当前位置:文档之家› 生物质燃料与其它燃料的对比

生物质燃料与其它燃料的对比

生物质燃料与其它燃料的对比
生物质燃料与其它燃料的对比

生物质燃料与其它燃料的对比

什么是生物质成型燃料?

??? 众所周知,人类的生存和发展离不开能源。随着世界能源需求量的迅猛增长,以煤、石油、天然气为代表的常规能源将最终被开采殆尽,同时大量使用这些化石燃料会导致一系列严重的环境污染问题。因此,大力提高能源的利用效率,以高新技术开发低污染、可再生的新能源,逐步取代石油、煤、天然气等不可再生能源,是解决能源危机和环境问题的重要途径。

??? 在众多的可再生能源中,生物质能以其资源储量丰富、清洁方便和可再生的特点,具有极大的开发潜力。生物质能是指绿色植物通过叶绿素将太阳能转化为化学能而储存在生物质内部的能量,即以生物质为载体的能量,是太阳能的一种表现形式。生物质是太阳能最主要的吸收器和储存器。太阳能照射到地球后,一部分转化为热能,一部分被植物吸收,转化为生物质能;由于转化为热能的太阳能能量密度很低,不容易收集,只有少量能被人类所利用,其他大部分存于大气和地球中的其他物质中;生物质通过光合作用,能够把太阳能富集起来,储存在有机物中,这些能量是人类发展所需能源的源泉和基础。基于这一独特的形成过程,生物质能既不同于常规的矿物能源,又有别于其他新能源,兼有两者的特点和优势,是人类最主要的可再生能源之一。我国有着丰富的生物质资源,据统计,全国桔杆年产量约5. 7亿吨,人畜粪便约3. 8亿吨,薪柴年产量(包括木材砍伐的废弃物)为1. 7亿吨,还有工业排放的大量有机废料、废渣,每年生物质资源总量折合成标准煤约3 亿吨。我国直接利用生物质能已有几千年的历史, 但利用效率极低,即使是目前农村已较普遍推广的省柴节煤灶, 热效率也仅20 % 左右。近年来,在一些经济发达的城市周边地区, 农民大量使用优质高效燃料, 用于炊事、取暖,而将农作物桔杆直接放在农田焚烧,浪费了能源,也污染了环境。生物质能资源结构疏松,能量密度低,仅是标准煤的一半多一些,且不易贮运。

生物质成型燃料是将秸秆、稻壳、锯末、木屑等生物质废弃物,用机械加压的方法,使原来松散、无定形的原料压缩成具有一定形状、密度较大的固体成型燃料,其具有体积小、密度大、储运方便;燃烧稳定、周期长;燃烧效率高;灰渣及烟气中污染物含量小等优点。生物质成型燃料由可燃质、无机物和水分组成,主要含有碳(C)、氢(H)、氧(O)及少量的氮(N)、硫(S)等元素,并含有灰分和水分。

各种成分构成其中:

◆碳:生物质成型燃料燃料含碳量少(约为40-45%),尤其固定碳的含量低,易于燃烧。

◆氢:生物质成型燃料燃料含氢量多(约为8-10%),挥发分高(约为75%)。

◆生物质燃料中碳多数和氢结合成低分子的碳氢化合物,遇到一定的温度后热分解而析出挥发物。

◆硫:生物质成型燃料燃料中含硫量少于%,燃烧时不必设置烟气脱硫装置,降低了成本,又有利于环境的保护。

◆氮:生物质成型燃料燃料中含氮量少于%,NOx排放完全达标。

◆灰分:生物质成型燃料,燃料采用高品质的木质类生物质作为原料,灰分极低,只有1%左右。

◆生物质成型燃料的热值:生物质成型燃料的密度一般为~m3,热值约为4,100±100Kcal/Kg。1吨生物质成型燃料相当于~吨标准煤或吨柴油/燃料油。生物质成型燃料除具有生物质燃料的一般特点外,还具有以下优点:

(1)密封塑料袋包装,装运方便,清洁安全;

(2)固体颗粒,密度大、体积小,贮存方便;

(3)燃料挥发分高,易于点燃和燃烧;

(4)燃料热值高,水份低,燃烧效果好;

(5)CO2可达到生态“零”排放,SO2、NOx优于柴油,排放完全达标,实现减排目标。

生物质成型燃料的主要用途:

◆1、小型炉窑:主要用来家庭取暖、供应生活热水。这种应用主要以生物质颗粒燃料为主,北欧采用的比较多,国内因为无相关产品开发,其应用几乎为空白。此类产品小型化,便于流水线生成,单品美观大方,适合家庭使用。

◆2、未加工的生物质燃料直接燃烧,此类多为中小型锅炉,由于燃料不加工,节省投资成本,国内多为此种锅炉。这类锅炉燃料以工业废料为主,燃烧投料方式粗放,且多为人工投料方式,炉膛漏风严重,存在安全隐患,锅炉总体效率不高。但是从此类锅炉用户企业自身来说,因为利用了自身废料来产生蒸汽或供热,大大节省了其他燃料的投资和之前废料处理的开支,生物质燃料燃烧污染少等特点,企业应用积极性非常高。

◆3、对原料进行粗加工,然后直接燃烧发电或者产汽。如将秸秆打碎,将木块、木条打碎,然后用输送机(气力输送或者机械输送)送入燃烧室。这类应用要求厂房建设在原料产地附近,以降低运输费用。

生物质成型燃料燃料与各种油、气燃料运行成本的比较:目前我国城镇4t/h以下的小型锅炉主要以燃油(气)居多,其中广东省就有数万台之多。以生物质成型燃料代替油(气)燃烧,经济效益非常显着,下表以蒸汽锅炉为例,列示了生物质成型燃料燃料与各种油、气燃料运行成本的比较:

项目生物质成型燃料天然气柴油重油

热值(kcal/kg) 4100 8600 10200 10000

锅炉热效率(%) 89% 90% 90% 89%

吨蒸汽燃料耗量(kg/t)

吨蒸汽燃料费用(元/t)

燃料费用节约率(-%)? ---21% 42% 22%

燃料费用比:

◆生物质成型燃料∶天然气∶轻柴油∶重油= 1 ∶∶∶

人类的生存和发展离不开能源,随着世界能源需求量的迅猛增长,然而作为人类目前主要能源来源的石油、天然气和煤炭却正在迅速地减少。根据国际能源机构的统计,如按目前的势头发展下去,不加节制的话,那么,地球上这三种能源供人类开采的年限分别只有40 年、50 年和240年了。因此,大力提高能源的利用效率,以高新技术开发低污染、可再生的新能源,逐步取代石油、煤、天然气等不可再生能源,是解决能源危机和环境问题的重要途径。生物质能源是一种理想的可再生能源,它来源广泛,每年都有大量的工业、农业及森林废弃物产出。即使不被用于生产能源,这些废弃物的处理也是令人头疼的事情。仅欧盟每年便产出五亿吨(干基) 这类物质。另外,

世界上87 %的能源需求来源于化石燃料,这些燃料燃烧时,向大气中排放出大量的CO2 ,而生物质作为燃料时,由于生物质在生长时需要的CO2 量相当于它燃烧时排放的CO2 量,因而大气中的CO2 净排放量近似为零。而且,生物质中硫的含量极低,基本上无硫化物的排放。所以,利用生物质作为替代能源,对改善环境,减少大气中的CO2 含量,从而减少“温室效应”都有极大的好处。因此,将生物质作为化石燃料的替代能源,便能向社会提供一种各方面都可被接受的可再生能源。从矿物能源资源有限和因大量使用会造成环境状态恶化的战略观点出发,结合我国拥有丰富生物质资源的现实,逐步发展工业锅炉生物质的燃烧技术,对节约常规能源、优化我国能源结构,将有积极意义。

生物质燃料对比

广州红晟生物质成型燃料有限公司一吨蒸汽使用不同燃料的效益比较 以上数据由广州红晟生物质成型燃料有限公司提供,仅作参考,不得盗用!

广州红晟生物质成型燃料有限公司燃烧机的锅炉配套与耗能表

以上数据由广州红晟生物质成型燃料有限公司提供,仅作参考,不得盗用! 生物质燃料代油节能技术一、什么是生物质燃料(Biomass Moulding Fuel,简称BMF)?

生物质燃料(Biomass Moulding Fuel,简称“BMF”)是采用木屑、秸秆等农林废弃物作为原材料, 经过粉碎、烘干、混合、挤压等工艺,制成颗粒状的可直接燃烧的一种新型清洁燃料。 生物质燃料多为茎状农作物经过加工产生的块装环保新能 源,其直径一般为6~8厘米,长度为其直径的4~5倍,破碎率小 于1.5%~2.0%,干基含水量小于10%~15%,灰分含量小于1.5%, 硫含量和氯含量均小于0.07%,氮含量小于0.5%。生物质燃料具 有可再生和环境友好得双重特点,被认为是未来可持续能源系统 得重要能源,可以看作一种绿色煤炭,是一种新型洁净能源。 二、生物质燃料指标及构成 项目发热量MJ/Kg 固定碳挥发份碳氧 指标17.02 15.99% 74.29% 46.88% 37.94% 项目氢硫氮灰份水份 指标 5.27% 0.05% 0.14% 1.81% 9.91% 三、生物质燃料特点 低碳能源:低碳、低硫、低氮、低粉尘 资源利用:生物质燃料是利用农、林业废弃物作为原材料,制造成各种成型可燃烧的现代化清洁燃料,替代燃油锅炉燃烧用油,达到变废为宝、节约能源的目的。 循环经济:生物质燃料产品的原材料来源于农、林业废弃物,不会产生"与人争粮"和"与粮争地"的社会问题,原料分布广泛,循环生长,取之不尽,用之不竭。

燃料热值换算..

标准煤 英文名称:standard coal consumption for power generation coal其他名称:煤当量定义:按煤的热当量值计量各种能源的能源计量单位。通常1kg煤当量等于29.27MJ。所属学科:资源科技(一级学科) ;能源资源学(二级学科) 标准煤亦称煤当量,具有统一的热值标准。我国规定每千克标准煤的热值为7000千卡。将不同品种、不同含量的能源按各自不同的热值换算成每千克热值为7000千卡的标准煤。 能源折标准煤系数=某种能源实际热值(千卡/千克)/7000(千卡/千克) 在各种能源折算标准煤之前,首先直测算各种能源的实际平均热值,再折算标准煤。平均热值也称平均发热量.是指不同种类或品种的能源实测发热量的加权平均值。计算公式为: 平均热值(千卡/千克)=[∑(某种能源实测低位发热量)×该能源数量]/能源总量(吨) 各类能源折算标准煤的参考系数 能源名称平均低位发热量折标准煤系数 原煤20934千焦/公斤0.7143公斤标煤/公斤 洗精煤26377千焦/公斤0.9000公斤标煤/公斤 其他洗煤8374 千焦/公斤0.2850公斤标煤/公斤 焦炭28470千焦/公斤0.9714公斤标煤/公斤 原油41868千焦/公斤1.4286公斤标煤/公斤 燃料油41868千焦/公斤1.4286公斤标煤/公斤 汽油43124千焦/公斤1.4714公斤标煤/公斤 煤油43124千焦/公斤1.4714公斤标煤/公斤 柴油42705千焦/公斤1.4571公斤标煤/公斤 液化石油气47472千焦/公斤1.7143公斤标煤/公斤

炼厂干气46055千焦/ 公斤1.5714公斤标煤/公斤 天然气35588千焦/立方米12.143吨/万立方米 焦炉煤气16746千焦/立方米5.714-6.143吨/万立方米 其他煤气3.5701吨/万立方米 kva KVA = KiloVolt-Ampere 千伏安 变压器在额定状态下的输出能力的保证值,单位用千伏安(kVA)表示(伏安VA与兆伏安MVA不常用),由于变压器有很高运行效率,通常原、副绕组的额定容量设计值相等。 KV.A是变压器中的容量 KVA为视在功率,它的大小和功率因素有关! 有功功率P、无功功率Q、视在功率S有如下关系 P=S×cosΦ(Φ是功率因素) Q=S×SinΦ S平方=Q平方+P平方 例如:功率因素cosΦ=0.8 有功功率为P=1Kw 则tgΦ=0.75,所以视在功率S的平方=P的平方+P*tgΦ的平方 即S=1.25KVA 功率因数为1时,1KVA=1KW KW 与KVA 的区别是什么? KW是指有功功率,KVA是指容量, 对于用电器来说,VA*功率系数=W 在电阻类器件上,VA=W它的功率系数是1 在电动机上,功率系数是0.7-0.9不到1 在发电机上,W指的应该是主动机的功率,比如说汽油机或柴油机的输出功率,VA应该指的它的带负载能力.

生物质燃料和固体矿物质燃料(煤)的主要差别

生物质燃料直接燃烧过程特性的分析 1 生物质燃料和固体矿物质燃料(煤)的主要差别 生物质燃料和煤碳相比有以下一些主要差别 1)含碳量较少,含固定碳少。生物质燃料中含碳量最高的也仅50%左右,相当于生成年代较少的褐煤的含碳量。特别是固定碳的含量明显地比煤炭少。因此, 生物质燃料不抗烧,热值较低。 2)含氢量稍多,挥发分明显较多。生物质燃料中的碳多数和氢结合成低分子的碳氢化合物,遇一定的温度后热分解而折出挥发物。所以,生物质燃料易被引燃燃烧初期,析出量较大,在空气和温度不足的情况下易产生镶黑边的火焰。在使用生物质为燃料的设备设计中必须注意到这一点。 3)含氧量多。生物质燃料含氧量明显地多于煤炭,它使得生物质燃料热值低, 但易于引燃。在燃烧时可相对地减少供给空气量。 4)密度小。生物质燃料的密度明显地较煤炭低,质地比较疏松,特别是农作物秸杆和粪类。这样使得这类燃料易于燃烧和燃尽,灰烬中残留的碳量较燃用煤炭 者少。 5)含硫量低。生物质燃料含硫量大多少于 0."20%,燃烧时不必设置气体脱硫装置降低了成本,又有利于环境的保护。 2 生物质燃料的燃烧过程 生物质燃料的燃烧过程是强烈的化学反应过程,又是燃料和空气间的传热、传质过程。燃烧除去燃料存在外,必须有足够温度的热量供给和适当的空气供应。它可分作: 预热、干燥(水分蒸发)、挥发分析出和焦碳(固定碳)燃烧等过程。燃料送入燃烧室后,在高温热量(由前期燃烧形成)作用下,燃料被加热和析出水分。随后,然料由于温度的继续增高,约250C左右,热分解开始,析出挥发分,并形成焦碳。气态的挥发分和周围高温空气掺混首先被引燃而燃烧。一般情况下,焦碳被挥发分包 围着,燃烧室中氧气不易渗透到焦碳表面,只有当挥发分的燃烧快要终了时,焦碳及

生物质燃料与其它燃料的对比

生物质燃料与其它燃料的对比 什么是生物质成型燃料? 众所周知,人类的生存和发展离不开能源。随着世界能源需求量的迅猛增长,以煤、石油、天然气为代表的常规能源将最终被开采殆尽,同时大量使用这些化石燃料会导致一系列严重的环境污染问题。因此,大力提高能源的利用效率,以高新技术开发低污染、可再生的新能源,逐步取代石油、煤、天然气等不可再生能源,是解决能源危机和环境问题的重要途径。 在众多的可再生能源中,生物质能以其资源储量丰富、清洁方便和可再生的特点,具有极大的开发潜力。生物质能是指绿色植物通过叶绿素将太阳能转化为化学能而储存在生物质内部的能量,即以生物质为载体的能量,是太阳能的一种表现形式。生物质是太阳能最主要的吸收器和储存器。太阳能照射到地球后,一部分转化为热能,一部分被植物吸收,转化为生物质能;由于转化为热能的太阳能能量密度很低,不容易收集,只有少量能被人类所利用,其他大部分存于大气和地球中的其他物质中;生物质通过光合作用,能够把太阳能富集起来,储存在有机物中,这些能量是人类发展所需能源的源泉和基础。基于这一独特的形成过程,生物质能既不同于常规的矿物能源,又有别于其他新能源,兼有两者的特点和优势,是人类最主要的可再生能源之一。我国有着丰富的生物质资源,据统计,全国桔杆年产量约5. 7亿吨,人畜粪便约3. 8亿吨,薪柴年产量(包括木材砍伐的废弃物)为1. 7亿吨,还有工业排放的大量有机废料、废渣,每年生物质资源总量折合成标准煤约3 亿吨。我国直接利用生物质能已有几千年的历史, 但利用效率极低,即使是目前农村已较普遍推广的省柴节煤灶, 热效率也仅20 % 左右。近年来,在一些经济发达的城市周边地区, 农民大量使用优质高效燃料, 用于炊事、取暖,而将农作物桔杆直接放在农田焚烧,浪费了能源,也污染了环境。生物质能资源结构疏松,能量密度低,仅是标准煤的一半多一些,且不易贮运。 生物质成型燃料是将秸秆、稻壳、锯末、木屑等生物质废弃物,用机械加压的方法,使原来松散、无定形的原料压缩成具有一定形状、密度较大的固体成型燃料,其具有体积小、密度大、储运方便;燃烧稳定、周期长;燃烧效率高;灰渣及烟气中污染物含量小等优点。生物质成型燃料由可燃质、无机物和水分组成,主要含有碳(C)、氢(H)、氧(O)及少量的氮(N)、硫(S)等元素,并含有灰分和水分。 各种成分构成其中: ◆碳:生物质成型燃料燃料含碳量少(约为40-45%),尤其固定碳的含量低,易于燃烧。 ◆氢:生物质成型燃料燃料含氢量多(约为8-10%),挥发分高(约为75%)。 ◆生物质燃料中碳多数和氢结合成低分子的碳氢化合物,遇到一定的温度后热分解而析出挥发物。 ◆硫:生物质成型燃料燃料中含硫量少于0.02%,燃烧时不必设置烟气脱硫装置,降低了成本,又有利于环境的保护。 ◆氮:生物质成型燃料燃料中含氮量少于0.15%,NOx排放完全达标。 ◆灰分:生物质成型燃料,燃料采用高品质的木质类生物质作为原料,灰分极低,只有1%左右。 ◆生物质成型燃料的热值:生物质成型燃料的密度一般为1.1~1.4t/m3,热值约为 4,100±100Kcal/Kg。1吨生物质成型燃料相当于0.55~0.6吨标准煤或0.4吨柴油/燃料油。生物质成型燃料除具有生物质燃料的一般特点外,还具有以下优点: (1)密封塑料袋包装,装运方便,清洁安全; (2)固体颗粒,密度大、体积小,贮存方便;

生物质燃料对比

广州红晟生物质成型燃料有限公司一吨蒸汽使用不同燃料得效益比较

以上数据由广州红晟生物质成型燃料有限公司提供,仅作参考,不得盗用! 广州红晟生物质成型燃料有限公司 燃烧机得锅炉配套与耗能表 生物质燃料代油节能技术

一、什么就是生物质燃料(Biomass Moulding Fuel,简称BMF)? 生物质燃料(Biomass Moulding Fuel,简称“BMF”)就是采用木屑、秸秆等农林废弃物作为原材料,经过粉碎、烘干、混合、挤压等工艺,制成颗粒状得可直接燃烧得一种新型清洁燃料。 生物质燃料多为茎状农作物经过加工产生得块装环保新能源,其直径 一般为6~8厘米,长度为其直径得4~5倍,破碎率小于1、5%~2、0%, 干基含水量小于10%~15%,灰分含量小于1、5%,硫含量与氯含量均 小于0、07%,氮含量小于0、5%。生物质燃料具有可再生与环境友好得

双重特点,被认为就是未来可持续能源系统得重要能源,可以瞧作一种绿色煤炭,就是一种新型洁净能源。

1、燃烧器采用整体结构、外形稳重大方; 2、启动时由液化气点火、助燃,使生物质燃料在短时间内稳 定燃烧; 3、采用电子点火,火焰自动检测; 4、燃烧热负荷自动跟踪调节; 5、意外熄火时自动关闭燃烧器,停止燃料供应,确保下次 点火正常顺畅;?6、燃烧器运行噪音低,符合环保要求; ?7、全自动控制,可实现与炉体联锁控制与保护;一体化产 品,安装维修简单方便。 五、生物质燃料与各种油、气燃料比较 项目生物质颗粒天然气柴油重油动力煤生物质燃烧 机 热值 (kcal/kg)4000±1 9800 5000±100 5000±100 单价1、30元/kg 6元/m3 6、5元/kg 4、64元/kg 0、95元/kg 1、30元/kg 锅炉热效率 (%) 75 90 9090 70 85 吨蒸汽燃料耗量240 78、4 70 75230 150 吨蒸汽燃料费用(元/t) 288 468455345 218 195

常见燃料热值

常见燃料热值表 机油8571 kcal/kg 石蜡10714 kcal/kg 丙酮14692 kcal/kg 粗醇 3600 千卡/kg 含水10% 燃料油10000 千卡/kg 标准煤的低位发热量为29271KJ(千焦)/Kg(即7000 千卡/公斤) 能源名称平均低位发热量 原煤 20908 千焦(5000 千卡)/千克 洗精煤 26344 千焦(6300 千卡)/千克 其它洗煤 1、洗中煤 8363 千焦(2000 千卡)/千克 2、煤泥8363-12545 千焦(2000-3000 千卡)/千克 焦炭28435 千焦(6800 千卡)/千克 原油41816 千焦(10000 千卡)/千克 燃料油 41816 千焦(10000 千卡)/千克 汽油 43070 千焦(10300 千卡)/千克 煤油 43070 千焦(10300 千卡)/千克 柴油 42652 千焦(10200 千卡)/千克 液化石油气 50179 千焦(12000 千卡)/千克 炼厂干气 45998 千焦(11000 千卡)/千克 天然气 38931 千焦(9310 千卡)/m3 54525 千焦(13039 千卡)/千克焦炉煤气 16726-17981 千焦(4000-4300 千卡)/ m3 氢气12753 KJ(3049.55 千卡)/M3 142836 KJ(34155 kcal)/kg

其它煤气: 1、发生炉煤气5227 千焦(1250 千卡)/ m3 2、重油催化裂解煤气19235 千焦(4600 千卡)/ m3 3、重油热裂解煤气35544 千焦(8500 千卡)/ m3 4、焦炭制气 16308 千焦(3900 千卡)/ m3 5、压力气化煤气 15054 千焦(3600 千卡)/ m3 6、水煤气10454 千焦(2500 千卡)/ m3 煤焦油 33453 千焦(8000 千卡)/千克 粗苯41816 千焦(10000 千卡)/千克 298Ko常见燃气成分的燃烧热 kJ/Mol kCal/Mol kCal/NM3 CH 4 890.36 212.80 9493.6 C 2H 6 1559.9 372.82 16632.6 C 3H 8 2220.0 530.58 23670.8 C 4H 10 2878.5 687.96 30692.0 C 5H 12 3536.1 845.13 37703.8 C 2H 4 1411.0 337.23 15044.8 C 2H 2 1299.6 310.60 13856.8 C 6H 6 (g) 3293.6 787.17 35118.0 CH 3 OH(l) 726.6 173.66 C 2H 5 OH(l) 1366.9 326.69 H 2 285.8 68.31 3047.5 CO 85.624 68.264 3045.5

棕榈壳生物质燃料分析

棕榈壳生物质燃料 一、背景 能源是现代经济社会发展的基础和重要制约因素,随着各国经济和人口的增长,近年来世界能源需求量不断攀升,据英国石油公司(BP)发布的2012年般的《BP2030世界能源展望》显示,全球能源需求量到2030年预计增长39%,每年增长1.6%。 展望未来,石油、天然气、煤炭等传统石化燃料,由于其不可在生长性,燃烧过程中的二氧化碳对环境的破坏性、以及价格的不断升高,在能源使用中,其份额会逐步下降核能、水能、风能和太阳能等不可再生能源的份额则会提高,逐步形成多元化能源结构。 随着社会的进步和发展,人们的节能意识和环保意识的日益增强,国际社会对节能减排的要求标准越来越高,因而对清洁能源的开发利用也逐步走上台面,而生物质能源因其廉价和可再生性而受到各国广泛的关注。生物质燃料问题已成为世界各国可持续发展战略的重要组成部分,可以为政府提供多赢的能源解决方案---首先低廉的价格降低能源使用成本,碳排放量减少兑现对京都议定书的承诺:同时亦降低了对遥远的、政局不稳甚至是危险国原油的依赖程度,有利于能源安全。 当前中国经济快速增长,对能源的需求量也急剧增长,2011

年中国的原油净进口量已经达到2.64亿吨。大力发展生物质燃料有助于缓解石油资源短缺和需求不断增长的矛盾。降低对能源的进口依赖,保障国家能源安全。 二、项目简介 本项目的目标物“棕榈废料生物质燃料”,是一种以棕榈废料为原材料,通过破碎,压榨、烘干、揉丝、挤压等技术手段,制成成型的生物质燃料。 其生产流程如下: 1、棕榈油厂收集脱油后的果柄下脚料 2、输送到挤压机(挤出水分和果柄剩余油分) 3、输送到破碎机破碎 4、输入烘干线 5、烘干后到输送到揉丝机进行二次粉碎 6、挤压机挤压成型 7、输送到包装车间 8、输送人成品仓库 9、送至码头装集装箱

各种燃气热值对比

物质 热值 l000千焦/千克千卡/千克 干木柴12.63010.14 焦炭29.77095.33 酒精30.27214.78 木炭(完全燃 烧) 33.58003.15 木炭(不完全燃 烧) 10.52508.45 煤气41.910009.91 柴油42.710201.03 煤油46.111013.29 汽油46.111013.29 氢气142.534043.25 泥煤13.83296.82 褐煤16.84013.52 烟煤29.36999.77 无烟煤33.58003.15 电860/度 各种燃料热值表 能源名称平均低位发热量折标准煤系数 原煤20908千焦(5000千卡)/千克0.7143千克标准煤/千克 洗精煤26344千焦(6300千卡)/千克0.9000千克标准煤/千克 其他洗煤 ⑴洗中煤8363千焦(2000千卡)/千克0.2857千克标准煤/千克 ⑵煤泥8363~12545千焦(2000-3000千克)0.2857~0.4285千克标准煤/千克

焦碳28435千焦(6800千卡)/千克0.9714千克标准煤/千克 原油41816千焦(10000千卡)/千克1.4286千克标准煤/千克 燃料油41816千焦(10000千卡)/千克1.4286千克标准煤/千克 汽油43070千焦(10300千卡)/千克1.4714千克标准煤/千克 煤油43070千焦(10300千卡)/千克1.4714千克标准煤/千克 柴油42552千焦(10200千卡)/千克1.4571千克标准煤/千克 液化石油气50179千焦(12000千卡)/千克1.7143千克标准煤/千克 炼厂干气45998千焦(11000千卡)/千克1.5714千克标准煤/千克 油田天然气38931千焦(9310千卡)/立方米1.3300千克标准煤/立方米 气田天然气35544千焦(8500千卡)/立方米1.2143千克标准煤/立方米 煤矿瓦斯气14636~16726千焦(3500~4000千卡)/立方米0.5~0.5714千克标准煤/立方米焦炉煤气16726~17081千焦(4000~4300千卡)立方米0.5714~0.6143千克标准煤/立方米其他煤气 ⑴发生炉煤气5227千焦(1250千卡)/立方米0.1786千克标准煤/立方米 ⑵重油催化裂解煤气19235千焦(4600千卡)/立方米0.6571千克标准煤/立方米 ⑶重油热裂解煤气35544千焦(8500千卡)/立方米1.2143千克标准煤/立方米 ⑷焦碳制气16308千焦(3900千卡)/立方米0.5571千克标准煤/立方米 ⑸压力气化煤气15054千焦(2500千卡)/立方米0.5143千克标准煤/立方米 ⑹水煤气10454千焦(2500千卡)/立方米0.3571千克标准煤/立方米 煤焦油33453千焦(8000千卡)/立方米1.1429千克标准煤/立方米 甲苯41816千焦(10000千卡)/立方米1.4286千克标准煤/立方米 0.03412千克标准煤/106焦热力(当量) (0.14286千克标准煤/1000千卡电力(当量)3596千焦(860千卡)/千瓦小时0.1229千克标准煤/千瓦小时电力(等价)11826千焦(2828千卡)/千瓦小时0.4040千克标准煤/千瓦 高热值甲烷9510Kcal/Nm3 乙烷16792Kcal/Nm3 丙烷24172Kcal/Nm3 正丁烷 31957Kcal/Nm3 异丁烷31757Kcal/Nm3 戊烷40428Kcal/Nm3 低热值甲烷8578 Kcal/Nm3 乙烷15371Kcal/Nm3 丙烷22256Kcal/Nm3 正丁烷29513Kcal/Nm3 异丁烷 29324Kcal/Nm3 戊烷37418Kcal/Nm3 760mmHg,0℃,干基为标准

生物质成型燃料优点分析

生物质成型燃料优点分析 一、生物质实现循环经济 生物质燃料的生产和使用,减少了农林废弃物在田间焚烧或分解过程对环境的危害,增加农民收入,创造就业机会。与常规燃料相比,生物质燃料属于碳中性在为使用者带来经济利益的同时,也使其成为了环保的倡导典范。 到2012年将会产生6亿吨生物质,其中有超过80%的生物质将得不到利用。中国的十一五规划以及2007年《中国应对气候变化国家方案》均提出温室气体以及二氧化硫的减排目标。这些文件都非常鼓励采用生物质并提出了许多具体的鼓励措施。有了这些文件,燃料使用者不仅能够拥护国家提出的上述目标还能免交高额的排放税。另外,这也将使得通过《京都议定书》中规定的核证减排量(CERs)形式或核实减排量(VERs)形式实现的碳配额货币化成为可能。 对于生物燃料的发展,中国的“十一五”规划明确了发展替代能源要按照以新能源替代传统能源、以优势能源替代稀缺能源、以可再生能源替代化石能源的思路,逐步提高替代能源在能源结构中的比重。按照这一思路,以木质材料为基础的可再生能源应该是当前发展的重点。 二、什么是生物质成型燃料(BMF)? 生物质成型燃料(Biomass Moulding Fuel,简称“BMF”)是应用农林废弃物(如秸杆、锯末、甘蔗渣、稻糠等)作为原料,经过粉碎、烘干、挤压等工艺,制成各种成型的(如颗粒状)可在澄宇研制的BMF锅炉内直接燃绕的新型清洁燃料。 三、为什么使用生物质成型燃料 标准燃料=燃料稳定 降低含水率<(10%)提高燃烧效率 减少烟气和粉尘排放 增加密度(以锯末为例200KG/M 到650KG/M) 降低运输成本 减少储存空间 易于掌控操作方便 属于低碳燃料 含氢量高,挥发分高,易于燃烧 含氧量高,易于燃烧和燃尽,灰渣中残留的碳量极少 含硫量低,燃烧时不必设置气体脱硫装置,降低了成本,又有利于环境保护 燃烧器排烟温度较低,效率提高 灰分含量低……(词句不变) 低位发热量3800-4800K/CAL/KG,与中质煤相当 属于可再生能源,可替代化石燃料,有效降低温室气体排放 四、生物质成型燃料的环保优势 运用国际先进技术,各种生物质原料都可以成型燃料。这些成型燃料运输方便,同时符合环境管理体系(EHS)的储存要求。颗粒燃能够在工业锅炉里极稳定的燃烧,并且较之其它燃料产生更少的灰烬和排放物。

生物质燃料分析与测试实验报告(20210224122810)

生物质燃料分析与测试 实验报告 学院:可再生能源学院 班级: 姓名: 学号: 指导老师:

目录 元素分析实验 (3) 热值测定实验 (5) 灰熔点测定实验 (7) 工业分析实验 (9) 热重分析实验 (11) 运动粘度的测定 (15)

元素分析实验 依据标准:GB/T 25214-2010煤中全硫测定红外光谱法 DL/T 568-1995燃料元素的快速分析方法(高温燃烧红外热导法) 1.原理 2.试剂和材料 3.仪器设备 4.实验步 实验之前须用标准物质标定6组。 实验时取一锡箔模具,称取30mg废液,由于液体有一定挥发性,所以重量会一直降低,需迅速放入压模机中封口,然后再于天平中称量。将试样重量输入系统,把包好的试样按序号放入元素分析仪的放样口中。元素分析仪会自动测量样品中的N、C、H、S含量。 5.数据处理 ,素分析测试型测得的结果手下: weight N[%] C[%] H[%] S[%] average 以上数据为干燥基数据,已知样品的灰分(干燥基)含量为9%,空干基样品的水分含量为10%o 干燥基: N, = 0.099(%) C d =35.12(%) H d =12.371(%) S d =0.218(%) 4=9(%) O =100-统一6-耳 /-4=43.192(%)

空干基: O°d = 10° 一 %-H —Qd-A ,一 38.873(%) 干燥无灰基: =1 °0 — N daf - C 的一"轲 一 S 阿=47.464(%) 6 .原始数据 见附录 100-心 100-10 100 100- _____________ Cd 100~~ 100-M , _______ 100- 100-M , 100 100-M , ad 100 100-10 100 x 0.0985 = 0.08865(% 卜 0.089(%) x35.12 = 31.608(%) 100-10 100 100-10 100 100-10 x4 = -------- 100 xl2.371 = U.1339(%)? 11.134(%) xO.218 = 0.1962(%) ? 0.196(%) x9 = 8.1(%) 100 100-4 100 100-4 100 loo —4 100 100 — 4 100 100-9 100 100-9 100 x 0.0985 = 0.10824(%) x 0.108(%) x35.12 = 38.59341(%)比 38.593(%) 100-9 x 12.371 = 13.59451(%)?13.595(%) i nn xS. = ]0()x0.218 = 0.23956(%)^0.240(%)

各种燃料热值对比

煤炭企业能源统计报表 填报讲解 煤炭工业节约能源办公室 煤炭工业节能技术中心 二○○七年五月

煤炭企业能源统计报表填报讲解 1.能源统计 能源统计是运用综合能源系统经济指标体系和特有的计量形式,采用科学统计分析方法,研究能源的勘探、开发、生产、加工、转换、输送、流转、使用等各个环节运动过程、内部规律性和能源系统流程的平衡状况等数量关系的专业统计。其研究对象是由能源统计实践所决定的。可概括以下几方面: ①、研究经济系统运行的全过程以及相互联系的数量表现及其关系,揭示能源内部运行规律; ②、研究能源利用情况,挖掘节能潜力,促使合理有效地使用能源; ③、研究能源综合平衡状况及规律,反映能源资源的形成及能源使用方向,揭示能源供需之间的矛盾; ④、研究如何搜集、整理和分析能源系统数量关系的方法论。 能源统计的任务是:准确、及时、全面、系统地搜集、整理和分析整个能源系统流程的统计资料,如实反映能源经济的发展水平、能源经济效益、能源综合平衡状况等发展变化情况,为宏观决策和管理,为企业生产、经营管理提供统计信息和依据。 1.1 能源统计特点 能源统计是范围极广的国民经济统计中的分支,其对象是能源系统。能源系统相当复杂,包括能源资源、能源生产、能源加工转换到最终用能等环节,并通过这些环节与所有的社会活动联系起来。能源系统的特殊性

决定了能源统计工作的一系列特点,使它和其他国民经济统计分支有很大的不同。 1.1.1 能源工业要把自己的产品分配给国民经济的各部门(包括能源工业自身在内),同时又要把产品分配给每一个社会消费成员,其联系面之广几乎没有任何其他工业部门可以与其相比。 1.1.2 能源生产形态多样化:除了化工产品,没有一个工业的产品同时具有固、液、气三态,另外还有载能体。这些产品在生产、储存、运输、控制和使用的难易程度均有很大差别,但同时又有共同的特点,就是都能发热,而且某些产品在一定条件下,还可在一定程度上互相转换或在用途上可以相互替代。 1.1.3 能源统计对象——能源统计边界复杂;其中包括能源产品与非能源产品的边界,也包括能源工业与非能源工业的边界问题。能源统计对象不是一个相互孤立的燃料或动力系统,而是一个种类多、涉及面广、相互制约的错综复杂系统。 1973年“石油危机”以后,国际上非常重视能源问题,有关能源的系统分析、能源模型、能源的生产需求预测、代用能源战略的研究等迅速展开。这些研究需要多方面的数据资料。数据的完备程度与质量好坏,是进行能源管理和研究的一项基础性工作。 能源管理和研究工作对能源统计工作的要求,也推动了能源统计分为三级,第一级为从一次能源生产到加工转换,第二级为从加工转换到交付最终用户使用,第三次为能源在最终使用部门的使用情况,用什么设施使用的?用什么工艺流程?“有效能”是多少?经济效益如何?第三级能源

生物质燃料特性简介

生物质成型燃料简介 生物质成型燃料(BMF),是以农林废弃物(秸秆、稻壳、花生壳、木屑、树枝等)为原料,通过生物质固体燃料致密加工成型设备在特定的工艺条件下加工制成块状的高效燃料,是一种环保、可再生能源。生物质成型燃料的二氧化硫排放量是煤的1/28,是天然气的1/8,二氧化碳可做到零排放,可替代煤炭、天然气、液化气等不可再生资源,广泛应用于工商业生产和居民生活,是国家重点支持发展的新能源。(一)BMF物理特性 密度:800~1100 kg/m 热值低:3400~4000 kcal/kg(详见测试报告) 挥发份高:60~70% 灰分大:5~15%(不稳定) 水分高:5~12% 含硫量低:0.02~0.21%(常用的烟煤含硫量为0.32~3%) (详见测试报告) 常见生物质原料制成生物质成型燃料热值参考值 玉米秸秆:3470 kcal/kg 棉花秸秆:3790 kcal/kg 松木锯末:4010 kcal/kg 稻草:3470 kcal/kg 烟杆:3499 kcal/kg

花生壳:3818 kcal/kg (二) BMF燃烧特性 从燃烧特性曲线可以看出,BBDF燃烧分三个阶段进行:第一阶段(A-B):水分蒸发阶段(~180℃); 第二阶段(B-C):挥发份析出、燃烧阶段(180~370℃),此阶段挥发份大量析出,并在300℃左右着火剧烈燃烧;

第三阶段(C-D):固定碳燃烧阶段(370~620℃)。 BMF的燃烧具有如下特点: 着火温度低:一般为300℃左右 挥发分析出温度低:一般为180~370℃ 易结焦且结焦温度低:一般800℃左右 根据以上研究成果可知: 由于生物质燃料特性的不同,导致生物质燃料在燃烧过程中的燃烧机理、反应速度以及燃烧产物的成份与燃煤相比都存在较大的差别,表现出与燃煤不同的燃烧特性。 (三)BMF燃烧原理 生物质燃料洁净燃烧必须满足三个条件: 1、要求较高的温度(不低于380℃) 2、可燃气体在高温区停留时间要长 3、充足的氧气

各种燃料的比热值

煤的燃烧值和煤气的燃烧值各是多少?有多少大卡?热量是多少?哪个热量大? 煤=3×107J/kg 煤气的燃烧值是4.2×107J/Kg,1焦=0.024卡路里 标准煤:7000大卡/kg=7000*4.18=29260kJ/kg=29.26MJ/kg 焦炉煤气: 4000大卡/m3左右,煤气密度0.54kg/标准m3 所以,4000大卡/标准m3/(0.54kg/标准m3)≈7400大卡/kg 显然,煤气的热值较高。 各种燃料热值 燃料名称热值MJ/kg 折算率 固体燃料 焦炭 25.12-29.308 0.857-1.000 无烟煤 25.12-32.65 0.857-1.114 烟煤 20.93-33.50 0.714-1.143 褐煤 8.38-16.76 0.286-0.572 泥煤 10.87-12.57 0.371-0.429 石煤 4.19-8.38 0.143-0.286 标准煤 29.26 1.000 液体燃料 原油 41.03-45.22 1.400-1.543 重油 39.36-41.03 1.343-1.400 柴油 46.04 1.571 煤油 43.11 1.471 汽油 43.11 1.471 沥青 37.69 1.286 焦油 29.31-37.69 1.000-1.286 燃料名称热值MJ/m3 折算率 气体燃料 天然气 36.22 1.236 油田伴生气 45.46 1.551 矿井气 18.85 0.643 焦炉煤气 18.26 0.623 直立炉煤气 16.15 0.551 油煤气(热裂) 42.17 1.439 油煤气(催裂) 18.85-27.23 0.643-0.929 发生炉煤气 5.01-6.07 0.171-0.207 水煤气 10.05-10.87 0.343-0.371 两段炉水煤气 11.72-12.57 0.400-0.429 混合煤气 13.39-15.06 0.457-0.514 高炉煤气 3.52-4.19 0.120-0.143

生物质燃料市场推广分析报告

生物质燃料市场调查 一、生物质燃料概述 生物质固体成型燃料(简称:生物质燃料;俗称“秸秆煤”)。是利用新技术及专用设备将各种农作物秸秆、木屑、锯末、花生壳、玉米芯、稻草、麦秸麦糠、树枝叶、甘草等压缩碳化成型的现代化清洁燃料,无需任何添加剂和粘结剂,生物质成型燃料挥发份高,易析出,碳活性好,易燃,灰分少,点火快,更加节约燃料,降低使用成本,是未来再生能源的一个重要发展方向。随着世界性的能源匮乏,生物质再生能源的市场需求和利润空间将不可估量。 二、秸秆燃料成型后的主要技术参数: 密度:700—1400千克/立方米;灰分:1—20 %;水分≤15% 。热值:3700—4500大卡/千克;秸秆成型燃料块的热值以秸秆的种类不同而不同。以玉米秸秆为例:热值约为煤的0.7~0.8倍,即1.25t的玉米秸秆成型燃料块相当于1t煤的热值,玉米秸秆成型燃料块在配套的下燃式生物质燃烧炉中燃烧,其燃烧效率是燃煤锅炉的1.3~1.5倍,因此1t玉米秸秆成型燃料块的热量利用率与1t煤的热量利用率相当。 通过不同形式的锅炉使用试验表明,现有的燃煤锅炉完全适应生物质燃料,无需更换锅炉,可以直接使用生物质成

型燃料: 生物质燃料燃烧排放物完全符合环保标准,是国家部门认可的现代化清洁燃料,烧后的废气排放: CO零排放;NO2 14毫克/立方米(微量);SO246毫克/立方米远低于国家标准,可忽略不计;烟尘低于127毫克/立方米远低于国家标准。物质燃料燃烧后的灰分处理: 生物质燃料燃尽率可达96%,剩余4%的灰分可以回收做钾肥,实现了“秸秆→燃料→肥料”的有效循环。 三、关于使用生物质燃料相关政策 1、生物质发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种。它一般分为农林废弃物发电和城镇生活垃圾发电,具体包括农林废弃物直接燃烧发电、生物质混合燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电等多种形式。我国生物质发电产业仍处于政策引导扶持期,其产业与上下游配套产业发展不协调、燃料的收储运困难、生物质发电运行成本高等问题有待在下一步的推进中得到解决。 2、《可再生能源“十二五”规划》中明确表示,2015年我国生物质发电装机达到1300万千瓦,其中农林生物质发电800万千瓦、沼气发电200万千瓦、垃圾焚烧发电300万千瓦,分别为2010年装机量的4.0、2.5和6.0倍,将带来行业的爆发式增长,按农林生物质和垃圾发电厂装机容量约为

燃煤锅炉燃生物质锅炉天然气锅炉的分析与比较

燃煤锅炉、燃生物质锅炉、天然气锅炉的分析与比较 近年来,由于环保压力的不断加大和能源危机日益严重,在政府不断推出一系列关于促进减排及节约能源,鼓励新能源推广等的法律法规后,作为耗能和排放大户的锅炉,也在各级政府、锅炉生产和使用单位、能源供应企业等的共同推动下,已经或正在进行着大规模的更新或改造。但由于各地政策的不一,各市场主体利益驱动不一以及技术和认识的不足等原因,导致部份锅炉使用单位对各种改造方案的优劣势认识不充分,改造后实际运行效果与预定效果差距明显或严重不适用,为此,特本着对客户负责,以大量详实科学的数据为基础,从客观公正的角度来综合比较几种主要能源(煤、天然气、生物质)锅炉方案的差异,以供客户甄别选择。 一、理论上三种能源在锅炉使用成本上的差异 (以吨蒸汽60万大卡热焓为例): 注: 1、II类烟煤低位热值国家标准范围:4200—5000Kcal/Kg,取中值4600 Kcal/Kg;生物质燃料由于成份、加工 等不同,燃料热值范围为3300-5000 Kcal/Kg,通常为3800-4200 Kcal/Kg,取中值4000 Kcal/Kg。 2、锅炉理论效率取自国家标准《锅炉节能技术监督管理规程》中的限定值,即最低设计要求值。 3、燃料价格暂按长沙市场目前价格核算,各地可按实际自行修正。 二、实际运行中三种能源在锅炉使用成本上的差异 (仍以吨蒸汽60万大卡热焓为例)。由于: (一)燃煤锅炉 1、燃煤锅炉煤质易波动,煤量计量普遍存在一定的问题; 2、锅炉本体设计、司炉人员操作水平、煤质不稳定、积灰等原因导致实际层燃锅炉(20T以下链条锅炉)平均运行效率均低于70%,部份锅炉甚至低于60%(摘自哈工大赵钦新教授在工业锅炉行业协会上的报告);

生物质燃料市场运营和管理

生物质燃料市场运营和管理 摘要:简要说明一次性资源量的有限性,可再生资源浪费造成的危害性,开发可再生能源的必要性。重点分析了生物质能的开发利用、市场运营和管理。对运营管理中的一些问题,扼要阐述了解决这些问题的途径,以供探讨。 关键词:生物质能、运营、管理 引言 随着全球工业化的迅速推进,对能源的需求不断增加,一次性能源终有枯竭的一天,能源成为社会经济发展的瓶颈,由于常规能源的有限性,近年来世界各国对可持续能源的发展都给予高度重视,寻找新能源、提高能源利用率已成为重要的战略任务。中央提出“要加快发展再生资源综合利用”。 秸秆是一种重要的可再生资源,虽然我国秸秆资源丰富,却被民众所忽视,现在农村的秸秆利用,主要是作为生活燃料及饲料使用,能源利用率不足20%,处于较低的原始利用水平。而80%以上的秸秆就被弃置田间地头,或烧或扔,造成资源的严重浪费和环境的污染。秸秆资源的利用,涉及到整个农业生态系统中的土壤肥力、水土保持、环境安全以及再生资源有效利用等方面。利用生物质发电在我国尚属新兴产业,可以解决资源的浪费,提高再生能源的综合利用[1]。1生物质燃料市场的运营 市场的启动 秸秆是一季收割常年使用的生物质,首先要保证秸秆离田有草可收,其次是要实现有效的秸秆储存保管。在秸秆收集市场化还没有形成的初期,要达到“屯草于民、藏草于农”的效果,必须实行政府行政推动和企业市场运作相结合的方式,才能保证电厂有草可收。 生物质燃料从秸秆的产出→收集→运输→加工→运输→销售到电厂入炉,这是一个产业链,不同的环节要由不同的行业来做,这些环节的费用构成生物质燃料的成本。如果不正视每个环节的运营,将会增加整个生物质燃料的成本;相反如果一味降低生物质燃料的收购价,也会造成产业链的畸形发展。生物质发电是我国的一个新兴产业,不少电厂在原料保障方面走过了许多弯路,实践证明,以公司投入建站的模式建立能源基地的,会大大增加燃料运营成本。我们必须依托当地原有资源,在运作初期,可以适当投入设备带动运营市场,积极推进市场化运作。生物质燃料运营只有走市场化运作之路,尊重市场规律,才能提高各环节的积极性,使市场逐渐走入良性循环,实现燃料的长期供应,真正变废为宝。 市场的培育 可根据前期调研,掌握资源的分布区域,深入宣传发动,培育经纪人,并从中筛选出有实力、能做事的经纪人,和他们签订合同,给予技术服务,提供必要的资金或设备支持。特别是要引导他们掌握生物质收集、储存、加工和运输等各个环节的技能,了解如何降低各环节费用支出。以点带面推动他们的周边人加入生物质产业链的行列,从而扩大市场、稳固市场,带动产业链的良性发展。 收购模式的定位 一个好的收购模式决定市场的命运,为降低收购环节的成本,尽量采取直供的收购模式,不留中间环节。对运营好的经纪人签订购销合同,鼓励发展秸秆收储大户,对保质完成合同的给予奖励,优胜劣汰逐渐壮大经纪人队伍。另一方面为拓宽资源渠道,调动广大农户从事生物质收集的积极性,快速启动市场,在市场启动阶段,最有效的收购模式是采取挂牌收购,公开收购价格和质量标准。这样可以让有实力并愿意尝试的人全部参与进来,不会因为个别人的操作不当造成整个区域的资源流失。 根据市场正确定价 市场前期启动阶段,不要盲目定价,定价的依据是资源考察和市场调研。根据资源

燃用生物质颗粒燃料和各种燃料成本经济性对比

燃用生物质颗粒燃料和各 种燃料成本经济性对比 The latest revision on November 22, 2020

电磁灶与生物质灶能耗对比 性能参数 电磁灶参数:P功率=30KW(两台)共计:60kw 蒸柜参数:P功率=24KW(一台24盘) 每小时电能消耗量:W=W电磁灶+W蒸柜=(30×2)×1+(24w)×1=84KW.h 两台生物质灶:一台生物质灶每小时消耗8.4kg的燃料 数据结果 燃用生物质颗粒燃料灶参数和电能成本经济性对比(以文山丘北云南师大附小食堂为例) 燃料名称环保性热值燃料消耗量燃料单价每小时运行成本 (元) 电能无污染860千卡/度84度0.51元/ 度 42.84 生物质颗粒无污染4200千卡 /kg 16.8kg 1.1元 /kg 18.48 实验结果 1.实验结果表明单位时间内,生物质灶的能耗更低,更经济; 2.生物质灶实现了一灶多用,不仅仅局限于单独的炒菜,在炒菜的同时可产生 蒸汽(或烧水)蒸米饭或馒头,实现了能量的最大化利用; 3.单位生物质颗粒的热值更高 燃用生物质颗粒燃料锅炉参数和各种燃料成本经济性对比 燃用生物质颗粒燃料锅炉参数和各种燃料成本经济性对比(以1吨锅炉为例)燃料名称环保性热值锅炉热效率燃料消耗量燃料单价每小时运行成本 混合煤严重污染5000千卡/kg65%185kg/h 1.00元 /kg 185.00元 重油严重污染8000千卡/kg85%88.8kg/h 4.70元 /kg 417.00元 柴油污染10200千卡/kg85%69kg/h 7.20元 /kg 496.80元 天然气无污染8000千卡/kg86%87kg/m3 4.5元/m3391.50元 电能无污染860千卡/度95%734度0.80元 /kg 587.20元 生物质颗粒无污染4200千卡/kg81%178kg/h 1.10元 /kg 195.00元 水煤浆无污染4060千卡/kg82%180kg/h 1.20元 /kg 216.00元 生物质颗粒与其他燃料比较

生物质燃料燃烧

生物质燃料燃烧特性与应用 郑陆松 2008031620 关键词:生物质燃料、燃烧过程、特性、应用、锅炉 摘要:生物质燃料是一种可再生能源,介绍其组成成分,燃烧的一般过程和特点。根据 多种典型生物质燃料的基本组成,着重分析介绍了生物油的燃烧过程、性能特点及在动力机械中的应用。以锅炉为例具体分析玉米秸秆在其中的层燃燃烧过程和特性。分析总结了生物质燃烧对锅炉的影响。 1、前言 生物质燃料是一种可再生能源,是指依靠太阳光合作用而产生的各种有机物质,是太阳能以化学能的形式存在于生物之中的一种能量形式,直接或间接地来源于植物的光合作用。被认为是第四大能源,分布广,蕴藏量大。 生物质燃料基本特性 生物质的种类很多,一般可分以下5大类:①木质素:木块、木屑、树皮、树根等;②农业废弃物:秸秆、果核、玉米芯、甘蔗皮渣等;③水生植物:藻类、水葫芦等;④油料作物:棉籽、麻籽、油桐等;⑤生活废弃物:城市垃圾、人及牲畜的粪便。 生物质作为有机物燃料是由多种复杂的高分子有机化合物组成的复合体,化学组成主要有:纤维素、半纤维素、木质素和提取物等,这些高分子物质在不同种类生物质、同一种类生物质的不同区域其组成也不同,有些甚至有很大差异。生物质的可燃成分主要是有机元素如碳、氢、氮和硫,虽然就元素的成分而言,生物质燃料的成分和常规燃料煤炭基本上没什么区别,但正是各成分在数量上的差异导致了生物制燃烧产物与煤炭的差异。生物质的碳含量普遍在50%左右,低于普通的烟煤,而氢含量则高于烟煤,尤其是挥发份和氧含量远远高于普通烟煤,氧含量超过煤10倍左右。由于生物质燃料的可燃组分含量相对比较低,因此生物质燃料的低位发热量比一般烟煤低。在着火燃烧性能方面,生物质燃料的挥发份含量远远高于普通烟煤,导致着火燃烧性能明显高于普通烟煤。在燃烧污染物生成排放方面,生物质燃料的硫含量仅为0.1 %左右,含氮量和理论氮气容积也低于烟煤,所以总的SO2和NOx生成量都远低于烟煤。根据秸秆生物质燃料高挥发分、高氧量、低硫份和灰份的基本特性,因此相对于煤炭而言,秸秆生物质具有易燃、清洁环保的特点。 2、生物质燃料: 2.1生物质燃料燃烧过程分析: 生物质燃料的燃烧过程主要分为挥发分的析出、燃烧和残余焦炭的燃烧、燃尽两个独立阶段。其燃烧过程的特点是:【1】 (1)生物质水分含量较多,燃烧需要较高的干燥温度和较长的干燥时间,产生的烟气体积较大,排烟热损失较高。

相关主题
文本预览
相关文档 最新文档