当前位置:文档之家› 常微分定性稳定性方法

常微分定性稳定性方法

常微分定性稳定性方法
常微分定性稳定性方法

“常微分定性稳定性方法”教学大纲

学时:64 学分:3.5

适用对象:理学院数学类三年级本科生

先修课程:数学分析、高等代数、常微分方程

使用教材及参考书:

教材:马知恩、周义仓,常微分方程定性稳定性方法,科学出版社,北京,2000。

参考书:张芷芬等,微分方程定性理论,科学出版社,北京,1998。

廖晓晰,稳定性的理论方法和应用,华中理工大学出版社,1999。

Lawrence Perko, Differential Equations and Dynamical Systems, Springer-Verlag New

York Inc., 1991.

目的、基本要求

本课程的目的是让学生学会常微分定性稳定性的基本理论和方法,尝试用这些理论和方法解决一些实际问题。要求学生掌握解的存在唯一性定理、解对初值和参数的连续依赖性、稳定性概念、Liapunov方法、奇点分析、极限环、全局结构方面的研究方法及理论。

主要内容

●基本理论:解的存在唯一性定理,解的延拓定理,解对初值和参数的连续依赖性,自治

系统的基本性质;动力系统的基本知识。

●稳定性理论:

1.概念:各种稳定性、不稳定性的概念;Liapunov函数及其几何意义;无穷小上届

函数;无穷大下届函数;K类函数。

2.Liapunov 第二方法:稳定性、不稳定性的基本定理;非自治系统的比较原理及其

在稳定性判断中的应用。

3.一次近似理论与全局稳定性:判断线性系统稳定性的特征根法;判断非线性系统稳

定性的一次近似理论;全局稳定性的基本理论。

●奇点分析:初等奇点及其分类;Perron定理、焦点情形的证明;细焦点概念;中心与细

焦点的判别法;高阶奇点、F 定号的情形、奇异情形、第一、二类判定;平面奇点的指数。

●极限环:判断闭轨线不存在的Dulac函数法及其推广;Lienard方程极限环的存在性证

明;极限环的稳定性及其判别法;极限环的唯一性、Sansone 方法;张芷分定理、Qepkas 定理。

●全局结构:无穷远奇点及其求法;全局结构的定性分析。

●微分方程的应用举例

●总结

●实践:上机主要学会用Maple软件进行数值模拟。

●学时分配

《复变函数与积分变换》期末考试试卷及答案

?复变函数与积分变换?期末试题(A) 正文: 一.填空题(每小题3分,共计15分) 1. 2 3 1i- 的幅角是();2.) 1 (i Ln+ -的主值是 ();3. 2 1 1 ) ( z z f + =,= )0()5(f(); 4.0 = z是4 sin z z z- 的()极点;5. z z f 1 ) (=,= ∞] ), ( [ Re z f s(); 二.选择题(每小题3分,共计15分) 1.解析函数) , ( ) , ( ) (y x iv y x u z f+ =的导函数为(); (A)y x iu u z f+ = ') (;(B) y x iu u z f- = ') (; (C)y x iv u z f+ = ') (;(D) x y iv u z f+ = ') (. 2.C是正向圆周3 = z,如果函数= ) (z f(),则0 d) (= ?C z z f. (A) 2 3 - z ;(B) 2 )1 (3 - - z z ;(C) 2 )2 ( )1 (3 - - z z ;(D) 2 )2 ( 3 - z . 3.如果级数∑ ∞ =1 n n n z c在2 = z点收敛,则级数在 (A)2 - = z点条件收敛;(B)i z2 =点绝对收敛; (C)i z+ =1点绝对收敛;(D)i z2 1+ =点一定发散.

4.下列结论正确的是( ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则 0)(=?C dz z f (C )如果0)(=?C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) 的可去奇点;为z 1sin ∞(B) 的本性奇点;为z sin ∞ (C) ;1sin 1的孤立奇点为z ∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分) (1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a (2).计算 ?-C z z z z e d ) 1(2其中C 是正向圆周:2=z ;

线性方程组的矩阵求解算法

线性方程组的矩阵求解算法 摘要 线性方程组的矩阵求解算法,只需在约当消元法的基础上,再对方程组的 增广矩阵的行最简形进行行(列)删除和增加行,交换行等运算即可得到方程组的解,并且这种方法既可求解有唯一解的方程组.因而算法简单,易于实现. 关键词 线性方程组;解向量;解法;约当消元法 1 矩阵求解算法 设有线性方程组m n A X b ?=,其增广矩阵())(1,m n A A b ?+=,算法的步骤如下: 第一步:利用约当消元法,把增广矩阵A 化为行最简形,设行最简形为()1m n B ?+.若()t i (),r A r =则方程组无解;否则设(),r A R =并执行以下步骤; 第二步:删除B 中的所有零行和每一行第一个非零元素(这个非零元素一定是1)所在的列,得到矩阵()1,r n r D ?-+并记录每行的第一个非零元所在的列标,放在一维数组()1,,t r L 中,如第i 行的第一个非零元在第j 列,则()t i j =; 第三步:构造矩阵() 1m n r D H F ?-+?? = ? ??,其中 ()()1100 001 0000 10n r n r F -?-+-?? ?- ? = ? ? -??L L L L L L L L 第四步:对矩阵H 中的行作交换运算:把H 中的第i 行(,1,1,i r r =-L 即从第r 行开始直到第一行)依次与其下一行交换,使之成为第()t i 行,交换运算结果后的矩阵记为G ,则G 中的前n r -个n 维列向量即为方程组的一个基础解系,最后一列向量即为方程组的一个特解; 第五步:写出方程组的通解. 2 算法证明 先证一个特殊情形,增广矩阵A 的行最简形矩阵B 的左上角为一r 阶的单位矩阵,即第i 行的第一个非零元的列标为i ,即()()1t i i i r =≤≤,所以设B 为

(完整版)常微分方程发展简史——解析理论与定性理论阶段3常微分

第三讲 常微分方程发展简史——解析理论 与定性理论阶段 3、常微分方程解析理论阶段:19世纪 19世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。 级数解和特殊函数 这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性方程的级数解, 并得到极其重要的一些特殊函数. 常微分方程是17、18世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特别是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是陌生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程. 222 ()0x y xy x n y '''++-= 其中参数n 和x 都可以是复的. 对Bessel 来说, n 和x 都是实的. 此方程的特殊情形早在1703年Bernoulli Jacobi 给Leibnitz 的信中就已提到, 后来Bernoulli Daniel 、Euler 、Fourier 、Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由Bessel 在研究行星运动时作出的. 对每个n , 此方程存在两个独立的基本解, 记作()n J x 和()n Y x , 分别称为第一类Bessel 函数和第二类Bessel 函数, 它们都是特殊函数或广义函数(初等函数之外的函数). Bessel 自1816年开始研究此方程, 首先给出了积分关系式 20 ()cos(sin ).2n q J x nu x u du ππ=-? 1818年Bessel 证明了()n J x 有无穷多个零点. 1824年, Bessel 对整数n 给出了递推关系式 11()2()()0n n n xJ x nJ x xJ x +--+= 和其他的关于第一类Bessel 函数的关系式. 后来又有众多的数学家(研究天体力学的数学家)独立地得到了Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。 解析理论中另一重要内容是Legendre 方程的级数解和Legendre 多项式方面的结果. 1784年, Legendre 研究了Legendre 方程2 (1)20x y xy y λ'''-++=, 给出了幂级数形式的解, 得到

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程过点共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 2 1d d y x y -=)1,2 (πx x y x y +-=d d y x y =d d

微分方程稳定性分解

带有时滞的动力系统的运动稳定性 分五部分内容,第一部分是Понтрягин定理,给出解实部、虚部的形式;第二部分分析了线性系统的一般性质、特征方程重根时解的表示和解的指数估计;第三部分讨论解的存在唯一性;第四部分探讨解的表达式;第五部分给出Фрид定理。以此说明特征方程根的实部的符号可以用以判断带有时滞的线性系统的稳定性。 直接法的基本定理 一、Понтрягин定理 要讨论的常系数线性系统的滞量τ为常数,所指的滞后型与中立型系统分别为1()()n i ij j ij j j x a x t b x t τ=??=+-??∑, 1 ()()()n i ij j ij j ij j j x a x t b x t c x t ττ=??=+-+-??∑,1,2, ,i n =0τ>, 这时,相应的特征方程分别是0ij ij ij a b e λτδλ-+-=, 0ij ij ij ij a b e c e λτλτλδλ--++-=。 对0τ=的情形0ij ij ij a b e λτδλ-+-=为一代数方程1 10n n n P P λλ -+++=。 在常微分方程解的稳定性理论中,关于特征方程()0P λ=的根的实部符号这样一个问题是极其重要的。如果给了方程组的平衡态之位置及其对应的特征多项式()P λ,则欲是平衡态的位置稳定,其充要条件是特征多项式()P λ的所有根都有负实部。 但是,现在的特征方程0ij ij ij a b e λτδλ-+-=,0ij ij ij ij a b e c e λτλτλδλ--++-=已不再是代数方程,可系统的稳定性仍然与特征根的分布紧紧联系在一起,这两个特征方程的一切根i λ都有0i Re λδ≤<时,系统 1()()n i ij j ij j j x a x t b x t τ=??=+-??∑, 1 ()()()n i ij j ij j ij j j x a x t b x t c x t ττ=??=+-+-??∑,1,2, ,i n =0τ>

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

微分方程稳定性理论简介

第五节 微分方程稳定性理论简介 这里简单介绍下面将要用到的有关内容: 一、 一阶方程的平衡点及稳定性 设有微分方程 ()dx f x dt = (1) 右端不显含自变量t ,代数方程 ()0f x = (2) 的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解) 如果从所有可能的初始条件出发,方程(1)的解()x t 都满足 0lim ()t x t x →∞ = (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。 判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。 将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为: 0'()()dx f x x x dt =- (4) (4)称为(1)的近似线性方程。0x 也是(4)的平衡点。关于平衡点0x 的稳定性有如下的结论: 若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。 若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点 0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是 0'()0()f x t x t ce x =+ (5) 其中C 是由初始条件决定的常数。

二、 二阶(平面)方程的平衡点和稳定性 方程的一般形式可用两个一阶方程表示为 112212 () (,)()(,) dx t f x x dt dx t g x x dt ?=??? ?=?? (6) 右端不显含t ,代数方程组 1212 (,)0 (,)0f x x g x x =?? =? (7) 的实根0012 (,)x x 称为方程(6)的平衡点。记为00 012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足 101lim ()t x t x →∞ = 20 2lim ()t x t x →∞ = (8) 则称平衡点00 012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐 近稳定)。 为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程 11112 22122 () ()dx t a x b x dt dx t a x b x dt ?=+??? ?=+?? (9) 系数矩阵记作 1 12 2a b A a b ??=???? 并假定A 的行列式det 0A ≠ 于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程 det()0A I λ-= 的根λ(特征根)决定,上方程可以写成更加明确的形式: 2120()det p q p a b q A λλ?++=? =-+??=? (10) 将特征根记作12,λλ,则

4微分方程的解及解的稳定性

第四讲 微分方程解的稳定性 上一讲,我们利用最大值原理讨论了新古典经济增长模型,得到了两个方程,一个是状态变量的转移方程,另一个是欧拉方程。这两个方程构成了包含状态变量和控制变量的二元一次方程组。 []δα--=-) ()()()()(1 t k t c t k t k t k []δραα--=-1 )() ()(t k t c t c 这个方程组是一个非线性微分方程组,一般情况下,非线性方程组不存在解析解,即方程组的解不能用初等函数来表示。因此,他们的性质需要借助其他方法来了解。 微分方程:变量为导数的方程叫做微分方程。 常微分方程:只有一个自变量的微分方程叫做常微分方程。 偏微分方程:有两个或两个以上自变量的方程叫做偏微分方程。 微分方程的阶:微分方程中变量的导数最高阶叫做方程的阶。 线性方程:方程的形式是线性的。 例如,方程0)()()()(321=+++t x t y a t y a t y a 是一个二阶线性常微分方程。 又如,索洛-斯旺模型的基本方程是一个非线性方程: ())()()(t k t k s t k ?-=δα 再如,拉姆齐模型的动态是下列微分方程组的解: []δα--=-) ()()()()(1 t k t c t k t k t k []δραα--=-1 )() ()(t k t c t c 一、 一阶微分方程 一阶微分方程可以用下面的方程表示 ),(y x f dx dy = (1.1) 其中,函数R R R f →?:是连续可微函数。 最简单的微分方程是

)(x f dx dy = (1.2) 它的解可表示为不定积分: ?+=c dx x f y )( (1.3) 其中,?dx x f x F )()(=表示任意一个被被积函数,c 为任意常数。当然,我们也可以确定任意一个被积函数,例如,令??x dt t f dx x f x F 0)()()(==, 则(2.2)的不定 积分可表示为 ?+x c dt t f y 0)(= 这时,不定积分仍然代表无穷多条曲线,如果给出初始条件0)0(y y =, 则,上面微分方程的解就是 ?+x y dt t f y 00)(= (1.4) 二、 常见的一阶微分方程解法 1. 一阶线性微分方程 一阶线性微分方程的一般形式为 )()(x g y x p dx dy =+ (2.1) 边界条件(即初始条件)0)0(y y =。 为求解线性微分方程,在方程的两边同乘以?x dt t p 0)(ex p , 则方程的左边为 dx dt t p y d y dt t p x p dt t p dx dy x x x ??? ???= ?+???0 00)(exp )(exp )()(exp 所以 ??? ??=??? ?????x x dt t p x g dx dt t p y d 00)(exp )()(exp (2.2) 方程(2.2)的解为 ?? ????+? ?? ????? ??-=???c dt t p x g dt t p y x x x 000)(exp )()(exp (2.3) 2. 可分离变量的微分方程

(完整版)常微分方程期末考试试卷(6)

常微分方程期末考试试卷(6) 学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______ 一. 填空题 (共30分,9小题,10个空格,每格3分)。 1.当_______________时,方程M(x,y)dx+N(x,y)dy=0称为恰当方程,或称全 微分方程。 2、________________称为齐次方程。 3、求dx dy =f(x,y)满足00)(y x =?的解等价于求积分方程____________________的连续解。 4、若函数f(x,y)在区域G 内连续,且关于y 满足利普希兹条件,则方程),(y x f dx dy = 的解 y=),,(00y x x ?作为00,,y x x 的函数在它的存在范围内是__________。 5、若)(),...(),(321t x t x t x 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________________________。 6、方程组x t A x )(/=的_________________称之为x t A x )(/=的一个基本解组。 7、若)(t φ是常系数线性方程组Ax x =/的基解矩阵,则expAt =____________。 8、满足___________________的点(**,y x ),称为方程组的奇点。 9、当方程组的特征根为两个共轭虚根时,则当其实部________时,零解是稳定 的,对应的奇点称为___________。 二、计算题(共6小题,每题10分)。 1、求解方程:dx dy =3 12+++-y x y x 2.解方程: (2x+2y-1)dx+(x+y-2)dy=0

习题选解

第六章 习题选解 6-1 对下列方程求出常数特解,并且画出方程经过()0,0x 的积分曲线的走向,从而判断各驻定解的稳定性;然后作变量替换,使非零驻定解对应于新的方程的零解。 1) +∞<<-∞>>+=02,0,0,x B A Bx Ax dt dx 2)()()0,310≥--=x x x x dt dx 解 1)方程可化为 )(x B A Bx dt dx +=,则其常数特解为 B A x x -==21,0,即为驻定解。 由于方程为分离变量方程(或迫努利方程),当B A x x - ≠≠,0时,分离变量得 Adt dx B A x x =? ????? ? ?+-11 方程的通解为 At Ce Bx A x =+ 利用初始条件()?? ? ? ?-≠≠=B A x x x x 000,00,得 00Bx A x C += ,故得原方程满足初始条件的解为 (0)(0≥??? ? ??++-= -t e B x A B A t x At ) (1) 由式(1)和方程右端的表达式,得出 当时,00>x 0>dt dx ,递增, )(t x 又 B e B x A B B x A At →??? ? ??+->+-00,时,+∞→)(t x , 即)1ln(1 0+= →B x A A t t 时,+∞→)(t x 。

当 ???????<-><+>-<>+<0 00,000 00 0 dt dx ,B A x , B x A dt dx ,B A x B x A x 时,有 ()+∞→- →t B A t x )( 所以解(1)的图像如图6-5所示。 图6-5 从解的图像可以看出: 解不稳定;解01=x B A x -=2稳定。 利用变换B A x y + =,可将原方程化为 22)()(By Ay B A y B B A y A dt dy +-=-+-= 所以原方程的驻定解B A x -=2对应于方程 2By Ay dt dy +-= 的零解。 0=y 2)由,求得常数解为 ()()031=--x x x 。 3,1,0321===x x x 因为()()()31,--=x x x x t f 0,0≥≥x 在全平面上连续可微,故对任意初始点,解唯一存在,当t 时有 (00,x t )

常微分方程平衡点及稳定性研究38112

摘要 本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。关键词:自治系统平衡点稳定性全局吸引性

Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x=of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

常微分方程期末复习提要(1)

常微分方程期末复习提要 中央电大 顾静相 常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习. 一、复习要求和重点 第一章 初等积分法 1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法. 常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。 2.了解变量分离方程的类型,熟练掌握变量分离方程解法. (1)显式变量可分离方程为: )()(d d y g x f x y = ; 当0≠g 时,通过积分??+=C x x f y g y d )()(d 求出通解。 (2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=; 当0)()(21≠x M y N 时,通过积分 ??+=C x x M x M y y N y N d ) ()(d )()(2112求出通解。 3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法. 第一类可化为变量可分离方程的一阶齐次微分方程为: )(d d x y g x y = ; 令x y u =,代入方程得x u u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得?=-u u g u x C )(d 1e ,即)(e u C x ?=,用x y u =回代,得通解)(e x y C x ?=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法. (1)一阶线性齐次微分方程为: 0)(d d =+y x p x y 通解为:?=-x x p C y d )(e 。 (2)一阶线性非齐次微分方程为: )()(d d x f y x p x y =+; 用常数变易法可以求出线性非齐次方程的通解:??+?=-]d e )([e d )(d )(x x f C y x x p x x p 。 (3)伯努利方程为:)1,0()()(d d ≠=+n y x f y x p x y n ,

第5章 定性和稳定性理论简介(常微分方程)

第5章定性和稳定性理论简介 在十九世纪中叶,通过Liouville等人的工作,人们已经知道绝大多数微分方程不能用初等积分法求解.这个结果对微分方程理论的发展产生了极大的影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而从微分方程本身来推断其性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家Poincare(1854-1912)在19世纪80年代所创立,后者由俄国数学家Liapunov(1857-1918)在同年代所创立.它们共同的特点就是在不求出方程解的情况下,直接根据微分方程本身的结构与特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍. 第一讲§5.1 稳定性(Stability)概念(5课时) 一、教学目的:理解稳定、渐近稳定和不稳定的概念;掌握零解的稳 定、渐近稳定的概念;学会判定一些简单微分方程零 解的稳定和渐近稳定性。 二、教学要求:理解稳定、渐近稳定和不稳定的概念;掌握简单微分 方程零解的稳定和渐近稳定性的判定。 三、教学重点:简单微分方程零解的稳定和渐近稳定性的判定。 四、教学难点:如何把一般解的稳定性转化为零解的稳定性。 五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。 六、教学手段:传统板书与多媒体课件辅助教学相结合。 七、教学过程:

1.稳定性的定义 考虑微分方程组 (,)dx f t x dt = (5.1) 其中函数(,)f t x 对n x D R ∈?和(,)t ∈-∞+∞连续,对x 满足局部Lipschitz 条件。 设方程(5.1)对初值01(,)t x 存在唯一解01(,,)x t t x ?=,而其它解记作00(,,)x x t t x = 。 现在的问题是:当01x x -很小是,差 0001(,,)(,,) x t t x t t x ?-的变化是否也很小?本章向量1 2 (,,,)T n x x x x = 的范数取 1 221n i i x x =?? = ? ?? ∑。 如果所考虑的解的存在区间是有限区间,那么这是解对初值的连续依赖性,在第二章的定理2.7已有结论。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生了Liapunov 意义下的稳定性概念。 定义 5.1 如果对于任意给定的0 ε>和00t ≥都存在0(,)0 t δδε=>, 使得只要 01x x δ -<,就有 0001(,,)(,,)x t t x t t x ?ε -< 对一切0t t ≥成立,则 称(5.1)的解01(,,)x t t x ?=是稳定的。否则是不稳定的。 定义5.2 假定01(,,)x t t x ?=是稳定的,而且存在11(0)δδδ<≤,使得只要 011x x δ-< ,就有 0001l i m ((,,) (,,))0t x t t x t t x ?→∞ -= ,则称 (5.1)的解01(,,)x t t x ?=是渐近稳定的。 为了简化讨论,通常把解01(,,)x t t x ?=的稳定性化成零解的稳定性问题.下面记00()(,,) x t x t t x =01()(,,)t t t x ??=作如下变量代换. 作如下变量代 换.

常微分方程期末考试试卷

常微分方程期末考试试卷 学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______ 一. 填空题 (30分) 1.)()(x Q y x P dx dy += 称为一阶线性方程,它有积分因子 ? -dx x P e )( ,其通解为 _________ 。 2.函数),(y x f 称为在矩形域R 上关于y 满足利普希兹条件,如果 _______ 。 3. 若)(x ?为毕卡逼近序列{})(x n ?的极限,则有)()(x x n ??-≤ ______ 。 4.方程22y x dx dy +=定义在矩形域22,22:≤≤-≤≤-y x R 上,则经过点(0,0)的解的存在区间是 _______ 。 5.函数组t t t e e e 2,,-的伏朗斯基行列式为 _______ 。 6.若),,2,1)((n i t x i =为齐线性方程的一个基本解组,)(t x - 为非齐线性方 程的一个特解,则非齐线性方程的所有解可表为 ________ 。 7.若)(t Φ是x t A x )('=的基解矩阵,则向量函数)(t ?= _______是 )()('t f x t A x +=的满足初始条件0)(0=t ?的解;向量函数)(t ?= _____ 是)()('t f x t A x +=的满足初始条件η?=)(0t 的解。 8.若矩阵A 具有n 个线性无关的特征向量n v v v ,,,21 ,它们对应的特征值分别为n λλλ ,,21,那么矩阵)(t Φ= ______ 是常系数线性方程组 Ax x ='的一个基解矩阵。 9.满足 _______ 的点),(**y x ,称为驻定方程组。

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

常微分期末考试试题和答案1

《 常微分方程 》期末考试试卷(1) 班级 学号 姓名 成绩 一、填空(每格3分,共30分) 1、方程(,)(,)M x y d x N x y d y +=有只与x 有关的积分因子的充要条件 是 。 2、若12(),(),,()n x t x t x t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件 是 。 3、若()t Φ和()t ψ都是' ()x A t x =的基解矩阵,则()t Φ和()t ψ具有的关系是 _____________________________。 4、函数),(y x f 称为在矩形域R上关于y 满足利普希兹条件,如 果 。 5、当 时,方程0),(),(=+dy y x N dx y x M 称为恰当方程, 或称全微分方程。 6、若()t Φ是x t A x )(='的基解矩阵,则x t A x )(=')(t f =满足η=)(0t x 的解 。 7、若()(1,2,,)i x t i n = 为n 阶齐线性方程()() 1()()0n n n x a t x a t x +++= 的n 个线性无关解, 则这一齐线性方程的通解可表为 。 8、求 dx dy =f(x,y)满足00()y x y =的解等价于求积分方程 的解。 9、如果),(y x f 在R 上 且关于y 满足李普希兹条件,则方程 ),(y x f dx dy =存在唯一 的解)(x y ?=,定义于区间h x x ≤-0上 ,连续且满足初始条件00)(y x =?,其中 h = ,),(max ),(y x f M R y x ∈=。

二、计算题(每题10分,共50分) 10、求方程 22 1dy y dx xy x y += + 的解。 11、求方程 2 dy x y dx =-通过点(1,0)的第二次近似解。 12、求非齐线性方程sin x x t ''+=的特解。 13、求解恰当方程 0)4()3(2=---dy x y dx x y 。 14、求伯努利方程 的通解。2 6 xy x y dx dy -= 三、证明.(20分) 15、1)试验证初值问题2 11 4x x ??'=? ?-??,12(0)η?ηη?? ==???? 的解为: 1123212()()()t t t e t ηηη?ηηη+-+?? =??+-+?? ; 2)求该微分方程组的expAt 。 试卷(1)答案 一、填空(每格3分,共30分) 1、方程(,)(,)0M x y dx N x y dy +=有只与x 有关的积分因子的充要条件 是 )(x N x N y M ?=??-??。 2、若12(),(),,()n x t x t x t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件 是12[(),(),,()]0n w x t x t x t ≠ 。

最新常微分方程解的稳定性(修改)

常微分方程解的稳定 性(修改)

常微分方程解的稳定性 摘要本文简要介绍了常微分方程解的稳定性理论的相关概念及其在解决微分方程相关问题的重要意义。最后,介绍用李雅普诺夫第二方法构造李雅普诺夫函数来判断常微分方程的稳定性及其在解决常微分方程的稳定性问题中的应用。 关键字:常微分方程稳定性李雅普诺夫函数 V函数构造方法

引言 常微分方程在经历了长期的求精确解的努力后逐渐停滞,庞加莱在分析的基础上引入几何方法 ,开创了常微分方程定性理论 , 同时在分析中引入几何方法 ,搭建起分析与几何之间的沟通桥梁 ,带来了微分方程研究的新突破。李雅普诺夫则在庞加莱定性分析的基础上 ,转而进入了新的稳定性研究。 如今 ,李雅普诺夫稳定性理论被普遍认为是微分方程定性理论的基本成就之一。不仅有精确的定义 ,更有严格的分析证明 ,将微分方程及稳定性理论的研究推向了新的高度。 本文论述常微分方程解的稳定性的定义及其研究常微分方程相关问题的重要思想,并用李雅普诺夫第二方法构造李雅普诺夫函数来判断常微分方程的稳定性及其在解决常微分方程的稳定性问题中的应用。

1、常微分方程稳定性 微分方程自诞生以来就一直以微分方程解的求法为研究中心。数学家在微分方程求解过程中进行了不懈的努力 ,但始终没有从根本上摆脱求确定解的桎梏 ,致使研究的道路越来越窄。 此时单纯的定量分析已不能解决问题 ,必须用一种综合化、整体化的思想加以考虑. 避开微分方程求精确解的定量方法 ,转向运用稳定性方法探求解的性质 ,从而解决常微分方程(组)的解的问题. 考虑微分方程组 (2.1) 其中函数对和连续,对 满足局部利普希茨条件。 设方程(2.1)对初值存在唯一解 , 而其他解记作 . 本文中向量的范数取 . 如果所考虑的解的存在区间是有限闭区间,那么这是解对初值的连续依赖性。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生的李雅普诺夫意义下的稳定性概念。 如果对于任意给定的和都存在 , 使得只要 就有 对一切成立,则称(2.1)的解是稳定的,否则是不稳定的。 假设是稳定的,而且存在, 使得只要

3.1 一阶微分方程解的存在唯一性定理

第三章 一阶微分方程解的存在定理 [教学目标] 1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。 2. 了解解的延拓定理及延拓条件。 3. 理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程 dy dx =过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2y x =或更一般地, 函数 20 0() c<1x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2)

相关主题
文本预览
相关文档 最新文档