当前位置:文档之家› 二项式定理解题技巧

二项式定理解题技巧

二项式定理解题技巧
二项式定理解题技巧

二项式定理

1.二项式定理:

011()()n n n r n r r n n

n n n n a b C a C a b C a b C b n N --*+=+++++∈ ,

2.基本概念:

①二项式展开式:右边的多项式叫做()n

a b +的二项展开式。 ②二项式系数:展开式中各项的系数r

n

C (0,1,2,,)r n =???.

③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r

n C a b -叫做二项式展开式的通项。用1r n r r r n

T C a b -+=表示。 3.注意关键点:

①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n

b a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n .

④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0

1

2

,,,,,,.r

n

n n n n n C C C C C ??????项的系数是a 与b 的系数(包括

二项式系数)。

4.常用的结论: 令1,,a

b x == 0122(1)()n r r n n

n n n n n x C C x C x C x C x n N *+=++++++∈

令1,,a b x ==- 0122(1)(1)()n

r r n n n

n n n n n x C C x C x C x C x n N *-=-+-+++-∈

5.性质:

①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0

n n n

C C =, (1)

k k n n C C -= ②二项式系数和:令1a

b ==,则二项式系数的和为0122r n

n n n n n n C C C C C ++++++= ,

变形式1

221r n

n n

n n n C C C C +++++=- 。

③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-= ,

从而得到:0

2421321

11222

r r n

n n

n n n n n n C C C C C C C +-++???++???=++++???=

?= ④奇数项的系数和与偶数项的系数和:

00112220120120011222021210

01230123()()1, (1)1,(1)n n n n n n

n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=----- 令则①令则024135(1)(1),()

2

(1)(1),()

2

n n n n n

n a a a a a a a a a a a a ----++-++++=+---+++= ②①②得奇数项的系数和①②得偶数项的系数和

⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n

C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n n C

-,12n n

C

+同时取得最大值。

⑥系数的最大项:求()n

a bx +展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别

121,,,n A A A +???,设第1r +项系数最大,应有1

12

r r

r r A A A A +++≥??≥?,从而解出r 来。 6.二项式定理的十一种考题的解法: 题型一:二项式定理的逆用; 例:1

2321666 .n n n

n n n C C C C -+?+?++?=

解:012233(16)

6666n

n

n n n n n n C C C C C +=+?+?+?++? 与已知的有一些差距,

123211221666(666)6

n

n n

n n n n n n n n C C C C C C C -∴+?+?++?=

?+?++? 0122111(6661)[(16)1](71)666

n n n

n n n n n C C C C =+?+?++?-=+-=-

练:1

231393 .n n n

n n n C C C C -++++= 解:设1231393n n

n

n n n n

S C C C C -=++++ ,则122330122333333333331(13)1

n n n n

n n n n n n n n n n n S C C C C C C C C C =++++=+++++-=+- (13)141

33

n n n S +--∴==

题型二:利用通项公式求n

x 的系数;

例:在二项式324

1()n

x x

+的展开式中倒数第3项的系数为45,求含有3x 的项的系数? 解:由条件知2

45n n

C -=,即2

45n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由

2102

1

10343

4110

10

()

()r r r r

r

r r T C x x C x

--

+-

-+==,由题意102

3,643

r r r --

+==解得, 则含有3

x 的项是第7项63

361

10210T C x x +==,系数为210。

练:求2

9

1()2x

x

-

展开式中9x 的系数? 解:291821831999111()()()()222r r

r r r r r r r r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r =

故9

x 的系数为339121()22

C -=-。

题型三:利用通项公式求常数项; 例:求二项式2

101()2x

x

+

的展开式中的常数项?

解:52021021

10

10

1

1()

()()22r r

r

r

r

r r T C x C x

x

--+==,令52002r -=,得8r =,所以88910145()2256T C == 练:求二项式6

1(2)2x x

-

的展开式中的常数项? 解:666216611(2)(1)()(1)2()22

r r r r r r r r r r T C x C x x ---+=-=-,令620r -=,得3r =,所以3346(1)20T C =-=- 练:若2

1()n x x +的二项展开式中第5项为常数项,则____.n =

解:42444212

51()()n n n n T C x C x x

--==,令2120n -=,得6n =. 题型四:利用通项公式,再讨论而确定有理数项; 例:求二项式93(

)x x -展开式中的有理项?

解:1271

936

21

9

9

()

()(1)r r r

r

r

r r T C x x C x

--+=-=-,令

276

r

Z -∈,(09r ≤≤)得39r r ==或, 所以当3r

=时,

2746r -=,334

449(1)84T C x x =-=-, 当9r =时,2736

r -=,393

3109(1)T C x x =-=-。 题型五:奇数项的二项式系数和=偶数项的二项式系数和; 例:若23

21

(

)n x x -

展开式中偶数项系数和为256-,求n .

解:设23

2

1

(

)n x x -

展开式中各项系数依次设为01,,,n a a a ???

1x

=-令,则有010,n a a a ++???=①,1x =令,则有0123(1)2,n n n a a a a a -+-+???+-=②

将①-②得:1352()2,n a a a +++???=-11352,n a a a -∴+++???=-

有题意得,1

82

2562n --=-=-,9n ∴=。

练:若3

5211()n

x x

+的展开式中,所有的奇数项的系数和为1024,求它的中间项。 解:0

242132112r r n n

n n n n n n C C C C C C C +-++???++???=++++???= ,121024n -∴=,解得11n =

所以中间两个项分别为6,7n n ==,56543551211()()462n

T C x x x

-+==?,61

1561462T x -+=?

题型六:最大系数,最大项; 例:已知1

(

2)2

n x +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少? 解:4

6522,21980,n

n n C C C n n +=∴-+= 解出714n n ==或,当7n =时,展开式中二项式系数最大的项是

45T T 和34347

135()2,22T C ∴==的系数,434

571()270,2T C ==的系数当14n =时,展开式中二项式系数最大的项是8T ,777

8141C ()234322

T ∴==的系数。

练:在2()

n

a b +的展开式中,二项式系数最大的项是多少?

解:二项式的幂指数是偶数2n ,则中间一项的二项式系数最大,即211

2

n

n T T ++=,也就是第1n +项。

练:在31(

)2n

x x

-的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少? 解:只有第5项的二项式最大,则

152n +=,即8n =,所以展开式中常数项为第七项等于6281

()72

C = 例:写出在7

()a b -的展开式中,系数最大的项?系数最小的项?

解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项)的二项式系数相等,且同时取得最大值,从而有343

4

7T C a b

=-的系数最小,434

5

7T C a b =系数最大。

例:若展开式前三项的二项式系数和等于79,求1

(

2)2

n x +的展开式中系数最大的项? 解:由012

79,n n n C C C ++=解出12n =,假设1r T +项最大,12121211(2)()(14)22

x x +=+

11

1121211

12121244

44

r r r r r r r r r r r r A A C C A A C C --+++++?≥≥??∴=??≥≥???,化简得到9.410.4r ≤≤,又012r ≤≤ ,10r ∴=,展开式中系数最

大的项为11T ,有12101010

1011

121()4168962

T C x x ==

练:在10

(12)x +的展开式中系数最大的项是多少? 解:假设1r T +项最大,1

102r r r r T C x +=?

111010111

12101022

2(11)12(10)22,

r r r r r r r r r r r r C C A A r r A A r r C C --+++++?≥≥-≥???∴=???≥+≥-≥????解得,化简得到6.37.3k ≤≤,又010r ≤≤ ,7r ∴=,展开式中系数最大的项为7777810215360.T C x x ==

题型七:含有三项变两项; 例:求当2

5(32)x x ++的展开式中x 的一次项的系数?

解法①:2

525(32)[(2)3]x

x x x ++=++,2515(2)(3)r

r r r T C x x -+=+,当且仅当1r =时,1r T +的展开式中才有x 的

一次项,此时1241

25(2)3r T T C x x +==+,所以x 得一次项为144

5423C C x 它的系数为1

4

4

542

3240C C =。

解法②:2

55505145051455

555555(32)(1)(2)()(22)x

x x x C x C x C C x C x C ++=++=++???+++???+

故展开式中含x 的项为455

4

455522240C xC C x x +=,故展开式中x 的系数为240.

练:求式子31

(

2)x x

+

-的常数项? 解:3611(2)()x x x x

+

-=-,设第1r +项为常数项,则662616

61(1)()(1)r r r r r r

r T C x C x x --+=-=-,得620r -=,3r =, 33

316(1)20T C +∴=-=-.

题型八:两个二项式相乘; 例:3

42(12)(1)x x x +-求展开式中的系数.

解:3

33(12)

(2)2,m m m

m m x x x +?=?? 的展开式的通项是C C

444(1)C ()C 1,0,1

,2,3,0,1,2,3,4,n n n n n

x x x m n -?-=?-?==的展开式的通项是其中 342,02,11,20,(12)(1)m n m n m n m n x x +=======+-令则且且且因此

20022111122003434342(1)2(1)2(1)6x C C C C C C ???-+???-+???-=-的展开式中的系数等于.

练:610

3

41(1)(1)x x

+

+

求展开式中的常数项. 解:436

103

341261061041(1)(1)m n m n

m n m n

x C x C x C C x x

--++?=??展开式的通项为

0,3,6,

0,1,2,,6,0,1,2,,10,43,0,4,8,m m m m n m n n n n ===???=???=???=???

===???

其中当且仅当即或或 003468

6106106104246C C C C C C ?+?+?=时得展开式中的常数项为.

练:2*31(1)(),28,______.n

x x x n N n n x

+++

∈≤≤=已知的展开式中没有常数项且则 解:3431()C C ,n r n r r r n r n n x x x x x

---+

??=?展开式的通项为通项分别与前面的三项相乘可得 44142

C ,C ,C ,,28r n r r n r r n r n n n

x x x n --+-+???≤≤ 展开式中不含常数项 441424,83,72,6, 5.n r n r n r n n n n ∴≠≠+≠+≠≠≠∴=且且,即且且

题型九:奇数项的系数和与偶数项的系数和; 例:2006(2),,2,_____.x x S x S -==在的二项展开式中含的奇次幂的项之和为当时

解:2006123200601232006(2)x a a x a x a x a x -

+++++ 设=-------①

2006123200601232006(2)x a a x a x a x a x ---+-++ =-------②

3520052006200613520052()(2)(2)a x a x a x a x x x -++++=--+ ①②得

2006200620061

(2)()[(2)(2)]2

x S x x x ∴-=--+展开式的奇次幂项之和为

32006

2

20062006300812

2,(2)[(22)(22)]222

x S ?==--+=-

=-当时

题型十:赋值法; 例:设二项式3

1

(3

)n x x

+的展开式的各项系数的和为p ,所有二项式系数的和为s ,若

272p s +=,则n 等于多少?

解:若23

0121(3)n n n x a a x a x a x x

+=+++???+,有01n P a a a =++???+,02n n n n S C C =+??+=,

令1x

=得4n P =,又272p s +=,即42272(217)(216)0n n n n +=?+-=解得

216217()n n ==-或舍去,4n ∴=.

练:若n

x x ?

??? ?

?-13的展开式中各项系数之和为64,则展开式的常数项为多少?

解:令1x =,则n

x x ?

??? ?

?-13的展开式中各项系数之和为2

64n

=,所以6n =,则展开式的常数项为

3

33

61(3)()C x x

?-

540=-.

例:2009

1232009200912

0123200922009

(12)(),222a a a x a a x a x a x a x x R -=+++++∈++???+ 若则

的值为 解:200920091212002200922009

1

,0,2222222

a a a a a a x

a a =+++???+=∴++???+=-令可得 200912

02200901, 1.222

a a a x a ==++???+=-在令可得因而 练:5

5432154321012345(2)

,____.x a x a x a x a x a x a a a a a a -=+++++++++=若则 解:0

012345032,11,x a x a a a a a a ==-=+++++=-令得令得

1234531.a a a a a ∴++++=

题型十一:整除性; 例:证明:22

*389()n n n N +--∈能被64整除

证:22

113

89989(81)89n n n n n n +++--=--=+--

0111211

11111888889n n n n n n n n n n C C C C C n +-++++++=++???+++--

01112

1118888(1

)189n n n n n n C C C n n +-+++=++???++++--01112111888n n n n n n C C C +-+++=++???+ 由于各项均能被64整除22

*3

89()64n n n N +∴--∈能被整除

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

(完整版)二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3 +C 44(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x - 223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-2 23x )3+ C 4 5 (2x )(-223x )4+C 55(-2 23x )5 =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321 x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10的展开式中,x 6的系数是 . 解法一:根据二项式定理可知x 6的系数是C 4 10. 解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10- r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确. 如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4 10. 说明:要注意区分二项式系数与指定某一项的系数的差异. 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

(完整word版)高考数学二项式定理专题复习专题训练)

二项式定理 1.二项式定理:)*()(011111100N n b a C b a C b a C b a C b a n n n n n n n n n n n ∈++???++=+---. 2.二项式定理的说明: (1)()n a b +的二项展开式是严格按照a 的降次幂(指数从n 逐项减到0)、 b 的升次幂(数从0逐项减到n )排列的,其顺序不能更改,且各项关于a 、b 的指数之和等于n 。所以()n a b +与()n b a +的二项展开式是不同的。 (3)二项式项数共有(1)n +项,是关于a 与b 的齐次多项式。 (4)二项式系数:展开式中各项的系数为1-r n C ,1,...,3,2,1+=n r . (5)二项式通项:展开式中的第r 项记作r T , )(1,...,3,2,11 11+==--+-n r b a C T r r n r n r ,共有(1)n +项。 (6)正确区分二项式系数与项的系数:二项式系数依次是 012,,,,,,.r n n n n n n C C C C C ?????? 项的系数是a 与b 的系数(包括二项式系数)。 如:n n r r n n n n n n n n b C b a C b a C b a C a C b a )()()()()(----n r 2221110+???++???+++=---的 第2项的二次项系数为1n C ,而第2项的系数为1 n C -. (7)常见二项式: 令1,,a b x ==)*()1(111100N n x C x C x C x C x n n n n n n n n n ∈++???++=+--; 令1,,a b x ==-)*()1()1(221100N n x C x C x C x C x n n n n n n n n ∈-+???++-=-. 3.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等: 即k n n k n n n n n n n C C C C C C --=???==,,,110 .

二项式定理的十大应用

二项式定理的十方面应用 一、利用二项式定理求展开式的某一项或指定项的系数 1.(2012年高考安徽卷理科7)(x2+2)( 1 x2-1)5的展开式的常数项是() (A)-3(B)-2(C)2(D)321世纪教【答案】D 【解析】第一个因式取x2,第二个因式取 1 x2得:1?C1(-1)4=5 5 第一个因式取2,第二个因式取(-1)5得:2?(-1)5=-2展开式的常数项是5+(-2)=3. 2.(2012年高考天津卷理科5)在(2x2- 1 x )5的二项展开式中,x的系数为() (A)10(B)-10(C)40(D)-40 点评:利用二项式定理求展开式的某一项或指定项的系数,实际上就是对二项展开式的通项公式的考查,此类问题是高考考查的重点. 3.在二项式(x-1)11的展开式中,系数最小的项的系数是 解:ΘT r+1 =C r x11-r(-1)r 11 ∴要使项的系数最小,则r必为奇数,且使C r为最大,由此得r=5,从而可知最小项的 11 系数为C5(-1)5=-462 11 二、利用二项式定理求展开式的系数和 1、若(1-2x)2013=a+a x+a x2+...+a 0122013 x2013(x∈R), 则(a+a)+(a+a)+(a+a)+Λ+(a+a 010******** )=_______。(用数字作答) 解析:在(1-2x)2013=a+a x+a x2+...+a 0122013 x2013中,令x=0,则a=1, 令x=1,则a+a+a+a+Λ+a 01232004 =(-1)2013=1 故(a+a)+(a+a)+(a+a)+Λ+(a+a 0102030 精品资料 2013 )

(完整版)二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,123121-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类 似地,100 3)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5 510C x ;用 3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

二项式定理典型例题

二项式定理典型例题-- 例1 在二项式n x x ?? ? ??+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 例2 求62)1(x x -+展开式中5x 的系数. 分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开. 解:方法一:[]6 262)1()1(x x x x -+=-+ -+++-+=4 4256)1(15)1(6)1(x x x x x 其中含5x 的项为55145355566C 15C 6C x x x x =+-. 含5 x 项的系数为6. 例3 求证:(1)1212C C 2C -?=+++n n n n n n n ;

(2))12(1 1C 11C 31C 21C 1210 -+=++++++n n n n n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质 n n n n n n 2C C C C 210 =++++ . 解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-? =k n k n n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =?=+++=-----11111012)C C C (n n n n n n n 右边. (2))! ()!1(!)!(!!11C 11k n k n k n k n k k k n --=-?+=+ 11C 1 1)!()!1()!1(11+++=-++?+=k n n k n k n n . ∴左边112111C 1 1C 11C 11++++++++++= n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 例4 展开5 2232??? ? ?-x x . 例5 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开. 解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即 ∑=-?+=++=++100101010 10)(])[()(k k k k z y x C z y x z y x . 这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式k y x -+10)(展开, 不同的乘积k k k z y x C ?+-1010) ((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k k k z y x C ?+-1010)((10,,1,0 =k ). 其中每一个乘积展开后的项数由k y x -+10)(决定,

高考数学 考点23 两个计数原理、排列、组合及其应用、

考点23 两个计数原理、排列、组合及其应用、 二项式定理及应用 1.(2010·湖北高考文科·T6)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) (A)65(B)56(C)565432 2 ????? (D)6543 ????2 【命题立意】本题主要考查分类和分步计数原理,考查考生的逻辑推理能力. 【思路点拨】因每名同学可自由选择其中的一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,由分步计数原理即可得出答案. 【规范解答】选A.每名同学可自由选择5个讲座中的其中一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,因此共有65种不同选法. 【方法技巧】本题每名同学可自由选择其中的一个讲座,故每位同学的选择都有5种,共有65种不同选法.若将“每名同学可自由选择其中的一个讲座”改为“每一个讲座都至少有一位同学去听”,它就是一个典型的不同元素的分组问题.利用“先分堆,再分配”的思想将6名同学分为5堆,再分给5个不同的讲座, 有 25 65 1800 C A= 1 800种不同选法. 2.(2010·湖北高考理科·T8)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是() (A)152 (B)126 (C)90 (D)54 【命题立意】本题主要考查分类和分步计数原理,考查排列、组合知识的应用,考查考生的运算求解能力.【思路点拨】由甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作知,司机工作很特殊.按安排几个人担任司机工作可分为两类:①司机只安排1人;②司机安排2人,然后将其余的人安排到其他三个不同的位置. 【规范解答】选B.当司机只安排1人时,有 123 343 C C A =108(种);当司机安排2人时有 23 33 C A =18(种).由分类 计数原理知不同安排方案的种数是108+18=126(种). 【方法技巧】本题要求每项工作至少有一人参加,因此属于不同元素的分组问题,解题时往往采用“先分堆,再分配”的办法.若去掉“每项工作至少有一人参加”的限制,则甲、乙二人各有3种选择,丙、丁、 戊各有4种选择,因此共有33444576 ????=(种)安排方案. 3.(2010·全国高考卷Ⅱ理科·T6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) (A)12种(B)18种(C)36种(D)54种 【命题立意】本题考查了排列、组合的知识. 【思路点拨】运用先选后排解决,先从3个信封中选取一个放入标号为1,2的2张卡片,然后剩 余的2个信封分别放入2张卡片. 【规范解答】选B.标号为1,2的卡片放法有A 1 3种,其他卡片放法有 2 2 2 4 C C种,所以共有A132 2 2 4 C C=18 (种). 【方法技巧】先排列特殊元素是解决排列、组合问题的常用方法.

二项式定理知识点总结复习过程

二项式定理知识点总 结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(*∈N n )等号右边的多项式 叫做()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设 x b a ==,1,则()n n n k n k n n n n n x C x C x C x C x +++++=+-ΛΛ101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式;另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.314-n 例2.(1)求7(12)x +的展开式的第四项的系数;

专题26二项式定理(原卷版)

专题26 二项式定理(原卷版) 易错点1:混淆通项公式1r n r r r n T C a b -+=与展开式中的第r 项 易错点2:混淆二项式展开式中a,b 排列顺序设置陷阱 易错点3:混淆二项式系数和项的系数 易错点4:混淆二项式最大项与展开式系数最大项 考点1 求二项展开式中特定项或指定项的系数 题组一 1.10)21(x +的展开式的第4项是 . 题组二 2.(2016年全国I)5(2x +的展开式中,x 3的系数是 .(用数字填写答案) 3.(2018全国卷Ⅲ)252()x x +的展开式中4 x 的系数为( ) A .10 B .20 C .40 D .80 4.6(42)x x --(x ∈R)展开式中的常数项是______. 题组三 5.(2019全国III 理4)24(12)(1)x x ++的展开式中x 3的系数为( ) A .12 B .16 C .20 D .24 6.(2017新课标Ⅲ)621 (1)(1)x x ++展开式中2x 的系数为( ) A .15 B .20 C .30 D .35 7.64(1)(1)x x -+的展开式中x 的系数是_____.(用数字作答). 题组四 8.25()x x y ++的展开式中, 52x y 的系数为_______.(用数字作答). 9.(2017新课标Ⅲ)5()(2)x y x y +-的展开式中33x y 的系数为

A .-80 B .-40 C .40 D .80 10.(2014新课标1)8 ()()x y x y -+的展开式中27x y 的系数为 .(用数字填写答案) 考点2 已知二项展开式某项的系数求参数 题组五 11.(2014新课标2)()10x a +的展开式中,7x 的系数为15,则a =___.(用数字填写答案) 12.()()511ax x ++的展开式中的系数为5, ______. 13.(2015新课标2)4()(1)a x x ++ 的展开式中x 的奇数次幂项的系数之和为32, 则a =______. 题组六 14.若n x x )2(-二项展开式的第5项是常数项,则自然数n 的值为______. 15.二项式1(n x -的展开式中含有x 4的项,则n 的一个可能值是( ). A .4 B .6 C .8 D .10 16.(13)(6)n x n N n +∈其中且≥的展开式中5x 与6x 的系数相等,则n =_____. 17.若)(13N n x x n ∈??? ? ?-的展开式中第3项为常数项,则展开式中二项式系数最大的是第____项. 18.若1()n x x +的展开式中第3项与第7项的二项式系数相等,则该展开式中 2 1x 的系数为___. 考点3 二项式各项系数的和与二项式系数的区别 题组七 19.5 12a x x x x ????+- ???? ???的展开式中各项系数的和为2,则该展开式中常数项为____

二项式定理典型例题

二项式定理典型例题-- 典型例题一 例1 在二项式n x x ??? ? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 17页 系数和为n 3. 典型例题四 例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:

最新二项式定理应用常见题型大全(含答案)

二项式定理应用常见题型大全 一.选择题(共21小题) 1.(2012?重庆)的展开式中常数项为() .C D 2.(2012?桃城区)在的展开式中,有理项共有() 2012 4.(2008?江西)展开式中的常数项为() n*5 6.(2006?重庆)若的展开式中各项系数之和为64,则展开式的常数项为() 88 29211 2006 10.(2004?福建)若(1﹣2x)9展开式的第3项为288,则的值是() D. 11.若则二项式的展开式中的常数项为() 12.(a>0)展开式中,中间项的系数为70.若实数x、y满足则z=x+2y的最小值是()

C 10 14.的展开式中第三项的系数是() .C. 4n+1 n 17.设f(x)等于展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则m的取值范围是 [[,[ 18.在的展开式中系数最大的项是() 6 8 2010

参考答案与试题解析 一.选择题(共21小题) 1.(2012?重庆)的展开式中常数项为() .C D 的展开式通项公式中,令 的展开式通项公式为 = 2.(2012?桃城区)在的展开式中,有理项共有() ??, 2012

+ 4.(2008?江西)展开式中的常数项为() 的展开式的通项为 的展开式的通项为= 的通项为= ,时,展开式中的项为常数项 n*5

6.(2006?重庆)若的展开式中各项系数之和为64,则展开式的常数项为() 则展开式的常数项为 88 29211 2006

分别取, 时,有)( 时,有)( ( 10.(2004?福建)若(1﹣2x)9展开式的第3项为288,则的值是() D. 中,化简可得答案. , x= =2 11.若则二项式的展开式中的常数项为() ∴二项式的通项为 的展开式中的常数项为=160

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

二项式展开式专题

二项式展开式专题 一、基础知识: 1、二项式()()n a b n N *+∈展开式 () 011222n n n n r n r r n n n n n n n a b C a C a b C a b C a b C b ---+=++++++,从恒等式中我们 可以发现这样几个特点 (1)()n a b +完全展开后的项数为()1n + (2)展开式按照a 的指数进行降幂排列,对于展开式中的每一项,,a b 的指数呈此消彼长的特点。指数和为n (3)在二项式展开式中由于按a 的指数进行降幂排列,所以规定“+”左边的项视为a ,右边的项为b ,比如:()1n x +与()1n x +虽然恒等,但是展开式却不同,前者按x 的指数降幂排列,后者按1的指数降幂排列。如果是()n a b -,则视为()n a b +-????进行展开 (4)二项展开式的通项公式1r n r r r n T C a b -+= (注意是第1r +项) 2、二项式系数:项前面的01,,,n n n n C C C 称为二项式系数,二项式系数的 和为2n 二项式系数的来源:多项式乘法的理论基础是乘法的运算律(分配律,交换律,结合律),所以在展开时有这样一个特征:每个因式都必须出项,并且只能出一项,将每个因式所出的项乘在一起便成为了展开时中的某项。对于()n a b +可看作是n 个()a b +相乘,对于n r r a b - 意味着在这n 个()a b +中,有()n r -个式子出a ,剩下r 个式子出b ,那么这种出法一共有r n C 种。所以二项式展开式的每一项都可看做是一个组合问题。而二项式系数便是这个组合问题的结果。

二项式定理的推广与应用

二项式定理的推广及应用 曲靖市麒麟高级中学 车保勇 [摘 要] 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.深入研究二项式定理的推广及其用途,巧妙应用,能为许多数学问题提供另类解法,同时解决一些难度较大的问题.因此,进一步探讨二项式定理的推广及应用仍是一项有意义的工作.但前人得出的应用范围仅局限于求值、近似计算、整除、求余数、证明不等式等方面,而且在推广方面不够完善,笔者对二项式定理的推广作进一步完善,系统整理已有用途,并给出一种前人尚未提及的用途:即用二项式定理处理特殊极限问题.纵观全文,深入研究二项式定理的用途,不仅为一些数学问题提供了另类解法,更重要的是拓宽了二项式定理的应用范围. [关键词] 二项式定理 推广 方幂 应用 1 引言 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.数式二项式定理表述为:() 0,(,,0)n n r n r r n r a b C a b n r N r n -=+=∈≤≤∑.它有着十分广泛的应用,遍及初等数学和高等数学领域[1] .认真研究问题的条件和结构,把一些表面与二项式定理或推广定理无关的问题作适当变形,构造出二项式定理或推广定理,再用其求解(证明),可使解题简洁明快.巧妙应用二项式定理或推广定理,不仅为许多问题提供另类解法,还能解决一些难度较大的数学问题.因此,把二项式定理进一步推广完善,并充分研究其用途,拓宽其应用范围,仍是一件有意义的工作.

2 问题的提出 虽然学者们对二项式定理的推广及应用的研究取得了丰硕的成果,但已有成果都存在两个不足方面:一是推广不够完善;二是应用范围不够广.针对此情况,笔者试图将其推广进一步完善,系统整理已有用途,并提出新的用途,拓宽其应用范围. 3 二项式定理的推广 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.数式二项式定理表述为: 011r n r r n n ()n n n n n n n a b C a C a b C a b C b --+=++ ++ +0 ,(,,0)n r n r r n r C a b n r N r n -==∈≤≤∑ 其中r n r r r 1T n C a b -+=叫做二项式的通项公式,()!!! r n n C r n r =-叫做二项式系数. 若令 -n r q =, 则 ! !! r n n C r q = ,(,,r q n)n r N ∈且+=. 3.1 推广一 在实际应用中,除遇到二项式外还常常遇到多项式问题,为便于应用,现将其作推广. 先考察三项式()()n a b c n N ++∈的展开式: ()[()]n n a b c a b c ++=++ ()n r r r n C a b c -=+++ ( )r q n r q q r n n r C C a b c ---= ++++ r q n r q q r n n r C C a b c ---= ++ 若令n r q p --=,便得到三项式()()n a b c n N ++∈展开式通项公式: (,,p q r n)r q p q r n n r C C a b c p q r N -∈且++=, 其中()()!(r)!! !!q!q !!q!p! r q n n r n n n C C r n r n r r --==---叫三项式系数.[2] 类似地可得四项式(d)()n a b c n N +++∈通项公式为 ! (,,,)!!!s! p q r s n a b c d p q r s N p q r ∈且p+q+r+s=n , 其中 ! !!!s! n p q r 称四项式系数.于是猜想m项式定理为: 定理112()n m a a a +++12 121212!!! !m m i i i m i i i n m n a a a i i i +++==∑,(,,1,2,,)k i n N k m ∈=.

二项式定理知识点总结

二项式定理知识点总结 1.二项式定理公式: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。 各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,. r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 0,n n n C C =·1 k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:0242132111222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: 00112220120120011222021210 01230123()()1, (1)1,(1)n n n n n n n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L n n L n n n L 024135(1)(1),() 2 (1)(1),() 2 n n n n n n a a a a a a a a a a a a ----++-++++=+---+++=n n n n L n n n n n n n n n n L n n n n n n n ⑤二项式系数的最大项: 如果二项式的幂指数n 是偶数时,则中间一项的二项式系数21 2n n n C T +=取得最大值。

二项式定理专题复习教学内容

二项式定理知识点、题型与方法归纳 一.知识梳理 1.二项式定理:)()(*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+--ΛΛ.其中) ,,2,1,0(n r C r n Λ=叫二项式系数.式中的r r n r n b a C -叫二项展开式的通项,用1+r T 表示,即通项r r n r n r b a C T -+=1. 2.二项展开式形式上的特点: (1)项数为n +1; (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n . (3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1 n ,一直到C n - 1n ,C n n . 3.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n r n n C C -= (2)增减性与最大值:二项式系数C k n ,当k <n +1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项1122n n n n C C -+=取得最大值. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5 n +…=2 n - 1. 一个防范 运用二项式定理一定要牢记通项T r +1=C r n a n -r b r ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 两种应用 (1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等. (2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性;(2)增减性;(3)各项二项式系数的和; 二.题型示例 【题型一】求()n x y +展开特定项 例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ) B A.6 B.7 C.8 D.9

相关主题
文本预览
相关文档 最新文档