创建演示文稿的方法,对于一个初学者想要快速制作一个演示文稿可以根据内容提示向导创建演示文稿。“内容提示向导”是创建演示文稿最快捷的一种方式,在“内容提示向导”的引导下,不仅能帮助使用者完成演示文稿相关格式的设置,而且还帮助使用者输入演示文稿的主要内容。 2、在多媒体演示文稿的页面中插入有关的文本、图片等多媒体资源需以下几个步骤:选择要插入的多媒体资源;调整插入对象的位置和大小; 3、(1)配色方案:配色方案就是由多媒体演示文稿软件预先设计的能够应用于幻灯片中的背景、文本和标题等对象的一套均衡搭配的颜色。通过配色方案,使多媒体演示文稿色彩绚丽,多呈现的内容更加生动,进行配色时需完成以下几个步骤:选择配色方案;应用配色方案;(2)利用版式搭配多媒体资源:版式是PowerPoint2003软件中的一种常规排版的格式,通过幻灯片版式的应用可以对文字、图片等等更加合理简洁完成布局,通常PowerPoint2003中已经内置文字版式、内容版式等版式类型供使用者使用,利用版式可以轻松完成幻灯片制作和运用。运用版式搭配多媒体资源需要以下几个步骤:选择版式;应用版式;(3)、图形组合:图形组合是PowerPoint 软件中的一种图形处理功能,可以将多个独立的形状组合成一个图形对象,然后对组合后的图形对象进行移动、修改大小等操作,操作步骤如下:选择图形;组合图形; 三、内容展示 1.创建课件页 (1)新建文稿 启动PowerPoint,在"新建演示文稿"对话框中选择"空演示文稿"。 (2)选择版式 默认的是“标题幻灯片”。课根据自己的需要进行选择; (3)输入文本 选择"插入"菜单中"文本框"中"文本框"命令后,在编辑区拖动鼠标,绘出文本框,然后输入相应文字或者粘贴上你所需要的文字。 (4)格式化文本 与其它字处理软件(如WORD)相似 (5)调整文本位置 通过调整文本框的位置来调整文本的位置。先选中要调整的文本框,使其边框上出现8个控制点,然后根据需要拖动控制点,文本框随之改变大小。当鼠标指针放在文本框边上的任何不是控制点的位置时,鼠标指针附带十字箭头,这时拖动鼠标可调整文本框的位置。 通过调整文本框的位置来调整文本的位置。先选中要调整的文本框,使其边框上出现8个控制点,然后根据需要拖动控制点,文本框随之改变大小。当鼠标指针放在文本框边上的任何不是控制点的位置时,鼠标指针附带十字

演示文稿的设计和制作

演示文稿设计与制作 第1节认识演示文稿第1课时温宿县第二小学王新生 一、教学目标: 1、知识与技能: (1)掌握“wps演示”的启动和退出方法 (2)了解“wps演示”窗口的组成和使用 (3)初步掌握“wps”基本操作 2、过程与方法:通过观看、欣赏“WPS演示”范例作品,激发学习兴趣,结合任务认识“WPS 演示”的窗口,掌握标题幻灯片的制作方法,在实践过程中达成技能的形成。 3、情感态度与价值观:知道“WPS演示”是一种展示、汇报工具软件,知道能用“WPS 演示”制作一些作品来展示自己的风采、想法等,感受信息技术的魅力和价值。 二、教学重点: 知道演示文稿的编辑 三、教学难点: 演示文稿的编辑 四、教学方法: 任务探究,体验学习,实验学习 五、教学过程: (一)情境导入 同学们,大家好!今天老师带了件礼品给大家,想看看吗?看完后请你说一说看到了什么?听到了什么? 师向学生展示介绍学校的演示文稿。 刚才老师向大家展示的作品是一个演示文稿,它可以将文字、图片、视频和音乐等素材整合起来。演示文稿在我们的生活中用处可大啦,如产品介绍、自我介绍、辅助教学等。制作这样的作品,需要专业的软件,你知道有哪些软件可以制作演示文稿呢?今天向大家介绍一款专门用于制作演示文稿的软件——“WPS演示”。 今天这节课我们就一起来认识“WPS演示”软件。(板书:第5章第1节认识演示文稿) (二)、新授 自主学习: 1、一个完整的演示文稿一般由______________________________________________构成。 2、演示文稿中包含的素材一般有___________________________________________等。 3、演示文稿的设计包括________________________。 合作探究: 1、任务一:新建演示文稿 学生自学,打开“wps演示”窗口,新建一个“wps演示”文档。 2、任务二:新建“封面标题页” 下面我们来新建第一页幻灯片。 单击右侧的“版式”按键,打开“幻灯片版式”任务空格,在“母版版式”中选择“空白…… 3、任务三:插入字标题 插入“中国元素”艺术字 4、任务四:插入背景图片

围绕A3演示文稿设计与制作的文本阅读心得体会

围绕A3演示文稿设计与制作的文本阅读心得体会 我是一名小学数学教师,要适应现代教育教学工作的需要,就应该具备现代教育技术的素质。通过这次培训学习,使我进一步地掌握了制作和应用ppt等网络教学的知识和技能,增长了见识,理论水平、操作水平也有所提高。现就自己的学习谈谈学习体会. 一、知识点 1、创建演示文稿; 2、插入多媒体资源; 3、多媒体资源的搭配; 4、播放和调用文稿。 二、应用 1、PowerPoint中有多种创建演示文稿的方法,对于一个初学者想要快速制作一个演示文稿可以根据内容提示向导创建演示文稿。 2、在多媒体演示文稿的页面中插入有关的文本、图片等多媒体资源需以下几个步骤:选择要插入的多媒体资源;调整插入对象的位置和大小; 3、(1)配色方案:配色方案就是由多媒体演示文稿软件预先设计的能够应用于幻灯片中的背景、文本和标题等对象的一套均衡搭配的颜色。 (2)利用版式搭配多媒体资源:版式是PowerPoint2003软件中的一种常规排版的格式,通过幻灯片版式的应用可以对文字、图片等等更加合理简洁完成布局,通常PowerPoint2003中已经内置文字版

式、内容版式等版式类型供使用者使用,利用版式可以轻松完成幻灯片制作和运用。 (3)、图形组合:图形组合是PowerPoint软件中的一种图形处理功能,可以将多个独立的形状组合成一个图形对象,然后对组合后的图形对象进行移动、修改大小等操作,操作步骤如下:选择图形;组合图形; 4、播放和调用文稿: (1)、自定义播放:由于一个演示文稿中可能有很多张幻灯片,有些时候我们不需要全部播放出来,这时就需要对演示文稿中的幻灯片设置自定义播放。 (2)、打包演示文稿:演示文稿制作完成后,往往不是在一台计算机上播放,有时会出现演示文稿中所插入的视音频等资源不能顺利播放的情况,可以通过打包演示文稿;用U盘把PowerPoint中的所有资源拷到教室重新做链接的方式解决; (3)、PowerPoint放映格式:我们一般都习惯将多媒体演示文稿保存为默认的演示文稿格式,其实还有很多保存格式可供我们选择。 三、内容呈现 PowerPoint课件是最早接触的。利用PowerPoint可以创建出非常漂亮的幻灯片文稿,这些幻灯片中既可以有文字,还可以包含图画、表格、统计图表、组织结构图,甚至可以有声音、乐曲和动画效果,还可以为这些幻灯片设计出统一或不同的背景。利用PowerPoint可通过各种形式放映幻灯片,既可以在完全没有人工干预的情况下自动

《多媒体演示文稿的设计与制作(初级)》学习心得学习

我是一名小学数学教师,要适应现代教育教学工作的需要,就应该具备现代教育技术的素质。通过这次培训学习,使我进一步地掌握了制作和应用ppt等网络教学的知识和技能,增长了见识,理论水平、操作水平也有所提高。现就自己的学习谈谈学习体会. 一、知识点 1、创建演示文稿; 2、插入多媒体资源; 3、多媒体资源的搭配; 4、播放和调用文稿。 二、应用 1、PowerPoint中有多种创建演示文稿的方法,对于一个初学者想要快速制作一个演示文稿可以根据内容提示向导创建演示文稿。 2、在多媒体演示文稿的页面中插入有关的文本、图片等多媒体资源需以下几个步骤:选择要插入的多媒体资源;调整插入对象的位置和大小; 3、(1)配色方案:配色方案就是由多媒体演示文稿软件预先设计的能够应用于幻灯片中的背景、文本和标题等对象的一套均衡搭配的颜色。 (2)利用版式搭配多媒体资源:版式是PowerPoint2003软件中的一种常规排版的格式,通过幻灯片版式的应用可以对文字、图片等等更加合理简洁完成布局,通常PowerPoint2003中已经内置文字版式、内容版式等版式类型供使用者使用,利用版式可以轻松完成幻灯片制作和运用。 (3)、图形组合:图形组合是PowerPoint软件中的一种图形处理功能,可以将多个独立的形状组合成一个图形对象,然后对组合后的图形对象进行移动、修改大小等操作,操作步骤如下:选择图形;组合图形; 4、播放和调用文稿: (1)、自定义播放:由于一个演示文稿中可能有很多张幻灯片,有些时候我们不需要全部播放出来,这时就需要对演示文稿中的幻灯片设置自定义播放。 (2)、打包演示文稿:演示文稿制作完成后,往往不是在一台计算机上播放,有时会出现演示文稿中所插入的视音频等资源不能顺利播放的情况,可以通过打包演示文稿;用U盘把PowerPoint中的所有资源拷到教室重新做链接的方式解决;

相关主题
文本预览
相关文档 最新文档