当前位置:文档之家› 硅钢片损耗计算

硅钢片损耗计算

硅钢片损耗计算
硅钢片损耗计算

任意频率正弦波条件下铁磁材料

损耗的计算

崔杨,胡虔生,黄允凯

(东南大学电气工程学院,江苏省南京市四牌楼2号210096)Iron Loss Prediction in Ferromagnetic Materials with

Sinusoidal Supply

CUI Yang,HU Qian-sheng,HUANG Yun-kai

(School of Electrical Engineering, Southeast University, Nanjing 210096, China)

摘要:本文首先介绍了铁耗分立计算模型,随后采用标准规定的用爱泼斯坦方圈测硅钢片损耗的方法对铁磁材料进行损耗实验,对实验结果数据进行回归分析计算出了铁耗分立模型中的未知参数。并分析了参数的特性,将其应用于铁耗计算中,所得出的结果非常接近于实际值。在此基础上进一步分析了铁耗各分量随频率、磁密变化的规律。结论对于铁耗分析有非常重要的参考意义。

关键字:铁耗;铁磁材料;回归分析;爱泼斯坦方圈

Abstract: The paper presents loss separation model, then the method of iron loss measurement by means of an Epstein frame prescripted in standard is employed to the loss experiment, parameters in the model are calculated through a method called regression, using the experiment result. Parameters are used in predicting iron loss, there is hardly any discrepancy between the computed and the measured results. In the meantime the relationship bitween the loss contribution and frequency, flux density is discussed based on the computed result. Conclution is very valuable for the loss prediction.

Keywords: Iron loss; Ferromagnetic material; Regression; Epstein frame

1 引言

随着电力电子技术的发展,各种新型电机在各行各业得到了广泛的应用,电机铁耗的准确计算也成为越来越重要的课题,引起不少学者的注意。目前在国内设计电机中是假设硅钢片内磁场分布均匀,利用硅钢片供应商提供的硅钢片在工频正弦波电源下的损耗曲线和经验公式来近似计算铁耗。对于一般电机,用此方法进行铁耗计算基本可以满足要求。但是在各种特种电机特别是高速电机中,往往是由高频、非正弦电源供电,如果电机的铁耗计算仍停留在采用工频时的方法,主要频率损耗值通过简单缩放比例形式确定,势必会存在较大的误差。

基金项目:国家自然科学基金项目(50477021)

Project Supported by National Natural Science Foundation of China(50477021)

在国外,已经有不少学者提出了铁耗计算的两种方向,一种是采用有限元法来分析硅钢片内磁场的分布,进而计算损耗;另一种是通过研究铁磁材料的磁特性,提出铁耗的模型及计算和测量方法。第一种方法虽然准确,但计算工作量巨大,且没有通用性。另一种方法计算方便,其中以Bertottti铁耗分立计算模型[2][3][4]应用最为广泛。用这种模型计算出来的结果与实测数据相差不大。它的主要问题在于模型中存在未知参数,且难于确定,参数的大小将直接影响到损耗计算的结果,要求参数的计算必须非常准确。而国内目前在这方面没有专门研究。

在传统电机设计方法中使用的损耗曲

线在低频条件下是按照国家标准GB/T 3655—2000《用爱泼斯坦方圈测量电工钢片(带)

磁性能的方法》 [5]

中所规定的方法测量出来的,中频条件下的测试则参照GB 10129—88《电工钢片(带)中频磁性能测量方法》[6]。(以下统称《标准》)但在变频高速电机中,频率是变化的,直接通过测试的方法得到其铁耗值是非常困难的,因此必须要找到一个准确的铁耗计算公式。本文介绍了Bertotti 铁耗分立计算模型,再以之为研究对象,通过回归分析准确计算出了其中的未知参数。

2 正弦波供电条件下硅钢片损耗的计算

按照Bertottti 铁耗分立计算模型,不考虑集肤效应时,铁芯损耗可以用下式表达:

e ec h ir P P P P ++=

5.15

.122

m

m

x

m

B ef

B bf afB ++= (1)

式中 P ir 为铁耗[W/kg];P h 为磁滞损耗[W/kg];P ec 为经典涡流损耗[W/kg];P e 为附加损耗[W/kg];f 为频率[Hz];B m 为磁密幅值[T];a 、b 、x 、e 为未知系数。

a 、

b 、x 、e 显然是用式(1)进行铁耗计算的关键参数。对于参数的计算,有几种方法,各有优劣,本文采用直接拟合计算方法计算未知参数。 2.1 损耗的测量

测量参照《标准》中的规定,使用标准25cm 爱泼斯坦方圈为硅钢片损耗的主要测试仪器。测量电路原理图如图1所示。在工频条件下,电源为电网接调压器;在非工频正弦波条件下,电源为数字信号发生器加线

形功率发生器为了测量和计算方便,使用数

字功率分析仪测量各个量。为了考察不同频率条件对硅钢片损耗的影响,选取了牌号为DW310—35的试样,分别在不同频率条件下测损耗值,所得的数据如图2所示。

Epstein 方圈

功率分析仪

图1硅钢片损耗测试原理图

Fig.1 Schematic of measurement of the electrical

steel sheet loss

2.2 回归分析

利用已知的一系列不同频率下的损耗

值,对式(1)作回归分析,得出其中未知参数,约束条件为使式(2)达到最小:

2

1*1∑=???

?

??-=n i si s si P P P n ε (2) 式中 ε为偏差,P si 为实测损耗值,

P s *为预测值。

采用硅钢片DW310—35为试样,其在正弦波供电下损耗曲线如图2。为了能够比较数据选取对参数计算结果的影响,把数据按频率分成几组,每一组分别进行回归分析计算出参数,具体计算结果见表1。

表1 直接拟合回归计算的参数结果

1

5

25

图2 各种频率的正弦波供电条件下DW310—35的损耗曲线 Fig.2 Loss curve of DW310—35 with sinusoiad supply

从表1中数据可以看出,各种情况下计算出来的参数a 、b 、x 、e 基本上没有差别,由此可以认为对于某一型号的硅钢片来说这些参数是与频率无关的常数。在回归计算求解参数时,为了得到较为准确的结果,应尽量选取较多的频率数和点数。第Ⅲ组结果可以被认为是所有计算结果中最准确的,可作为DW310—35的损耗计算参数参考值(表2)。将参数值代入式(1),利用公式计算出来的铁耗值与实际值作比较,误差见表3,可见两者已基本趋于一致。

表2 DW310—35的a 、b 、x 、e 参考值 Tab.2 Reference parameters of DW310—35

表3 损耗计算值误差 Tab.3 Errors of loss calculation 2.3 扩展讨论

将上述计算方法用于不同牌号的硅钢片,可以计算出对应于每个硅钢片的参数a 、b 、x 、e 的参考值,结果如表4所示。表中

的各参数值各不相同,说明这些参数只与磁性材料本身的特性和厚度有关。因此对应于

每一种铁磁材料,都有一组参数值,只要计算出了这些参数值,利用式(1),就能计算任意频率条件下的损耗值了。

表4 不同牌号的硅钢片的a 、b 、x 、e 参考值 Tab.4 Reference parameters of different silicon steel sheet

3 计算结果的分析

使用式(1)和表2的参数值可以对硅钢片DW310—35的铁耗进行分析。铁耗由磁滞、经典涡流和附加损耗三部分组成,一般附加损耗所占的比率非常小,约为0.1~0.2%,因此分析时可忽略不计。综合图3、

4、5、6可得出以下结论:

●随着频率、磁密的增加,总损耗也在大;

●频率增加时涡流损耗增加的速度比磁

滞损耗快,且涡流损耗在总损耗中所占

的比率也在增大;

●磁密增大时涡流损耗在总损耗中所占

的比率也是在增大。

图3 损耗分量随磁密变化规律(f=400Hz)

Fig.3 Loss contributions change vs. frequency

(f=400Hz)

图4 损耗分量随频率变化规律(Bm=0.5T)

Fig.4 Loss contributions change vs. frequency

(Bm=0.5T)

图5 磁滞损耗所占比例随频率变化示意图Fig.5 Percentage of the hysteresis loss vs. frequency

图6 涡流损耗所占比例随频率变化示意图

Fig.6 Percentage of the eddy current loss vs.

frequency

以上结论说明在高频、高磁密条件下涡流耗是损耗的主要分量,损耗主要由铁此材料中涡流引起。因此当设计的电机将在高频、高磁密条件下运行时,应考虑选用涡流效应较小的铁磁材料,如选用厚度较薄的硅钢片等。

4 结论

通过利用Bertotti铁耗分立计算公式对多种频率下损耗数据的回归分析提出了有效的预测损耗的方法,提出了选取数据应该遵守的原则。计算出来的参数直接用于正弦波条件下任意型号硅钢片的损耗预测计算时结果误差很小,其对于非正弦条件下损耗计算也有一定的参考价值。同时给出了部分铁磁材料的参数参考值。对计算结果的分析得出了铁耗各分量随频率、磁密变化的规律。这些结论可以直接应用于对电机的铁耗分析及高速电机设计中。

参考文献

[1]陈世坤. 电机设计[M]. 第二版, 北京, 机械工业出

版社, 2000, 6.

[2]G. Bertotti. General properties of power losses in soft

ferromagnetic materials[J]. IEEE Trans. Magn., 1988,

24(1): 621–630.

[3]Hyuk Nam, Kyung-Ho Ha, Jeong-Jong Lee, , et al. A

Study on Iron Loss Analysis Method Considering the

Harmonics of the Flux Density Waveform Using Iron

Loss Curves Tested on Epstein Samples[J]. IEEE

Transactions on Magnetics, 2003, 39(3): 1472-1475. [4]R. Kaczmarek, M. Amar, A general formula for

prediction of iron losses under nonsinusoidal supply

voltage wavefonn[J], IEEE Trans. On Magnetics, 1995,

31(5): 2505-2509.

[5]国家质量技术监督局. GB/T 3655—2000. 用爱泼斯

坦方圈测量电工钢片(带)磁性能的方法[S], 北京:

中国标准出版社, 2000, 10

[6]国家质量技术监督局. GB 10129—88. 电工钢片

(带)中频磁性能测量方法[S], 北京: 中国标准出

版社, 1988, 12

[7]Torres, A.G.; Cardoso Filho, B.J. A generalized Epstein

test method for the computation of core losses in

induction motors[C]. IECON 02, 2002, 2: 1150–1155.

[8]Yicheng Chen, P. Pillay. An improved formula for

lamination core loss calculations in machines

operating with high frequency and high flux density

excitation[C]. Industry Applications Conference, 2002.

37th IAS Annual Meeting. Conference Record, 2:

759-766.

[9]Aldo Boglietti, Andrea Cavagnino, Mario Lazzari, et al.

Predicting Iron Losses in Soft Magnetic Materials

With Arbitrary Voltage Supply: An Engineering

Approach[J]. IEEE Transactions on Magnetics, 2003,

39( 2): 981-989.

[10]刘国强, 赵凌志, 蒋继娅编著. Ansoft工程电磁场有

限元分析[M]. 北京, 电子工业出版社, 2005, 8. [11]袁海林,何松波主编,微特电机设计手册[M],上海,

上海科学技术出版社,1998

[12]

变压器损耗计算公式

变压器损耗计算公式 简介: 负载曲线的平均负载系数越高,为达到损耗电能越小,要选用损耗比越小的变压器;负载曲线的平均负载系数越低,为达到损耗电能越小,要选用损耗比越大的变压器. 将负载曲线的平均负载系数乘以一个大于1的倍数,通常可取1-1.3,作为获得最佳效率的负载系数,然后按βb=(1/R)1/2计算变压器应具备的损耗比. 关键字:变压器 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK -------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比. UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示. 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比. 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比. PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损.其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示). 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗. 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率. 3、变压器节能技术推广 1) 推广使用低损耗变压器; (1)铁芯损耗的控制

矽钢片国家标准

矽钢片国家标准 冷轧晶粒取向、无取向磁性钢带 1、范围 本标准规定了晶粒取向、无取向磁性钢带(片)的牌号、磁特性、尺寸、外形、力学性能、工艺特性和检验方法等。 本标准适用于磁路结构中使用的、带有绝缘涂层的全工艺冷轧取向和无取向磁性钢带(片)。 2、引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会修订,使用本标准 和各方应探讨使用下列标准最新版本的可能性。 GB/T228-87 金属拉伸试验方法 GB/T235-88 金属反复弯曲试验方法(厚度等于或小于3mm薄板及带材) GB/T247-87 钢板和钢带验收、包装、标志及质量证明书的一般规定 GB/T2522-88 电工钢片(带)层间电阻、涂层附着性、叠装系数测试方法 GB/T3076-82 金属薄板(带)拉伸试验方法 GB/T3655-92 电工钢片(带)磁、电和物理性能测量方法 GB/T6397-86 金属拉伸试验试样 GB/T13789-92 单片电工钢片(带)磁性能测量方法 3、定义和牌号表示方法 3.1定义 3.1.1标准比总铁损 当磁感应强度随时间按正弦规律变化,其峰值为某一标定值,变化频率为某一标定频率时,单位质量的铁芯在温度20℃时所有消耗的功 率定为标准比总铁损(简称标准铁损或铁损),单位为W/kg 3.1.2标准磁感应强度 温度为20℃,铁芯试样从退磁状态,在标定频率下磁感应强度按正弦规律变化,当交流磁场的峰值达到某一标定值时,铁芯试样磁感的 峰值为标准磁感强度(简称磁感应强度或磁感),单位为T 3.1.3弯曲次数 弯曲次数是用肉眼观察到基体金属上第一次出现裂纹前反复弯曲的次数,它代表了材料的延展性。 3.2牌号表示方法 4、分类 本标准中的磁性钢带(片)分为取向和无取向两大类,每类按最大铁损和材料的公称厚度分成不同牌号。 5、技术要求 5.1磁特性 5.1.1磁感 取向钢在800A/m交变磁场(峰值),频率为50HZ时,规定的最小磁感值B800(峰值)应符合表1的规定 无取向钢在5000A/m交变磁场(峰值),频率为50HZ时,规定的最小磁感值B5000(峰值)应符合表2的规定 5.1.2铁损 取向钢在磁感为1.7T、频率为50HZ时,规定的最大铁损P1.7应符合表1的规定。无取向钢在磁咸为1.5T、频率为50HZ时,规定的最大铁

电机损耗计算

Power loss:这个名词,出现在11及之前的版本。指的是感应电流对应的铜耗。比如鼠笼式异步电机转子导条铜耗,永磁体涡流损耗等。在12及更高版本中,该名词已更名为Solidloss。 Solidloss:如上解释,出现在12及更高版本中,指的是大块导体中感应电流产生的铜耗。Coreloss:铁耗。指的是根据硅钢片厂商提供的损耗曲线,求得的铁耗。 Ohmic_loss:感应电流产生的损耗的密度分布。也就是Powerloss或Solidloss的密度。Stranded Loss R:电压源(非外电路中的)对应的绞线铜耗。 Stranded Loss:电流源,外电路中的电压源或电流源,对应的绞线铜耗。 铜耗问题,阐述如下。 铜耗分为2部分,一是主动导体产生的,比如异步和同步电机定子绕组;二是被动导体产生的,比如鼠龙式异步电机转子导条。主动导体一般是多股绞线(也就是stranded),被动导体一般是大块导体(solid)。它们分别对应stranded loss(R)和solid loss。 主动导体损耗:需要设置导体为stranded,并施加电压源,电流源或外电路。当施加的是电压源时,并且给定电机相电阻和端部漏电感(此处针对二维模型)值,则后处理中results/create transient report/retangular report/stranded loss R就是主动导体的损耗,比如异步或同步电机的定子铜耗。当施加的是电流源,外电路中的电压源或电流源时,后处理中results/create transient report/retangular report/stranded loss就是主动导体的损耗。建议选用电压源方法计算铜耗,因为电阻值是由用户指定的,而不是软件根据截面积和长度自动计算出来的,这样可以算得比较准确。 被动导体损耗:只需要给定被动导体的电导率,并且set eddy effect,则后处理中solidloss 即是被动导体的损耗,比如鼠龙式异步电机转子导条。这有点类似于涡流损耗的计算方法,因为涡流损耗和被动导体损耗,都是在非零电导率的导体上产生的。 以上方法,基于Ansoft maxwell 13.0.0及以上版本,并且适用于任何电机。 铁耗分析 对常规交流电机(同步或者异步电机),只有定子铁心才会产生铁耗,转子铁心是没有铁耗的,学过电机的人都明白的。因此,只需要对定子铁心给出B-P曲线(也就是铁损曲线)。注意,B-P曲线分为单频和多频两种,能给出多频损耗曲线最好,这样maxwell算得准些。设置完铁损曲线以后,还要记得在excitations/set core loss,对定子铁心勾选才行。此时,不需要给定子和转子铁心再施加电导率,这是初学者容易忽视的问题。后处理中,通过result/create transient reports/core loss查看铁耗随时间变化曲线。 再谈一下什么情况下需要做涡流损耗分析。对永磁电机,永磁体受空间高次谐波的影响,会在表面产生涡流损耗;对实心转子电机,由于是大块导体,因此涡流损耗占绝大部分。以上两种情况需要考虑做涡流损耗分析。现以永磁电机为例,具体阐述。对永磁体设置电导率,然后对每个永磁体分别施加零电流激励源,在excitations/set eddy effect,对永磁体勾选。注意,若只考虑永磁体的涡流损耗,而不考虑电机其他部分(定转子铁心)的涡流损耗,则只需要给永磁体赋予电导率值,其他部件不需要赋电导率,这是初学者容易搞错的地方。简而言之,只对需要考虑涡流损耗的部件,施加电导率,零电流激励和set eddy effect。后处理中,通过results/create transient reports/retangular report/solid loss查看涡流损耗随时间变化曲线。最后,再次强调一下,做涡流损耗分析,需要skin depth based refinement 网格剖分才行。

任意频率正弦波条件下铁磁材料损耗的计算

任意频率正弦波条件下铁磁材料 损耗的计算 崔杨,胡虔生,黄允凯 (东南大学电气工程学院,江苏省南京市四牌楼2号 210096)Iron Loss Prediction in Ferromagnetic Materials with Sinusoidal Supply CUI Yang,HU Qian-sheng,HUANG Yun-kai (School of Electrical Engineering, Southeast University, Nanjing 210096, China) 摘要:本文首先介绍了铁耗分立计算模型,随后采用标准规定的用爱泼斯坦方圈测硅钢片损耗的方法对铁磁材料进行损耗实验,对实验结果数据进行回归分析计算出了铁耗分立模型中的未知参数。并分析了参数的特性,将其应用于铁耗计算中,所得出的结果非常接近于实际值。在此基础上进一步分析了铁耗各分量随频率、磁密变化的规律。结论对于铁耗分析有非常重要的参考意义。 关键字:铁耗;铁磁材料;回归分析;爱泼斯坦方圈 Abstract: The paper presents loss separation model, then the method of iron loss measurement by means of an Epstein frame prescripted in standard is employed to the loss experiment, parameters in the model are calculated through a method called regression, using the experiment result. Parameters are used in predicting iron loss, there is hardly any discrepancy between the computed and the measured results. In the meantime the relationship bitween the loss contribution and frequency, flux density is discussed based on the computed result. Conclution is very valuable for the loss prediction. Keywords: Iron loss; Ferromagnetic material; Regression; Epstein frame 1 引言 随着电力电子技术的发展,各种新型电机在各行各业得到了广泛的应用,电机铁耗的准确计算也成为越来越重要的课题,引起不少学者的注意。目前在国内设计电机中是假设硅钢片内磁场分布均匀,利用硅钢片供应商提供的硅钢片在工频正弦波电源下的损耗曲线和经验公式来近似计算铁耗。对于一般电机,用此方法进行铁耗计算基本可以满足要求。但是在各种特种电机特别是高速电机中,往往是由高频、非正弦电源供电,如果电机的铁耗计算仍停留在采用工频时的方法,主要频率损耗值通过简单缩放比例形式确定,势必会存在较大的误差。 基金项目:国家自然科学基金项目(50477021) Project Supported by National Natural Science Foundation of China(50477021) 在国外,已经有不少学者提出了铁耗计算的两种方向,一种是采用有限元法来分析硅钢片内磁场的分布,进而计算损耗;另一种是通过研究铁磁材料的磁特性,提出铁耗的模型及计算和测量方法。第一种方法虽然准确,但计算工作量巨大,且没有通用性。另一种方法计算方便,其中以Bertottti铁耗分立计算模型[2][3][4]应用最为广泛。用这种模型计算出来的结果与实测数据相差不大。它的主要问题在于模型中存在未知参数,且难于确定,参数的大小将直接影响到损耗计算的结果,要求参数的计算必须非常准确。而国内目前在这方面没有专门研究。 在传统电机设计方法中使用的损耗曲 线在低频条件下是按照国家标准GB/T 3655—2000《用爱泼斯坦方圈测量电工钢片(带)磁性能的方法》 [5]中所规定的方法测量出来的,中频条件下的测试则参照GB 10129—88

矽钢片国家标准

冷轧晶粒取向、无取向磁性钢带 1、范围 本标准规定了晶粒取向、无取向磁性钢带(片)的牌号、磁特性、尺寸、外形、力学性能、工艺特性和检验方法等。 本标准适用于磁路结构中使用的、带有绝缘涂层的全工艺冷轧取向和无取向磁性钢带(片)。 2、引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会修订,使用本标准 和各方应探讨使用下列标准最新版本的可能性。 GB/T228-87 金属拉伸试验方法 GB/T235-88 金属反复弯曲试验方法(厚度等于或小于3mm薄板及带材) GB/T247-87 钢板和钢带验收、包装、标志及质量证明书的一般规定 GB/T2522-88 电工钢片(带)层间电阻、涂层附着性、迭装系数测试方法 GB/T3076-82 金属薄板(带)拉伸试验方法 GB/T3655-92 电工钢片(带)磁、电和物理性能测量方法 GB/T6397-86 金属拉伸试验试样 GB/T13789-92 单片电工钢片(带)磁性能测量方法 3、定义和牌号表示方法 3.1定义 3.1.1标准比总铁损 当磁感应强度随时间按正弦规律变化,其峰值为某一标定值,变化频率为某一标定频率时,单位质量的铁芯在温度20℃时所有消耗的功率定为标准比总铁损(简称标准铁损或铁损),单位为W/kg 3.1.2标准磁感应强度 温度为20℃,铁芯试样从退磁状态,在标定频率下磁感应强度按正弦规律变化,当交流磁场的峰值达到某一标定值时,铁芯试样磁感的峰值为标准磁感强度(简称磁感应强度或磁感),单位为T 3.1.3弯曲次数 弯曲次数是用肉眼观察到基体金属上第一次出现裂纹前反复弯曲的次数,它代表了材料的延展性。 3.2牌号表示方法 4、分类 本标准中的磁性钢带(片)分为取向和无取向两大类,每类按最大铁损和材料的公称厚度分成不同牌号。

变压器损耗计算公式

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗, 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK -------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ ----(3)Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取

系统最小负荷时,其无功当量KQ=0.1kW/kvar;(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。

硅钢片、矽钢片的分类和应用以及详细参数

硅钢片、矽钢片的分类和应用以及详细参数 ………………SEO实验室 硅钢片 硅钢片性能指标 A、铁损低。质量的最重要指标,世界各国都以铁损值划分牌号,铁损越低,牌号越高,质量也高。 B、磁感应强度高。在相同磁场下能获得较高磁感的硅钢片,用它制造的电机或变压器铁芯的体积和重量较小,相对而言可节省硅钢片、铜线和绝缘材料等。 C、叠装系数高。硅钢片表面光滑,平整和厚度均匀,制造铁芯的叠装系数提高。 D、冲片性好。对制造小型、微型电机铁芯,这点更重要。 E、表面对绝缘膜的附着性和焊接性良好。 F、磁时效 G、硅钢片须经退火和酸洗后交货。 silicon steel sheets一种含碳极低的硅铁软磁合金,一般含硅量为0.5~4.5%。加入硅可提高铁的电阻率和最大磁导率,降低矫顽力、铁芯损耗(铁损)和磁时效。主要用来制作各种变压器、电动机和发电机的铁芯。世界硅钢片产量约占钢材总量的1%(见精密合金)。 对硅钢性能的要求主要是:①铁损低,这是硅钢片质量的最重要指标。各国都根据铁损值划分牌号,铁损愈低,牌号愈高。②较强磁场下磁感应强度(磁感)高,这使电机和变压器的铁芯体积与重量减小,节约硅钢片、铜线和绝缘材料等。③表面光滑、平整和厚度均匀,可以提高铁芯的填充系数。④冲片性好,对制造微型、小型电动机更为重要。⑤表面绝缘膜的附着性和焊接性良好,能防蚀和改善冲片性。⑥基本无磁时效。典型电磁性能见表1。 硅钢片

硅钢片一般随硅含量提高,铁损、冲片性和磁感降低,硬度增高(图3)。工作频率愈高,涡流损耗愈大,选用的硅钢片应当愈薄。硅钢片的主要用途与厚度和含硅量的关系见表2。冶炼和轧制硅钢主要用氧气转炉冶炼(也可用电弧炉冶炼),配合钢水真空处理和AOD技术(见炉外精炼,采用模铸或连铸法。根据不同的用途,冶炼时改变硅(0.5~4.5%)和铝(0.2~0.5%)含量以满足不同磁性的要求。高牌号硅钢片的硅和铝量相应提高。碳、硫和夹杂物尽量减少。冷轧硅钢片的磁性、表面质量、填充系数和冲片性比热轧硅钢片好,并可成卷生产,所以从60年代开始有些国家已停止生产热轧硅钢片。中国采用约900℃低温一次快速热轧和氢气保护下成垛退火方法制造热轧硅钢片,成材率较高,成品表面质量和磁性都较好。 硅钢片 冷轧无取向硅钢片是将钢坯或连铸坯热轧成厚度约2.3mm带卷。制造低硅产品时,热轧带卷酸洗后一次冷轧到0.5mm厚。制造高硅产品时,热轧带酸洗后(或先经800~850℃常化后再酸洗),冷轧到0.55或0.37mm厚,在氢氮混合气氛连续炉中850℃退火,再经6~10%小压下率冷轧到0.50或0.35mm厚。这个小压下率的冷轧可使退火时晶粒长大,铁损降低。这两种冷轧板都在20%氢氮混合气氛下连续炉中850℃最终退火,然后涂磷酸盐加铬酸盐的绝缘膜。晶粒取向硅钢一般都含Si3%,要求钢中氧化物夹杂含量低,并必须含有C0.03~0.05%和抑制剂(第二相弥散质点或晶界偏析元素)。抑制剂的作用是阻止初次再结晶晶粒长大和促进二次再结晶的发展,从而获得高的(110)[001]取向。抑制剂本身对磁性有害,所以在完成抑制作用后,须经高温净化退火。采用第二相抑制剂时,板坯加热温度必须提高到使原来粗大第二相质点固溶,随后热轧或常化时再以细小质点析出,以便增强抑制作用。冷轧成品厚度为0.28、0.30或0.35mm,工艺要点见表3。冷轧取向薄硅钢带是将0.30或0.35mm 厚的取向硅钢带,再经酸洗、冷轧和退火制成各国都根据铁损值划分牌号,铁损愈低,牌号愈高?这个怎么好像和我理解的正好相反 矽钢片: (一)电工用热轧硅钢薄板(GB5212-85)电工用热轧硅钢薄板以含碳损低的硅铁软磁合金作材质,经热轧成厚度小于1mm的薄板。电工用热轧硅钢薄板也称热轧硅钢片。热轧硅钢片按其合硅量可分为低硅(Si≤2.8%)和高硅(Si≤4.8%)两种钢片。(二)电工用冷轧硅钢薄板(GB2521-88)用含硅0.8%-4.8%的电工硅钢为材质,经冷轧而成。冷轧硅钢片分晶粒无取向和晶粒取向两种钢带。冷轧电工钢带具有表面平整、厚度均匀、叠装系数高、冲片性好等特点,且比热轧电工钢带磁感高、铁损低。用冷带代替热轧带制造电机或变压器,其重量和体积可减少0%-25%。若用冷轧取向带,性能更佳,用它代替热轧带或低档次冷轧带,可减少变压器电能消耗量45%-50%,且变压器工作性能更可靠。用于制造电机和变压器。通常,晶粒无取向冷轧带用作电机或焊接变压器等的状态;晶粒取向冷轧带用作电源变压器、脉冲变压器和磁放大器等的铁芯。钢板规格尺寸:厚度为0.35、0.50、0.65mm,宽度为800-1000mm,长度为≤2.0m。(三)家

硅钢片标准

硅钢片牌号表示方法 1)冷轧无取向硅钢带(片) Y1 k* y5 S+ t8 E 5 I4 ^% x( _3 E l 表示方法:DW+铁损值(在频率为50HZ,波形为正弦的磁感峰值为1.5T 的单位重量铁损值。)的100 倍+厚度值的100 倍。如DW470-50 表示铁损值为4.7w/kg,厚度为0.5mm 的冷轧无取向硅钢,现新型号表示为50W470。 2)冷轧取向硅钢带(片) 表示方法:DQ+铁损值(在频率为50HZ,波形为正弦的磁感峰值为1.7T 的单位重量铁损值。)的100 倍+厚度值的100 倍。有时铁损值后加G表示高磁感。如DQ133-30 表示铁损值为1.33,厚度为0.3mm 的冷轧取向硅钢带(片),现新型号表示为30Q133。9 H. q' I3 t) J7 `7 _$ O" Z- M e+ f5 g& Z( K4 g& ^ 3)热轧硅钢板' n7 h# u6 p( G9 E7 P: \9 ^6 L 热轧硅钢板用DR表示,按硅含量的多少分成低硅钢(含硅量≤2.8%)、高硅钢(含硅量>2.8%)。表示方法:DR+铁损值(用50HZ 反复磁化和按正弦形变化的磁感应强度最大值为 1.5T 时的单位重量铁损值)的100 倍+厚度值的100 倍。如DR510-50 表示铁损值为5.1,

厚度为0.5mm 的热轧硅 钢板。家用电器用热轧硅钢薄板的牌号用JDR+铁损值+厚度值来表示,如JDR540-50。 电机叠片定子、转子质量检测方案 【关键词:定子铁心转子铁心铁损磁感应强度磁场强度】电机叠片定子、转子质量检测可采用MATS-2010M硅钢测量装置,通过附加一根多股测试连线,直接测量电机定子和转子在一定的磁感应强度B(Magnetic Induction B)或磁场强度H(Magnetic Field Strength H)下的损耗P(Losses P)。 在本方案中,保留了25cm的爱泼斯坦方圈(Epstein Square)作为测试数据的标准,用于判定未知定子或转子铁心是否符合要求。根据IEC标准,上述的磁感应强度和磁场强度都分别取其峰值Bm和Hm,损耗换算成比总损耗Ps(单位为:W/kg)。 由于定子和转子的磁路比较复杂,为了便于分析比较,必须简化和近似。对于不同尺寸的定子(或转子),通过将一个标准的定子(或转子)铁心的测试结果折算到爱泼斯坦方圈,就可以确定其有效的尺寸参数和等效的质量。0 f |0 B. K4 L5 _6 z2 j 【测试方法】 第一步:用同一批次材料制作方圈样品(约1kg)和定子(或转

变压器的损耗计算分析

变压器的损耗计算分析 在电力系统中变压器是利用效率最高的电气设备之一,一般中、小变压器都可达96~98%。在电力系统中,累积变压器的总损耗可占20~25%。 (一)变压器的空载损耗 此损耗包括铁芯中磁滞和涡流损耗及空载电流在初级线圈电阻上的损耗,前者称为铁损后者称为铜损。由于空载电流很小,后者可以略去不计,因此,空载损耗基本上就是铁损。 影响铁损的因素很多,以数学式表示,则 式中P n、P w——表示磁滞损耗和涡流损耗 k n、k w——常数 f——变压器外施电压的频率赫 B m——铁芯中最大磁通密度韦/米2 n——什捷因麦兹常数,对常用的硅钢片,当B m=(1.0~1.6)韦/米2时,n≈2,对目前使用的方向性硅钢片,取2.5~3.5。 根据变压器的理论分析,科假定初级感应电势为E1(伏),则: E1=K f B m(2) K为比例常数,由初级匝数及铁芯截面积而定,则铁损为: 由于初级漏阻抗压降很小,若忽略不计, E1=U1 (4) 可见,变压器的铁损与外施电压有很大关系如果电压V为一定值,则铁损不变,(因为f不变),又因为正常运行时U1=U1N,故空载损耗又称不变损耗.如果电压波动,则空载损耗即变化。 (二)负载损耗 此损耗是指变压器初、次级线圈中电流在电阻上产生的铜损耗及励磁电流在励磁电阻上产生的铁损耗。当电流为额定电流时,后者很小,可以不计,故主要是电流在初、次级线圈电阻上的铜损。 对三相变压器在任意负载时,铜耗表达式:

式中I1——初级线圈的负载电流 I2’——次级线圈折算到初级的电流 R1——初级线圈的电阻 R2’——次级线圈折算得初级的电阻 由上式可见,变压器的铜损和负载电流的平方成正比。考虑到负载运行时,负载电流的变化,故此损耗又称可变损耗。 若令β表示负载系数,即 则铜损 式中~线圈电流为额定值时的铜损。 (三)附加损耗 此损耗包括附加铁损及附加铜损,由于这两种损耗数量很小,又难以测定,可以不计。总之,变压器的损耗主要是不变损耗和可变损耗。 变压器的效率,其计算公式 如果负载的性质一定,令φ2表示功率因数角,则在额定电压下,三相变压器输出功率 S N——变压器的额定容量。输入功率,可根据功率平衡得到 (8)式表明变压器的效率和其额定容量初、负载的性质与大小以及变压器本身的损耗有关。

Maxwell 铁耗计算

Maxwell help文件 为Maxwell 2D/3D的瞬态求解设置铁芯损耗 一、铁损定义(core loss definition) 铁损的计算属性定义(Calculating Properties for Core Loss (BP Curve) 要提取损耗特征的外特性(BP曲线),先在View / EditMaterial对话框中设置损耗类型(Core Loss Type)是硅钢片(Electrical Steel)还是铁氧体(Power Ferrite)。 以设置硅钢片为例。 1、点击Tools>Edit Configured Libraries>Materials. 或者,在左侧project的窗口中,往下拉会有一个文件夹名为definitions,点开加号,有个materials文件夹,右击,选择Edit All Libraries.,“Edit Libraries”对话框就会出现。 2、点击Add Material,“View / Edit Material”对话框会出现。 3、在“Core Loss Type”行,有个“Value”的框,单击,会弹出下拉菜单,可以拉下选择是硅钢片(Electrical Steel)还是铁氧体(Power Ferrite)。 其他的参数出现在“Core Loss Type”行的下面,例如硅钢片的Kh, Kc, Ke, and Kdc,功率铁氧体的Cm, X, Y, and Kdc。如果是硅钢片,对话框底部的“Calculate Properties for”下拉菜单也是可以使用的,通过它可以从外部引入制造厂商提供的铁损曲线等数据(Kh, Kc, Ke, and Kdc)确定损耗系数(Core Loss Coefficient)。 4、如果你选择的是硅钢片,按如下操作: ①从对话框底部的“Calculate Properties for”下拉菜单中选择损耗系数的确定方法(永磁铁permanent magnet、单一频率的铁损core loss at one frequency、多频率的铁损core loss versus frequency), 然后会蹦出BP曲线对话框。 单一频率的损耗:点击图表上面的“Import from file.”可以直接导入BP曲线数据文件,但要“*。Tab”格式文件。如果纵横轴错了,可以点击“Swap X-Y Data”按钮,调换B轴和P 轴的数据,但是B轴和P轴的方向不变。或者直接在左侧的表格中填入对应的B值和P值,行不够了可以点击“Add Row Above”按钮,和“add row below”分别从上面和下面添加行,“append rows”是一口气加好几行,或者删除行“delete rows”。表下面的“frequency”表示当前的BP曲线是在什么频率下的性能。“Thickness”表示硅钢片的厚度,“conductivity”是电导率。点击“OK”确定。 多频率的损耗:打开对话框后左下方有个“Edit”窗口,是添加要设定BP曲线的频率的。分别加上几个频率,如1Hz和2Hz。每填写一个赫兹点一下“Add”按钮,就会把频率添加到上面的表格中。在相应的频率后面有“Edit dataset”按钮,点击可进入BP曲线编辑页面。与单一的相同,可以导入文件或者自己填写BP曲线数据。填完点击“OK”按钮。右侧的图中就会出现设定的BP曲线。在图标下面选择“select frequency”显示单一的左侧亮蓝色的频率下的BP曲线,选择“All frequencies”显示所有频率下的BP曲线。选择“original curve”则BP曲线的第一个点需要从0开始。选择“Regression Curve”则,图中不仅显示设定的BP曲线,还会附加一条BP值的增长趋势曲线。 ②确定BP曲线 ③在“Core Loss Unit”对话框里选择BP曲线的单位 ④输入频率Frequency、硅钢片质量密度Mass Density、导电率Conductivity、厚度Thickness 的值和单位。 Kh——滞后系数(Hysteresis Coefficient) Kc——经典涡流系数(Classical Eddy Coefficient) Ke——过量系数(Excess Coefficient) Kdc——考虑直流偏磁效应的系数

硅钢片性能及牌号对照

矽钢片的好坏取决于矽钢片的材质和加工工艺,EI型矽钢片的加工工艺最重要。它直接影响 变压器的质量,加工工艺中的冲压方法,退火方法最重要,同一材质的矽钢片冲压毛刺小的 与毛刺大的制作的变压器性能差7%,同一材质的矽钢片退后(氮气保护退火)与不退火的矽钢片制作的变压器性能相差7-10% 国内常用的H系列编号,是沿用70年代-90年代的日本新日铁的标号。而现在正规厂家都按照新的标号标示。 旧标号新标号性能相当材料我知道的批发价格{退火片要贵1000-2000米/吨} H12 50H270 50WW270 B50A270 21000元 H14 50H310 50WW310 B50A310 15800元 H18 50H470 50WW470,B50A470 14000元 H23 50H600 50WW600,B50A600 12600元 H30 50H700 50WW700,B50A700 11000元 H40 50H800 50WW800,B50A800 9600元 H50 50H1000 50WW1000, B50A1000 8500元 H60 50H1300 50WW1300,B50A1300 8000元 从工艺上说,Z系列均为冷轧有取向高含硅量,H系列一般是冷轧无取向中高含硅量, H型无取向性钢片也有0.35MM的薄片。但是产量很少,一般用于要求较高的场合。 无取向硅钢片常用的有下列几种: H50 H23 H18 H14 H12 比重 7.85 7.75 7.65 7.65 7.65 铁损P1.5/50HZ≤13 6.2 4.7 4.0 3.6 磁通密度B50≥ 1.69 1.66 1.64 1.61 1.6 按温升来说H18低于H23,H23低于H50 按空载电流则相反。 另外同一牌号有白片黑片之分,黑片{退火片}性能优于白片。另外同一牌号铁芯尺寸不同性能也不同。 有取向硅钢带常用的牌号有 Z11 Z10

变压器损耗定义

变压器的损耗包含两部分,空载损耗与负载损耗。 1.变压器的空载损耗 变压器的空载损耗又称铁耗,它属于励磁损耗与负载无关。 1.1空载损耗的组成 通常变压器的空载损耗包括铁芯材料的磁滞损耗、涡流损耗以及附加损耗几部分。 1.1.1磁滞损耗 磁滞损耗是铁磁材料在反复磁化过程中由于磁滞现象所产生的损耗。磁滞损耗的大小与磁滞回线的面积成正比。微观地来看,磁滞损耗与硅钢片内部的结晶方位、结晶纯度、内部晶粒的畸变等因素都有关系。由于磁滞回线的面积又与最大磁密B m 的平方成正比,因此磁滞损耗约和最大磁密B m 的平方成正比。此外,磁滞损耗是由交变磁化所产生,所以它的大小还和交变频率f 有关。具体来说磁滞损耗P c 的大小可用下式计算 21c m P C B f V =?? (1-1) 式中,C 1——由硅钢片材料特性所决定的系数(与铁芯磁导率、密度等有关); B m ——交变磁通的最大磁密; f ——频率; V ——铁磁材料总体积。 注:在日本东京制铁株式出版社的《新日本制铁电磁钢板》中提到有的硅钢片厂家认为,磁滞损耗的大小与B m 的1.6次方成正比。 1.1.2涡流损耗 由于铁芯本身为金属导体,所以由于电磁感应现象所感生的电动势将在铁芯内产生环流,即为涡流。由于铁芯中有涡流流过,而铁芯本身又存在电阻,故引起了涡流损耗。具体来说,经典的涡流损耗P w 的大小可用下式计算 2222m w B f t P C ρ??= (1-2) 式中,C 2——决定于硅钢片材料性质的系数; t ——硅钢片的厚度; ρ——硅钢片的电阻率。 1.1.3异常涡流损耗 在上文的标注所提到的文献中,提出了“异常涡流损耗”的概念,也有的把它作为附加铁损的一部分来看待,一般认为它的大小与硅钢片内部磁区的大小(结晶粒的大小)以及硅钢片表面涂层的弹性张力等有关,并可以用下式来进行估算 223s f B v t P C ρ??= (1-3) 式中,C 3——取决于硅钢片材料的常数;

硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金

硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金 磁性材料 一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场h 作用下,必有相应的磁化强度m 或磁感应强度b,它们随磁场强度h 的变化曲线称为磁化曲线(m~h或b~h曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度h 足够大时,磁化强度m达到一个确定的饱和值ms,继续增大h,ms保持不变;以及当材料的m值达到饱和后,外磁场h降低为零时,m并不恢复为零,而是沿msmr曲线变化。材料的工作状态相当于m~h曲线或b~h曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整洁排列。 剩余磁感应强度br:是磁滞回线上的特征参数,h回到0时的b值。 矩形比:br∕bs 矫顽力hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的b与h的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗p:磁滞损耗ph及涡流损耗pe p = ph + pe = af + bf2+ c pe ∝f2 t2 / ,ρ 降低, 磁滞损耗ph的方法是降低矫顽力hc;降低涡流损耗pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mw)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何外形及磁化状态密切相关。设计者必须熟知材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何外形及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1. 软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶

DW465-50硅钢片的BH曲线数据

DW465-50硅钢片的BH曲线数据 0 0 31.85 0.1 33.44 0.11 35.03 0.12 36.62 0.13 38.06 0.14 39.01 0.15 39.81 0.16 41.4 0.17 42.2 0.18 43.79 0.19 45.38 0.2 46.18 0.21 46.97 0.22 47.77 0.23 48.57 0.24 50.16 0.25 50.96 0.26 52.55 0.27 54.14 0.28 54.94 0.29 55.73 0.3 56.53 0.31 57.32 0.32 58.12 0.33 58.92 0.34 59.71 0.35 60.51 0.36 62.1 0.37 62.9 0.38 63.69 0.39 64.49 0.4 65.29 0.41 66.08 0.42 66.88 0.43 67.68 0.44 68.47 0.45 69.27 0.46 70.06 0.47 70.86 0.48 71.66 0.49 72.45 0.5

73.65 0.52 74.04 0.53 74.44 0.54 74.84 0.55 75.24 0.56 75.64 0.57 76.04 0.58 76.43 0.59 76.83 0.6 77.23 0.61 77.63 0.62 78.03 0.63 78.42 0.64 78.82 0.65 78.98 0.66 79.14 0.67 79.3 0.68 79.46 0.69 79.62 0.7 80.41 0.71 81.21 0.72 82.01 0.73 82.8 0.74 83.6 0.75 84.39 0.76 85.19 0.77 85.99 0.78 86.78 0.79 87.58 0.8 89.17 0.81 90.76 0.82 92.36 0.83 93.95 0.84 96.34 0.85 97.93 0.86 99.52 0.87 101.11 0.88 102.71 0.89 104.3 0.9 105.89 0.91 107.48 0.92 109.08 0.93 110.67 0.94

变损和线损的计算

变损和线损的计算 一、变损: 变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。

涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 变压器节能技术推广 1)推广使用低损耗变压器; (1)铁芯损耗的控制 变压器损耗中的空载损耗,即铁损,主要发生在变压器铁芯叠片内,主要是因交变的磁力线通过铁芯产生磁滞及涡流而带来的损耗。 最早用于变压器铁芯的材料是易于磁化和退磁的软熟铁,为了克服磁回路中由周期性磁化所产生的磁阻损失和铁芯由于受交变磁通切割而产生的涡流,变压器铁芯是由铁线束制成,而不是由整块铁构成。 1900年左右,经研究发现在铁中加入少量的硅或铝可大大降低磁路损耗,增大导磁率,且使电阻率增大,涡流损耗降低。经多次改进,用0.35mm厚的硅钢片来代替铁线制作变压器铁芯。 近年来世界各国都在积极研究生产节能材料,变压器的铁芯材料已发展到现在最新的节能材料——非晶态磁性材料如2605S2,非晶合金铁芯变压器便应运而生。使用2605S2制作的变压器,其铁损仅为硅钢变压器的1/5,铁损大幅度降低。 (2)变压器系列的节能效果 上述非晶合金铁芯变压器,具有低噪音、低损耗等特点,其空载损耗仅为常规产品的1/5,且全密封免维护,运行费用极低。 我国S7系列变压器是1980年后推出的变压器,其效率较SJ、SJL、SL、SL1系列的变压器高,其负载损耗也较高。 80年代中期又设计生产出S9系列变压器,其价格较S7系列平均高出20%,空载损耗较S7系列平均降低8%,负载损耗平均降低2

相关主题
文本预览
相关文档 最新文档