当前位置:文档之家› 三相检测电路设计指引

三相检测电路设计指引

三相检测电路设计指引
三相检测电路设计指引

电控设计规范三相检测电路设计指引

1.1三相交流电:由三个频率相同、电势振幅相等、相位差互差120 °角的交流电路组成的电力系统。

1.2相电压:火线对零线的电压。

1.3线电压:火线与火线间的电压。

2总述

在三相空调室外机上,常用到三相检测电路来检测三相电的相序和缺相,以达到保护压缩机的目的。下面介绍其工作原理及注意事项。

3电路原理

3.1电路原理图

图1

3.2工作原理简介

3.2.1在了解电路工作原理之前,首先简单介绍三相交流电的知识。

所谓三相交流电是指由三个频率相同、电势振幅相等、相位差互差120 °角的交流电路组成的电力系统。如图2所示:

图2

其三角函数表示为:

三相交流电有星型(Y)和三角形(Δ)两种接法,如图3所示:

a星型接法b三角形接法

图3

星型接法采用三相四线制,有一根公共的零线;线电压是380VAC,相电压是220VAC,因此可以提供380VAC和220VAC电压,适用于三相负载平衡和不平衡的场合。目前市电是采用三相四线制的供电方式,本标准只适用于该接线方式。

三角形接法采用三相三线制,没有公共零线;只能提供380VAC线电压,一般用于三相平衡的场合。有些船舶等环境下使用,本标准不适用于该接线方式。

3.2.2从原理图1可以看到,需检测的电源是采用三相四线制方式,每一相的电压(A、B、C相和零线之间电压,220VAC)通过4007二极管和68K大功率电阻加到PC817光耦上,在正半周期光耦导通,负半周期则光耦截止;由于光耦输出端有上拉电阻,故光耦导通时芯片检测到低电平,光耦截止时芯片检测到高电平。A、B、C三相电的相差是120o,芯片检

测到A、B、C三相的波形如下:

从波形图可以看到,芯片的三个端口均检测到一定周期的方波,且相位相差120 o。若某端口检测不到方波信号,则说明缺相;若检测到三相信号不是按120 o相差顺序变化,则说明是相序错误。这是三相电压检测设计的基本原理。

3.3各元器件作用

整流二极管D1、D2和D3——保证回路正半周期导通、负半周期截止,减少大功率电阻R1、R2和R9的发热;

大功率电阻R1、R2和R9——限流作用,使光耦导通电流控制在3.2mA 左右;

光耦U1、U2和U3——控制和隔离作用,正半周期导通,负半周期截止;

电阻R3、R4和R10——分流和钳压作用,保护光耦;

瓷片电容C1、C2和C5——滤波作用,保护光耦;

电阻R5、R6和R11——上拉作用;

瓷片电容C3、C4、C6和电阻R7、R8、R12——组成了RC滤波电路,抗高频干扰作用。

3.4各元器件选型

整流二极管D1、D2和D3选用IN4007二极管,耐压1000V;

大功率电阻R1、R2和R9选用68K/2W碳膜电阻(工作电流为3.2 mA,半周期导通,P=I2R/2=0.35W,考虑室外环境恶劣,选2W大功率电阻);

光耦U1、U2和U3选用PC817;

电阻R3、R4和R10选用2K/0.25W电阻;阻值不能太少,否则分流较大,导致光耦不能可靠导通;

瓷片电容C1、C2和C5选用104/50V电容;

电阻R5、R6和R11选用5.1K/0.25W电阻;

瓷片电容C3、C4、C6选用104/50V电容;

电阻R7、R8、R12选用2K/0.25W电阻。

3.5使用注意事项

3.5.1该电路存在一定的缺陷,即在压缩机正在运行时如果缺相,系统没有办法检测。这是由于压缩机运行时,产生很强的感应电压,缺相的一路也可以感应到较高的电压(达190V),这个电压可以导致光耦导通,因此芯片无法检测缺相。这是电压检测方式固有的缺陷。

3.5.2该电路只适用于三相四线制的交流电网(即Y接法)中,不适用于三相三线制的交流电网中(即Δ接法)。一些如船舶等特殊的场合里面常常使用三相三线制的交流电,因此空调无法工作。

基于Arduino的电压有效值测量电路设计与实现v1

综合实验1 一、实验题目 基于Arduino的电压有效值测量电路设计与实现 二、项目背景 Arduino是源自意大利的一个基于开放原始码的软硬件平台,该平台包括一片具备简单I/O功效的电路板以及一套使用类似Java、C语言的Processing/Wiring开发环境。Arduino 可用来开发独立运作、并具互动性的电子产品,也可以开发与PC相连的周边装置,同时能在运行时与PC上的软件进行交互。 Arduino的电路板硬件可以自行焊接组装,也可以购买已组装好的成品;而开发环境软件则可通过网络免费下载与使用。目前Arduino的硬件部分支持Atmel的A Tmega 8、ATmega 168、ATmega 328等微处理器。此外,Arduino方案获得2006年Prix Art Electronica电子通讯类方面的荣誉奖。Arduino的硬件电路参考设计部分是以知识共享(Creative Commons;CC)形式提供授权,相应的原理图和电路图都可以从Arduino网站上获得。 Arduino特点: ●开放原始码的电路图设计,程式开发界面免费下载,也可依需求自己修改; ●具有多通道的数字I/O、模拟输入、PWM输出; ●具有10bit的ADC; ●Arduino 可使用ISCP线上烧入器,自行将新的IC芯片烧入“bootloader”; ●可依据官方电路图,简化Arduino模组,完成独立运作的微处理控制; ●可快速、简单、方便地与传感器、各式各样的电子元件、电子电路进行连接; ●支援多样的互动程序,如Flash、Max/Msp、VVVV、Processing等; ●使用低价格的微处理控制器; ●可通过USB接口供电。 三、实验目的 1、熟悉Arduino最小系统的构建和使用方法;

电流检测电路设计

课程设计报告题目:电流检测电路设计 课程名称:电子信息工程课程设计 学生姓名:焦道楠 学生学号:1314020114 年级:2013级 专业:电子信息工程 班级:(1)班 指导教师:王留留 电子工程学院制 2016年3月

目录 1 绪论 (1) 2 设计的任务与要求 (1) 2.1 课程设计的任务 (1) 2.2 课程设计的要求 (1) 3 设计方案制定 (1) 3.1 设计的原理 (1) 3.2 设计的技术方案 (2) 4 设计方案实施 (3) 4.1 单片机模块 (3) 4.2 传感器模块 (4) 4.3 A/D转换模块 (5) 4.4 LCD12864点阵液晶显示模块 (6) 5 各模块PCB图 (7) 5.1 单片机模块 (7) 5.2 传感器模块 (7) 6 系统的程序设计 (9) 7 心得体会 (10) 参考文献 (10)

电流检测电路设计 学生:焦道楠 指导教师:王留留 电子工程学院电子信息工程专业 1 绪论 在电学中的测量技术涉及的范围非常广,广泛应用于学校、工业、工厂、科研等各种领域,供实验室和工业现场测量使用。随着电子技术的不断发展,在数字化和智能化不断成为主体的今天,电压、电流测量系统中占有非常重要的位置。我们在分析和总结了单片机技术的发展历史及发展趋势的基础上,以实用、可靠、经济的设计原则为目标,设计出全数字化测量电压电流装置。系统主要以AT89C51单片机为控制核心,整个系统由中央控制模块、A/D转换模块、LED显示模块组成。可实现对待测电压、电流的测量,在数码管上显示。本次课程设计我所做的项目是基于单片机的电流检测系统,主要用到A/D转换和数码管显示。近几年来,单片机已逐步深入应用到工农业生产各部门以及人们生活的各个方面。各种类型的单片机也根据社会的需求而相继开发出来。单片机是一个器件级的计算机系统,实际上它是一个微控制器或微处理器。由于它功能齐全,体积小,成本低,因此它可以应用到所有的电子系统中。AT89C51是一种带4K字节闪存的可编程可插除只读存储器的单片机。单片机的可擦除只读存储器可以反复的擦除多次,该器件采用ATMEL高密度非易失性存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能的8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器。 2设计的任务与要求 2.1 课程设计的任务 利用单片机及其相关知识,设计一个电流检测电路。 2.2 课程设计的要求 (1)画出相应电流检测电路的原理图,并进行检测,生成PCB板; (2)编写程序,实现电流检测功能; (3)情况允许的情况下,做出实物,并估算其成本。 3设计方案制定 3.1 设计的原理

微弱电流检测的设计

毕业设计 微电流检测器设计 指导教师讲师 学院名称工程学院专业名称自动化 论文提交日期2011年5月论文答辩日期2011年5月 答辩委员会主席____________ 评阅人____________ 摘要

近年来,微弱电流信号检测技术在信号处理、电视技术、测量技术、通信技术、信息运算多媒体技术以及一般的电子电路设计等领域得到了非常广泛的应用,并极大地促进了相关技术领域的迅速发展,例如军事侦察、物理学、化学、电化学、生物医学、天文学、地学、磁学等。随着科学技术的发展,对微弱信号进行检测的需要日益迫切,微弱信号检测是发展高新技术、探索及发现新的自然规律的重要手段,对推动相关领域的发展具有重要的意义。 微弱是相对于噪声而言的,所以只靠放大并不能检测出微弱信号,只有在有效地抑制噪声的条件下增大微弱信号的幅度,才能提取出有用信号。因此,必须研究微弱信号检测的理论方法和设备,包括噪声的来源和性质,分析噪声产生的原因和规律以及噪声的传播途径,有针对性地采取有效措施抑制噪声。 本设计制作的微电流检测电路,是以A T89S52芯片为核心实现对微电流信号进行检测并显示,利用两个斩波稳零式高精度运放ICL7650组成的放大模块电路,实现I/V转换,将微电流信号转换成为电压信号,而两个相同高精度运放可以实现对电压信号的一二级放大,经两级放大后的电压通过ADC0809采样、A/D转换后传送给单片机AT89S52,之后单片机经过一些运算编程后控制,将所要测得弱电流信号在LCD1602显示出来。能实现对1uA 到2500uA微电流的实时检测。 关键词:弱电流检测 AT89S52 ICL7650 ADC0809

外加电压检测复位电路设计方案

外加电压检测复位电路设计方案 1.6.5 PIC单片机的外接电压检测复位电路举例1.设计思路有许多型号单片机的内部均不具备掉电复位功能,即使对于内部包含该功能的PIC单片机,其复位门槛电压值是固定不可更改的,有时不能满足用户的需求,因此,外加电压检测复位电路也是较常见的设计方案。对于片内带有掉电复位功能BOR的PIC单片机,在使用外接电压检测复位电路时,就必须将内部BUR功能禁止,方法是将系统配置字的BUDEN位设置为0。对于内部不带BOR功能的PIC单片机,其电源控制寄存器PCUN没有BOR标志位,无法准确识别由外接电压检测复位电路引起的单片机复位,因此在程序执行过程中在MCLR 引脚施加了人工复位信号引起的复位。与外接电压检测复位电路相关的单片机片内等效电路如图1所示,从该图可以看出,外接电压检测复位电路时,单片机内部的两个定时器不参与工作。 图1 与外接电压检测复位电路相关的单片机片内等效电路2.电路设计(1)外接分立元件电压检测复位电路。下面给出了两种不利用分离元器件搭建的电压检测复位电路。电路工作原理是,当VDD下降到某一门槛值时,三极管截止,从而使MCLR端电平变低,迫使单片机复位。图2中该门槛值为VDD<Vz十0.7V,其中Vz是稳压管的稳定电压的值,而图3中该门槛值为VDD<0.7V(R1+R2)/R1。 图2 外加电压检测复位电路(VDD<Vz十0.7V) 图3 外加电压检测复位电路(VDD<0.7V(R1+R2)/R1)(2)外接专用芯片电压检测复位电路。图4所示为一种利用专用芯片HT70XX搭建的电压检测复位电路。台湾HOLTEK公司研制的HT70XX系列集成电路是一组采用CMOS工艺制造的电源欠压检测器,其包装形式有三脚直插式封装和贴片式封装两种。 图4 由HT70XX构建的外加电压检测复位电路(本文转自电子工程世界:)

微电流检测资料

目录 1、设计背景 (1) 2、设计方案选择 (1) 2.1典型的微电流测量方法 (1) 2.1.1开关电容积分法[1] (1) 2.1.2运算放大器法 (2) 2.1.3场效应管+运算放大器法 (2) 2.2总体设计方案 (3) 3、具体设计方案及元器件的选择 (4) 3.1稳流信号源问题 (4) 3.2I/V转换及信号滤波放大 (5) 3.2.1前级放大 (5) 3.2.2滤波及后级放大电路 (6) 3.2.3运算放大器的选取 (6) 3.3量程自动转换 (6) 3.4信号采集处理 (7) 4、软件仿真结果 (8) 5、参考资料 (9)

微电流测试电路设计 1、设计背景 微电流是指其值小于-6 10A的电流,微电流检测属于微弱信号检测的一个分支,是一门针对噪声的技术,它注重的是如何抑制噪声和提高信噪比。该技术在军事侦察、物理学、化学、电化学、生物医学、天文学、地学、磁学等许多领域具有广泛的应用。我们所研究的微电流检测主要针对电力系统中的绝缘材料,因为现代国民经济对电力供应的依赖性日益增大,电力系统的规模、容量也在不断扩大。而电气设备的绝缘材料往往是电力系统中的重要组成部分,绝缘材料的漏电流情况严重会造成电力系统的重大损失。微电流检测是通过对泄漏电流的测量来评估绝缘材料状况的有效方法。近年来,针对微弱电流的信噪改善比SNIR已能达到1了,目前国内做得比较好的单位是南京大学,其独家生产的ND-501型微弱信号检测实验综合装置己被国内至少76家高等院校使用。但其产品价格昂贵,少则几千元,多则几万元,例如HB-831型pA级电流放大器、HB-834型四通道pA级电流放大器、HB-838型八通道pA级电流放大器的售价分别为4100元/台、13000元/台、22000元/台。所以,研制高精度、寿命长、成本低、电路简单的微电流检测仪具有重要的现实意义及理论参考价值。为了达成目标,我们需要重点考虑以下几个问题: 10 A(本设计要求)的稳流信号源的实现(1)如何获得实验信号,即电流为12 问题; (2)如何将微弱电流信号转换成易于操作的信号; (3)怎样将微弱信号提取放大; (4)如何实现量程的自动转换问题; (5)将实际中的模拟信号转换成数字信号; (6)实现对数字信号的处理和显示。 2、设计方案选择 2.1典型的微电流测量方法 2.1.1开关电容积分法[1] 开关电容式微电流测量方法的前级是在利用开关电容实现电流向电压转换的同时对电压信号进行调制和放大,达到微伏级;后级电路通过选频放大电路实

三相电源检测介绍

三相电源检测系统设计三相电源检测系统设计 摘 要 本设计采用AT89C51单片机实现三相电压与电流的检测。该设计可检测三相交流电压(AC220V×3)及三相交流电流(A、B、C 线电流0~5A)。本系统的变压器、放大器、A/D 转换和计算产生的综合误差满足5%的精度要求。输出采用128×64 LCD 方式显示,单片机电源部分直接由AC220V 交流电经整流、滤波、稳压供电。系统采用数字时钟芯片和8kB 的RAM 进行存储器的扩展。 关键词关键词::三相交流电 AD 转换 变压器 LCD 显示 8KB RAM

1.引言 当前电力电子装置和非线性设备的广泛应用,使得电网中的电压、电流波形发生严重畸变,电能质量受到严重的影响和威胁;同时,各种高性能家用电器、办公设备、精密试验仪器、精密生产过程的自动控制设备等对供电质量敏感的用电设备不断普及对电力系统供电质量的要求越来越高,电能质量问题成为各方面关注的焦点,电能质量检测是当前的一个研究热点,有必要对三相电信号进行采样,便于进一步分析控制。 目前,精度要求不高的交流数字电压表大多采用平均值原理,只能测量不失真时的正弦信号有效值,因此受到波形失真的限制而影响测量精度和应用范围。真有效值数字仪表可以测量在任何复杂波形而不必考虑波形种类和失真度的特点以及测量精确度高、频带范围宽、响应速度快的特点而得到广泛应用。提高系统的测量精度、稳定性特性是设计中的关键。 真有效值的数字电压数字电压表和以往的仪表有所不同的是可以检测波形复杂的三相交流电压电流。这些都是以单片机为基础的智能化仪表,同时充分表明单片机是一个应用于对象体系的智能化工具。 本设计用单片机进行三相电压与电流的硬件检测系统。该系统检测三相交流电压(AC220V×3)及三相交流电流(A、B、C线电流0~5A)。本系统的变压器、放大器、A/D转换和计算产生的综合精度满足5%要求。输出显示采用128×64点阵的LCD,单片机电源由AC220V交流供电通过变压与整流稳压电路实现。系统配有数字时钟芯片、8kB的RAM存储器扩展芯片。 2总体设计方案 总体设计方案框架如图2-1所示,由交流信号处理部分、A/D转换电路、51单片机控制、数据存储器电路、LCD显示电路以及稳压电源电路组成。 图2-1总体系统原理图

美的内部资料-QMN-J33[1].228-2009_电流检测电路设计指引

美的家用空调国内事业部设计规范规范编号:QMN-J33.228-2009 电流检测电路设计指引 (发布日期:2009-04-02) 1范围 本设计指引对电流检测电路的电路原理,各器件的参数计算选择,相关技术要求和实际使用中的有关问题进行了阐述。 本设计指引适用于美的家用空调国内事业部的电流检测电路的设计。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 QMN-J52.053 电流互感器(原标准号05.132) 3定义 无 4总述 在空调整机上,常用到电流互感器检测压缩机工作电流,下面根据常用电流检测电路介绍其工作原理及注意事项。 1

美的家用空调国内事业部设计规范规范编号:QMN-J33.228-2009 5电路原理 5.1电路原理图 5.2工作原理简介 在了解电路工作原理之前,首先简单介绍电流互感器CT1的工作原理。电流互感器实际是一个线性变压器。其输入电流(被检测电流)与输出电流跟它的内部线圈匝数成正比关系(均为交流电流量)。这样我们开始叙述电路的工作原理: 假如检测压缩机电流值为Ii,根据电流互感器固定的初级/次级线圈匝数比(常量)C,可确定输出电流(为交流)Io=Ii/C;在选取负载电阻R6(通常为1KΩ、1%)时,其阻值远远小于两分压电阻值。这样,R6的阻值约等于实际的负载电阻值。于是,R6两端的电压Uo=R6*Io=R6*Ii/C;(注:此为交流电压值)。 在经过整流二极管D10半波整流后(由于MCU 的A/D口所需输入电流很小,此处按严格的计算关系),二极管D10的负极与地之间的直流电压V1=1.414/2*Uo=0.707*R6*Ii/C;要减掉二极管上的压降约0.5V。 直流电压V1在分压电阻R14和R13上分压,得出该点的电压值V2=R13/(R13+R14)*V1=R13/(R13+R14)*(0.707*R6*Ii/C-0.5),这就是最终输入到芯片检测口的压缩机电流参数模拟量(该值仍需通过实验最终确定。电流互感器0057W对应不同分压电阻R14时输入到芯片检测口的电压参数表见附录)。 直流电压V2必须经过电解电容E6平滑波形,成为较平稳的电压模拟量输入到芯片A/D口。钳位二极管D9目的是确保输入到芯片口的模拟量不大于5V,以保证芯片的工作可靠性;电阻R12和电容C8滤除输入量的高频成分,减小其对MCU的影响。 5.3各元器件作用 电流互感器CT1——将要求检测的交流电流转化成电压信号(交流); 模拟负载电阻R6——主要是为CT1的磁场转化提供一个偏置电阻,保证CT1内部的转化磁场处 于非饱和状态; 2

课程设计 光电脉搏检测电路设计报告

光电脉搏检测电路设计报告 脉搏波的概述 1.脉搏波的定义 脉搏波是以心脏搏动为动力源, 通过血管系的传导而产生的容积变化和振动现象。当心脏收缩时, 有相当数量的血液进入原已充满血液的主动脉内, 使得该处的弹性管壁被撑开,此时心脏推动血液所作的功转化为血管的弹性势能; 心脏停止收缩时, 扩张了的那部分血管也跟着收缩, 驱使血液向前流动, 结果又使前面血管的管壁跟着扩张, 如此类推。这种过程和波动在弹性介质中的传播有些类似, 因此称为脉搏波(pulse wave) 。 2.脉搏信息 血液在人体内循环流动过程中,经历过心脏的舒张、内脏流量的涨落、血管各端点的阻滞、血管内波的折一反射以及血管壁的黏弹等过程。脉搏波不仅受到心脏状况的影响,同时要受到内环境调控功能器官(脏器) 状态所需血液参数以及系统状态参数等的影响。所以脉搏波所呈现出的形态、强度、速率和节律等方面的综合信息富含有关心脏、内外循环和神经等系统的动态信息,很大程度上反映出人体心血管系统中许多生理病理的血流特征。 3.脉搏测量的意义 脉搏是临床检查和生理研究中常见的生理现象,包含了反映心脏和血管状态的重要生理信息。人体内各器官的健康状态、病变等信息将以某种方式显现在脉搏中即在脉象中。人体脉象中富含有关心脏、内外循环和神经等系统的动态信息。通过对脉搏波检测得到的脉波图含有出许多有诊断价值的信息,可以用来预测人体某些器脏结构和功能的变换趋势,如:血管几何形态和力学性质的变异会引起脉搏波波形和波速等性质的改变,而脉搏的病理生理性改变常引发各种心血管事件,脉搏生理性能的改变可以先于疾病临床症状出现,通过对脉搏的检测可以对如高血压和糖尿病等引起的血管病变进行评估。同时脉搏测量还为血压测量,血流测量及其他某些生理检测技术提供了一种生理参考信号。 设计目的与意义 ?目的 应用光电式传感器、放大滤波电路组成的脉搏测量电路 通过示波器显示人体指端动脉脉搏信息 ?意义 通过观测到的脉搏的次数、跳动的波形为临床提供部分 诊断价值的信息,为人体某些器脏结构和功能的变换趋势提供生理参考信号 系统设计 1.测量信号的特征

变频器电路图-整流、滤波、电源及电压检测电路

变频器电路图-整流、滤波、电源及电压检测电路 以下仅仅对变频器电路图-整流、滤波、电源及电压检测电路的分析,好象论坛上发不了图纸. 1. 整流滤波部分电路 三相220V电压由端子J3的T、S、R引入,加至整流模块D55(SKD25-08)的交流输入端,在输出端得到直流电压,RV1是压敏电阻,当整流电压超过额定电压385V时,压敏电阻呈短路状态,短路的大电流会引起前级空开跳闸,从而保护后级电路不受高压损坏。整流后的电压通过负温度系数热敏电阻RT5、RT6给滤波电容C133、C163充电。负温度系数热敏电阻的特点是:自身温度超高,阻值赿低,因为这个特点,变频器刚上电瞬间,RT5、RT6处于冷态,阻值相对较大,限制了初始充电电流大小,从而避免了大电流对电路的冲击。 2. 直流电压检测部分电路 电阻R81、R65、R51、R77、R71、R52、R62、R39、R40组成串联分压电路,从电阻上分得的电压分别加到U15(TL084)的三个运放组成的射极跟随器的同向输入端,在各自的输出端得到跟输入端相同的电压(输出电压的驱动能力得到加强)。U13(LM339)是4个比较器芯片,因为是集电集开路输出形式,所以输出端都接有上接电阻,这几组比较器的比较参考电压由Q1(TL431)组成的高精度稳压电路提供,调整电位器R9可以调节参考电压的大小,此电路中参考电压是6.74V。如果直流母线上的电压变化,势必使比较器的输入电压变化,当其变化到超过6.74V的比较值时,则各比较器输出电平翻转,母线电压过低则驱动光耦U1(TLP181)输出低电平,CPU接收这个信号后报电压低故障。母线电压过高则U10(TL082)的第7脚输出高电平,通过模拟开关U73(DG418)从其第8脚输出高电平,从而驱动刹车电路,同时LED DS7点亮指示刹车电路动作。由整流二极管D5、D6、D7、D18、D19、D20组成的整流电路输出脉动直流电,其后级的检测电路可对交流电压过低的情况进行实时检测,检测报警信号也通过光耦U1输出。 3. 电源电路 U62(VIPER100SP)是内部带场效应管的开关电源控制芯片。母线电压+VPW通过保险F1加到开关变压器T1的第2脚,T1的第1脚和第2脚是初级线圈,U62内部集成了特别的启动电路,电路启动后,T1次级3、4、5脚输出的感应脉冲经整流滤波后得到电压检测电路所需的正负电压,正电压也同时提供给U62以维持其工作。T1其它次级输出的感应脉冲经整流滤波后分别供应U、V、W三相上桥光耦驱动所需电压(+VHU,0VHU)(+VHV,0VHV)(+VHW,0VHW),还有其它控制电路所需电压(+VSI,0VSI,-VSI)。芯片U56(LM2575S-ADJ)是一个PWM开关式输出稳压芯片,将+VSI电压降压并稳定为5V(+VSI5)供给CPU等芯片所需电路。 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。

基于单片机的直流电压检测系统设计_课程设计说明书

山东建筑大学 课程设计说明书 题目:基于单片机的直流电压检测系统设计课程:单片机原理及应用B课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111 姓名:张安珍 学号:2011081342 指导教师:张君捧 完成日期:2015年1月

目录 摘要......................................................... I I 正文.. (1) 1 设计目的和要求 (1) 3 设计内容和步骤 (2) 3.1单片机电压测量系统的原理 (2) 3.2 单片机电压测量系统的总体设计 (3) 3.2.1 硬件选择 (4) 3.2.2 软件选择 (4) 3.3 硬件电路的设计 (4) 3.3.1 输入电路模块设计 (4) 3.3.2 LM7805稳压电源电路介绍 (5) 3.3.3 显示模块电路设计 (5) 3.3.4 A/D转换设计 (7) 3.3.5 单片机模块的简介 (9) 3.4系统软件的设计 (12) 3.4.1主程序的设计 (12) 3.4.2 各子程序的设计 (14) 总结与致谢 (16) 参考文献 (17) 附录一系统整体电路图 (18) 附录二 A/D转换电路的程序 (19) 附录三 1602LCD显示模块的程序 (21)

摘要 随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段。对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。本设计在查阅了大量前人设计的数字电压表的基础上,利用单片机技术结合A/D转换芯片ADC0832构建了一个直流数字电压表。本文首先简要介绍了单片机系统的优势,然后详细介绍了直流数字电压表的设计流程,以及硬件系统和软件系统的设计。 本文介绍了基于89S51单片机的电压测量系统设计,介绍1602LCD液晶的功能和ADC0832的转换原理。该电路设计简单,方便。该设计可以测量0~5V的电压值,并在1602LCD液晶上显示出来。 本系统主要包括三大模块:主程序模块、显示模块、A/D转换模块,绘制点哭原理图与工作流程图,并进行调试,最终设计完成了该系统的硬件电路,在软件编程上,采用了c语言进行编程,开发了显示模块程序,A/D转换程序。 关键词:89S51单片机;1602LCD液晶;ADC0832

试论DC-DC转换器电流检测电路设计

试论DC-DC转换器电流检测电路设计 发表时间:2019-02-18T16:12:13.070Z 来源:《科技新时代》2018年12期作者:李宁[导读] 实际上,当代电流检测的方式有很多,其中电力原理相关的串联、并联、霍尔效应等原理都在电路检测领域被广泛运用。 陕西省产品质量监督检验研究院 710048 【摘要】:电流检测需要借助分流器、互感器等方式将电流信号转化成电压信号,通过后期的方法处理,能够实现对于某部件、导向电流的检测保护作用。本文通过分析DC-DC转换器电流检测相关电路设计,希望能为完善我国电路检测设计提供一定思考。【关键词】:电流信号;检测保护;相关电路设计实际上,当代电流检测的方式有很多,其中电力原理相关的串联、并联、霍尔效应等原理都在电路检测领域被广泛运用。随着科技发展,电流检测工作愈加精细化。而传统串联检测方式往往会造成能量损失,且在操作过程中会出现电流能量衰减,同时能量损失时也会对元器件造成损伤,因故不能满足现代电流检测要求。对此,希望通过DC-DC转换器电流检测电路设计方式,结合电路拓扑以及软件仿真测验,创造一种无能量损失的电流检测方案。 1.研究DC-DC转换器电流检测电路设计的意义 实际上,在电流检测方式中,所有电流检测都需要经过电流电感的反馈控制。其中,DC-DC转换器、相信转换器也需要进行电流电感的相关响应才能完成检测试验。具体表现为,在一定情况下的电路设计方案中,通过对输入电压的施压,能够产生瞬间的电流电感,从而在仪表检测上呈现波动。在实际测试中,DC-DC转换器有着独特的CCM/DCM(连续/非连续导通模式)时间转换响应功能,因此能够提升测试效率,可见通过电流检测技术的切入点,也能对DC-DC转换器设计进行深入研究。 2.相关检测原理分析 2.1 DC-DC转换器原理分析 DC-DC转换器被称为直流电源转换器,全称为Direct Current,它能够实现地直流电压之间互相转换,对比于家用220V交流电源,直流电源(DC)表现模式为干电池、车载电池等。在组成上,DC-DC转换器主要有控制芯片、二,三极管、电感线圈、电容器等元器件构成。这种转换器在应用中能够将输入电压有效转换成固定电压或者电压转换器,一般延伸的PWM类型具有较为稳定的输出电压波纹和噪声、PFM可以实现长时间实用且低耗电特点,因此,DC-DC转换器常被使用在小型用电设备如智能手机、数码相机、小型家用设备等。 DC-DC转换器电流检测电路设计方面,为了保证DC-DC电路设计能够满足测试使用要求,需要进行以下方面控制: ①电源电压的控制:通过对于外部电源电压范围进行设计,可以控制调整输出电流的大小。 ②对极值的控制:将DC-DC转换器相关电压、电流系统的各项最大值进行分析控制,保证整个电路设计系统的合理性和可操作性。 2.2 基于DC-DC转换器对传统电路检测进行改良分析 传统电流检测方式在检测步骤和参数分析等方面存在缺陷。在基于场效应管采样方式下,电感值、场效应管相关的通道电阻值、采样电阻等参数不能被有效控制。为了能让检测电流能够适合不同场景的精细化使用,需要改善传统电流的通用性。对此,结合电感测试原理和电容特征、电阻影响,现提出以下改进方案。 (图1:改进后的电缆检测方式)如上图所示,在传统电流检测涉及基础上,该方案增加了电感测量电路。这种方法能够让电感值L能够被微控制器进行处理并储存,可以优化负载电流相关计算。再具体加电压负载启动之前,需要关闭功率场效应管,释放开关S1、S2,让电容C在电流源I ref基础上进行充电。此时让电容C两端电压能够呈现线性上升的状态,达到一定之后,通过释放电容C能够产生一个线性上升状态的电流,相关运算式计算如下:

电源保护电路系统的设计与制作

电源保护电路系统的设计与制作 为了方便在实验室做各种电路实验,实验室电源系统应具有如下的功能: 输出+12V,-12V,+5V固定电压的直流稳压电压源; 输出输出电压从1.25V到12V可调的直流稳压电压源; 输出电流从2mA到40mA可调的直流电流源; 输出电压约为+16V,-16V的直流电压源(没有经过稳压的电压源,方便做电源实验用); 输出电压为12V的交流电压源(方便做电源实验用); 在电子技术实验室使用较广泛的综合电路实验箱所使用的电源一般有好几组电源输出,如+12V,+5V,-12V等等,数字实验电路还有一个+5V电源插口。由于是学生实验用仪器,学生在做实验时操作出错是常有的现象,主要是以下三类错误:一是电源直接短路造成的严重过载而损坏电源电路,此类错误的后果是损坏稳压器,或整流二极管或变压器;二是负载过重,这往往是学生由于接线错误,如芯片的线接错,虽没有直接短路,但可能电流超过额定值,若再加上没有及时排除故障,使得时间过长,而损坏电路,如损坏芯片,进一步损坏电源电路器件;还有一种可能是将+12V或者-12V电源插入到数字实验电路的+5V电源插口,这样造成数字电路(如高低电平信号形成电路,数码信号显示电路等等)中的集成块损坏,特别是TTL集成电路块的损坏。因此,设计制作一个电路保护系统很有必要。 对保护电路的要求: 过压保护:输出的所有电压中,只要任何一个电压超过额定值1V,保护电路动作。 欠压保护:输出的所有电压中,只要任何一个电压低于额定值1V,保护电路动作。 过流保护:任何一个输出电流超过500mA时或所有正电源电流之和超过500mA时或所有负电源电流之各超过500mA时,保护电路动作。 电源电压接错保护:在应加+5V电源接口处错误地加上了其它电源,如+12V,-12V等等,保护电路动作。 常用的电路保护措施有: 熔断器保护,即通常用的保险丝,保险管,它是一种过流保护器件,将它串接在电源电

电流智能检测电路课程设计-zgq.

《电子技术课程设计》设计报告 [电流智能检测电路] 所在学院:机械与电气工程学院 班级: 14电自4 姓名: 学号: 指导教师: 2016年6月

题目:电流智能检测电路 一、设计目标和要求 1.通过本课程设计,掌握仪表放大器、精密全波整流电路、电压比较器、数字逻辑电路工作原理。 2.熟悉简单模/数混合电路的设计方法和主要流程。 3.学习模/数混合电路的仿真与调试方法。 设计要求: 表1 指标 二、工作原理及数据分析 电机过载指示电路是一种简易的检测电流电路,是电机保护电路的一部分。当电机过载时,通过线圈的电流会急剧增大,因此通过判断电流大小是判断电机是否过载的重要方法。 图1 电路框图 整个电路(图1)包含仪表放大器(差分放大电路)、精密全波整流电路、电压比较器电路、整形(含调整逻辑)和显示电路等四个模块组成。其主要工作原理是:利用精密小电阻接入电路中,电流通过电阻时会在电阻两端产生一定的电压,用仪表放大器将该电压按一定比例放大后输出,由于电阻阻值和放大倍数是已知的,因而可以通过判断输出电压大小,进而算出电流强度。 采样电阻R以串联形式接入电机电路,由于串联电路电流处处相等,因而通过采样电阻R的电流也就是通过电机线圈的电流,即: I=|V2-V1|/R

图2 采样电阻与电机的连接关系 之所以加绝对值是因为直流电机根据所加电压方向不同,可以有正、反两种转向,无论是正转或反转均存在过载的可能。 从采样电阻R所获得的电压非常微弱,要必须进行放大处理。放大的对象是R两端电压的差值,如此处需要使用差分放大电路,仪表放大电路就是一种常见的差分放大电路。 精密全波整流的作用是将经过差分放大的信号进行绝对值处理,使其保持正数,以便后面的判断电路进行判断。 电压比较器在系统中主要起判断作用,即判断输出电压是否为设定的正常值,并输出给逻辑调整及整形电路(一般由74HC14或74HC04组成,即非门)整形成标准CMOS电平,如果工作正常,则绿色LED亮红色LED灭,如果不正常,则相反。输出信号此后可送单片机等再做其他处理。 1.电压放大电路: 图2.1 仪表放大电路 图示为仪表放大器电路的典型结构,它主要由两级差分放大器电路构成。其

基于单片机控制的开关电源及其设计

2.基于单片机控制的开关电源的可选设计方案 由单片机控制的开关电源, 从对电源输出的控制来说, 可以有三种控制方式, 因此, 可供选择的设计方案有三种: ( 1) 单片机输出一个电压( 经D/AC 芯片或PWM方式) , 用作开关电源的基准电压。这种方案仅仅是用单片机代替了原来开关电源的基准电压, 可以用按键设定电源的输出电压值, 单片机并没有加入电源的反馈环, 电源电路并没有什么改动。这种方式最简单。 ( 2) 单片机和开关电源专用PWM芯片相结合。此方案利用单片机扩展A/D 转换器, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 调整D/A 转换器的输出, 控制PWM芯片, 间接控制电源的工作。这种方式单片机已加入到电源的反馈环中, 代替原来的比较放大环节, 单片机的程序要采用比较复杂的PID 算法。 ( 3) 单片机直接控制型。即单片机扩展A/DC, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 输出PWM波, 直接控制电源的工作。这种方式单片机介入电源工作最多。 3.最优设计方案分析 三种方案比较第一种方案: 单片机输出一个电压( 经D/AC芯片或PWM方式) , 用作开关电源的基准电压。这种方案中, 仅仅是用单片机代替了原来开关电源的基准电压, 没有什么实际性的意义。第二种方案: 由单片机调整D/AC 的输出, 控制PWM芯片, 间接控制电源的工作。这种方案中单片机可以只是完成一些弹性的模拟给定, 后面则由开关电源专用PWM芯片完成一些工作。在这种方案中,对单片机的要求不是很高, 51 系列单片机已可胜任; 从成本上考虑,51 系列单片机和许多PWM控制芯片的价格低廉; 另外, 此方案充分解决了由单片机直接控制型的开关电源普遍存在的问题———由于单片机输出的的PWM脉冲频率低, 导致精度低, 不能满足要求的问题。因此, 单片机和PWM芯片相结合, 是一种完全可行的方案。第三种方案: 是最彻底的单片机控制开关电源, 但对单片机的要求也高。要求单片机运算速度足够快, 且能输出足够高频率的PWM波。DSP 类单片机速度够快, 但价格也很高, 占电源总成本的比例太大, 不宜采用。廉价单片机中, AVR 系列最快, 具有PWM输出, 但AVR单片机的工作频率仍不够高, 只能是勉强

DC-DC转换器中的电流检测电路设计方案

DC/DC转换器中的电流检测电路设计方案 设计了一个高精度的电流检测电路,基于华润上华CSMC 0. 5 um B iCMOS工艺库,利用Cadence Spectre软件进行电路仿真,经仿真得知所设计的电路电流取样精度达到1 000:1, 具有很高的采样精度。该电流检测电路性能良好,已经成功应用于一款电流模式控制DC /DC转换器芯片的设计之中。 电流检测电路是电流模式控制所必需的,通过检测功率开关管上的电流,然后输出一个电流感应信号与斜坡补偿信号进行叠加并转换成一个电压信号,再与误差放大器的输出进行比较,从而实现电流模式开关转换器电流内环的控制。其实现方法有很多种,常见的有两种,一种是与功率管串联一个电阻Rsen,另一种是与功率管并联一个并联检测管复制比例电流,并联检测管复制比例电流的检测方法,又有两种主要的实现结构,一种是采用运放的结构,另一种是利用反馈的方式。如果采用运放,显然会增加电路的复杂性,而且也会增加功耗。本文根据具有反馈控制电流源的原理来设计电流检测电路中的反馈网络。 1 反馈控制电流源的原理 电路原理图及电流源动态特性曲线。根据电流源的特性曲线,偏置电路中各相关元件的电流特性只有线性与非线性电流源相结合才可能有唯一的交点(原点除外),这样才能保证偏置电路有唯一稳定的工作点。 图1 具有反馈控制的电流源的原理图 设电阻上的压降为VR, M3 管的过驱动电压为△,由M3、M4 电流相等的条件,得到: 由此解出: 其中, VR = VGS3 - V GS4, 因此VGS的压差决定了电阻上所形成的微电流,即输出电流I0 满足的非线性关系为: 由此解出的输出电流已与电源电压无关。2 电流检测电路的具体电路设计实现 根据前面的分析,可以看出, R 固定时,当图1所示的电路可以提供唯一的偏置偏流。但是在电流检测电路中,由于电感电流一直在变,很显然,固定的电阻不再适用,将图1 的改进电路运用到电流检测电路中,,图中电阻用工作在线性区的MOS管MR 代替。 图2 改进型具有反馈控制电流源的电流检测电路 工作在线性区的MOS 管,其导通电阻rON可由下式得出: 可以看出, rON与V GS - VTH成反比,因此电阻值会随着VGS的变化而变化,这样不同的电阻值形成的非线性电流源与电流镜结合,就会有不同的稳定工作点。因此,在整个工作中,对于一直变化的电感电流,偏置电路是通过改变电阻值而达到不同的动态稳定状态。

三相检测电路设计指引

电控设计规范三相检测电路设计指引 1.1三相交流电:由三个频率相同、电势振幅相等、相位差互差120 °角的交流电路组成的电力系统。 1.2相电压:火线对零线的电压。 1.3线电压:火线与火线间的电压。 2总述 在三相空调室外机上,常用到三相检测电路来检测三相电的相序和缺相,以达到保护压缩机的目的。下面介绍其工作原理及注意事项。 3电路原理 3.1电路原理图 图1 3.2工作原理简介 3.2.1在了解电路工作原理之前,首先简单介绍三相交流电的知识。 所谓三相交流电是指由三个频率相同、电势振幅相等、相位差互差120 °角的交流电路组成的电力系统。如图2所示:

图2 其三角函数表示为: 三相交流电有星型(Y)和三角形(Δ)两种接法,如图3所示: a星型接法b三角形接法 图3 星型接法采用三相四线制,有一根公共的零线;线电压是380VAC,相电压是220VAC,因此可以提供380VAC和220VAC电压,适用于三相负载平衡和不平衡的场合。目前市电是采用三相四线制的供电方式,本标准只适用于该接线方式。 三角形接法采用三相三线制,没有公共零线;只能提供380VAC线电压,一般用于三相平衡的场合。有些船舶等环境下使用,本标准不适用于该接线方式。 3.2.2从原理图1可以看到,需检测的电源是采用三相四线制方式,每一相的电压(A、B、C相和零线之间电压,220VAC)通过4007二极管和68K大功率电阻加到PC817光耦上,在正半周期光耦导通,负半周期则光耦截止;由于光耦输出端有上拉电阻,故光耦导通时芯片检测到低电平,光耦截止时芯片检测到高电平。A、B、C三相电的相差是120o,芯片检

光电检测-报告

摘要 设计了一种应用于微光夜视仪检测设备中低噪声的光电检测系统,分析了电路中产生的主要噪声,并提出了抑制方法。系统采用光敏二极管作为光电检测器件,并利用单片机实现了光照度的实时显示与超差报警以及与上位机的通信。关键词:单片机;光电检测电路;光电二极管 Abstract Alownoiselightmonitoringsystemisdesignedforanightvisiontestingequipment.Weanalyzethenoisesexistingincircuitandstudyhowtocheckthem.Inthemonitoringsystem,photodiodeisusedasphotoelectricdetector,andamicrocontrollerisappliedtorealizethereal-timedisplayofillumination,alarmandcommunicationwiththehostcomputer. Keywords:microcontroller;photoelectricdetectioncircuit;photodiode. 0 引言 夜视技术在军事、工业、农业、科学研究、医药卫生等领域有着广泛的应用,特别是在军事方面的需求是夜视技术发展的原动力。在现代战争中,为了提升战争的突然性以及扩大战争的时间范围和空间范围,需要部队在星光或月光等微弱光照度情况下对战场进行侦查和监控,这就必须依靠夜视技术,所以,微光夜视仪设备的可靠性将直接影响到军队的战斗力。要确保每一个装备的夜视仪都是合格的,就对检测设备的技术指标提出了很高的要求。为模拟实际中的夜天光环境,在微光夜视仪检测设备中的光源要求色温为2856K,光照度的变化不超过±10%。光应力源是否符合要求直接决定了整套系统工作的稳定性及判断结果的准确度,所以,为了保证检测设备的检测精度以及检测结果的准确性,要求对光源的照度变化进行实时监测。当光源变化超出规定范围时,能够及时报警,提示进行设备维修或光源的更换。 1系统设计与工作原理 系统主要包括:光电检测电路、光照度显示模块、超差报警模块、串口通信模块。具体原理是通过光电检测电路将采集到的外界自然光转换为相应的直流电压信号,再通过ADC将电压信号转换为数字信号送入单片机,单片机将数据进行补偿算法获得精确的实际采样值,控制数码管显示实时光照度,一旦光照度不符合设计指标,则通过报警灯及蜂鸣器进行报警,同时,通过RS232串口与上位机进行通信。系统原理框图如图1所示。

单片机直流电压检测系统设计

目录 摘要 ................................................................... II 1 设计目的 (1) 2 设计要求 (2) 3 设计内容 (3) 3.1 系统需求分析 (3) 3.1.1 硬件选择 (3) 3.1.2 软件选择 (4) 3.2 硬件电路的设计 (4) 3.2.1 输入电路模块设计 (4) 3.2.2 LM7805稳压电源电路介绍 (5) 3.2.3 显示模块电路设计 (6) 3.2.4 A/D转换设计 (7) 3.2.5 单片机模块的简介 (10) 3.3系统软件的设计 (13) 3.3.1主程序的设计 (14) 3.3.2 各子程序的设计 (15) 总结与致谢 (17) 参考文献 (18) 附录一系统整体电路图 (19) 附录二 A/D转换电路的程序 (20) 附录三 1602LCD显示模块的程序 (22)

摘要 本设计在查阅了大量前人设计的数字电压表的基础上,利用单片机技术结合A/D 转换芯片ADC0832构建了一个直流数字电压表。本文首先简要介绍了单片机系统的优势,然后详细介绍了直流数字电压表的设计流程,以及硬件系统和软件系统的设计。 本文介绍了基于89S51单片机的电压测量系统设计,介绍1602LCD液晶的功能和ADC0832的转换原理。该电路设计简单,方便。该设计可以测量0~5V的电压值,并在1602LCD液晶上显示出来。 本系统主要包括三大模块:主程序模块、显示模块、A/D转换模块,绘制点哭原理图与工作流程图,并进行调试,最终设计完成了该系统的硬件电路,在软件编程上,采用了c语言进行编程,开发了显示模块程序,A/D转换程序。 关键词:电压测量;A/D转换;89S51单片机

光电脉搏信号检测电路设计

光电脉搏信号检测电路设计 生物医学工程1班-唐维-3004202327 摘要:系统采用硅光电池做为光电效应手指脉搏传感器识取脉搏信号。信号经放大后采用低通放大器克服干扰。 关键词:脉搏测量放大器二阶低通 一、前言 脉诊在我国已具有2600多年临床实践,是我国传统中医的精髓,但祖国传统医学采用“望、闻、问、切”的手段进行病情诊断,受人为的影响因素较大,测量精度不高。随着科学技术的发展,脉搏测试不再局限于传统的人工测试法或听诊器测试法。利用血液是高度不透明的液体,光照在一般组织中的穿透性要比在血液中大几十倍的特点, 可通过传感器对脉搏信号进行检测,这种技术具有先进性、实用性和稳定性,同时也是生物医学工程领域的发展方向。本文将详细介绍一种光传导式的脉搏信号检测电路,并说明所涉及到的问题和方法。 二、系统设计 1 系统目标设计及意义 设计制作一个光电脉搏测试仪,通过光电式脉搏传感器对手指末端透光度的监测,间接检测出脉搏信号,并在显示器上显示所测的脉搏跳动波形,要求测量稳定、准确、性能良好。 2 设计思想 (1)传感器:利用指套式光电传感器,指套式光电传感器的换能元件用硅光电池,由于心脏的跳动,引起手指尖的微血管的体积发生相应的变化(当心脏收缩时,微血管容积增大;当心脏舒张时,微血管容积减少),当光通过手指尖射到硅光电池时,产生光电效应,两极之间产生电压由于指尖的微血管内的血液随着心脏的跳动发生相应于脉搏的容积变化,因而使光透过指尖射到硅光电池时也发生相应的强度变化, 而非血液组织(皮肤、肌肉、骨格等)的光吸收量是恒定不变

的, 这样就把人体的脉搏(非电学量) 转换为相应于脉博的电信号, 方便检测。 (2)按正常人脉搏数为60~80次/min ,老人为100~150次/min ,在运动后最高跳动次数为240次/ min 设计低通放大器。5Hz 以上是病人与正常人脉搏波体现差异的地方,应注意保留。 (3)测量中考虑到并要消除的干扰有:环境光对脉搏传感器测量的影响、电磁干扰对脉搏传感器的影响、测量过程中运动的噪声还有50Hz 干扰。 (4)由于透过指尖射到硅光电池的光强很小,输出短路电流约为0.1uA ~3 uA ,所以总共放大106倍以便于观察。传感器得到的脉搏信号极为微弱,很容易淹没在噪声及干扰信号之中,所以对取得的微弱信号先进行放大后再滤波。设计两极放大,因为三级放大个别电路板的零点漂移大得足以达到满幅,测量不准确。每个单级放大器的放大倍数不大于30,以免自激振荡。 (5)所选的电阻参数要尽量精确, IC 选用偏置电流小、输入失调电压小的运算放大器,考虑到性价比,使用LM324。由于硅光电池的输出短路电流受光照变化较大,使得输出变化大,所以采用12V 双电源供电。 3 整体框图 本系统共分为三个模块: 方框图中各部分的作用是: (1)传感器:将脉搏的跳动转换为电压信号,放大104倍。 (2)一级放大电路:对微弱信号进行放大,放大约20倍 (3)二阶低通滤波电路: 滤除干扰信号并进一步放大,再放大约20倍。 4 单元电路的设计

相关主题
文本预览
相关文档 最新文档