当前位置:文档之家› 永磁同步电机的无传感器控制策略

永磁同步电机的无传感器控制策略

永磁同步电机的无传感器控制策略
永磁同步电机的无传感器控制策略

2009,36(8)控制与应用技术 EMC A

永磁同步电机的无传感器控制策略

吴 奇, 程小华

(华南理工大学电力学院,广东广州 510640)

摘 要:机械传感器应用存在的诸多缺陷,使无传感器控制技术成为研究热点。介绍了多种常见的估算

永磁同步电机转子位置和转速的方法,并指出了各种方法的优缺点。分析了无传感器技术研究现状和今后的

研究发展趋势。

关键词:永磁同步电机;无传感器控制;位置检测

中图分类号:TM301.2 TM351 文献标识码:A 文章编号:1673-6540(2009)08-0029-04

Sensorless Control of Per m anent

M agnet SynchronousM otor

W U Q i, C HENG X i a o-hua

(Co llege of E lectric Pow er,South China Un i v ersity of Techno l o gy,Guang zhou510640,Ch i n a)

Abstrac t:In orde r to reso l ve the va rious defects for usi ng m echanica l sensors,sensorless contro l techno l ogy be-come a research ho tspo t.T he v arious m ethods o f t he esti m a ti on about the positi on and speed of P M S M roto r are pres-ented,and po i nted out the advantages and disadvantages of them.The sta t us and the deve l op m ent trend of the re-search about the sensor l ess are g i ven.

K ey word s:perman en t magne t s ynch ron ous m otor(P M S M);sensorless contro;l positi on detection

0 引 言

永磁同步电动机(P M S M)因其高转矩惯性比、高能量密度和高效率等优点被广泛应用于国防、工业控制和日常生活等领域。传统的P M S M 控制系统通常采用电磁或光电传感器来获取所需的转子位置和转速信号。传感器的安装、电缆连接和环境限制等问题,带来了系统成本增加、体积增大、可靠性降低、易受环境影响等缺陷[1-2]。为了解决机械传感器带来的各种问题,许多学者开展了无传感器控制技术研究,其主要思想是利用电机绕组中的有关电信号,通过适当的方法估算出转子的位置和转速,实现转子位置的自检测。无传感器控制技术可以有效地解决机械传感器带来的诸多问题,使系统结构简化,成本降低,对提高系统可靠性有重要意义,已成为电机驱动领域的研究热点。

1 基波激励法

在各种转子位置和速度的检测方法中,大多通过检测基波反电势来获得转子的位置信息,但采用的具体方法有所不同,大致可分为以下几种。

(1)基于数学模型的开环估计[2]。该方法基于电机的电磁关系从电机的动态方程直接推导出转速或者位置角的关系表达式,并利用检测到的定子三相端电压和电流计算出转子位置角和转子角速度。

文献[3]中提出一种方法:在定子二相静止坐标系中,通过定子电压、电流得到实轴、虚轴的定子磁链值,根据二相磁链反正切值可得当前时刻的定子磁链位置,由定子磁链的变化率可得到电机的转速。该方式用到的电机参数不多,所以受参数影响较小,但电机必须工作在功率因数cos =1的方式下才能实现转子位置估计。

开环估计法一方面简单直观,动态响应快,几乎没有延时问题。另一方面,数学模型虽然可以有多种选择,但无论采用什么数学模型,都涉及电机参数,而电机参数在电机运行时是动态变化的。虽然对定子电阻和电感等参数可以进行在线辩识,但辩识的实现也需要复杂的技术。因此,开环

29

控制与应用技术 EMC

A2009,36(8)

估计技术很难用于高精度伺服驱动系统。

(2)锁相环技术(PLL)。在无传感器控制中,由于转子的位置不能测得,也就不能获得dq 坐标中的定子电流(i d,i q)及电压(u d,u q),因此dq坐标系下的数学模型对转子位置和速度估计是没有实用价值的。在这种情况下,选择一个可控的参考坐标d q 用于无传感器控制,它不是同步旋转坐标,而是定向于已知的估计位置 r,并可按确定的控制规律自行调整的坐标,将这个作为 估计坐标 。该估计坐标与同步旋转坐标之间存在一个差值 ,对其采用适当的控制方法,能够自行调节 ,使假设的坐标与转子dq坐标趋于一致,即可正确估计转子的位置和速度。该估计方法一方面构成的控制系统相对简单,由于采用PLL调节器,提高了系统的估计精度和稳定性,并能获得良好的稳态特性;另一方面,保证其估计精度的核心是对位置偏差 准确估计,但位置偏差 的数学模型仍然要受电机参数变化的影响,虽然采用闭环控制,但还没有完全摆脱对电机参数的依赖。

文献[4-6]都从检测得到的电压、电流,基于电机模型计算出电机的转子位置偏差,采用锁相环结构对转子位置进行跟踪估算,得到较为满意的结果。

基于检测感应电动势,运用锁相环技术来估计转子速度和位置的方法,在低速情况下,扩展电动势很小,定子电阻和电感的不准确和变化对估计结果的准确性有很大影响。该方法不适合于静止和低速运行时的无传感器控制。

(3)模型参考自适应(MRAS)。MRAS辩识的基本思想是将不含未知参数的方程作为参考模型,将含有待估参数的方程作为可调模型,两个模型具有相同物理意义的输出量。两个模型同时工作,并利用其输出量的差值根据合适的自适应律来实时调节待估参数,以达到可调模型跟踪参考模型的目的。自适应律的设计通常以超稳定与正性动态系统理论为基础,系统和速度的渐进收敛也由Popov的超稳定性原理来保证。在实际应用中,可将转子速度 r作为待估参数,两模型的共同输出量可以是定子电流也可以是定子磁链,这取决于所选择的模型,因此该控制方法的性能和所选的模型与自适应律有关。

文献[7,8]都以定子电流作为共同的输出,对MRAS应用于永磁同步无传感器控制进行了研究。在此基础上,文献[9]特别针对i d=0的矢量控制策略研究了一种基于矢量控制的MRAS 的速度辨识方案,它只利用q轴的估算电流与实际电流之差作为误差信号,经过PI调节器得到估计转速,结构简单,容易实现。

(4)自适应状态观测器[10-12]。状态观测器的实质是状态重构,其原理是重新构造一个新系统,利用原系统中可直接测量的输入量和输出量作为其输入信号,并使其输出信号x (t)在一定的提法下等价于原系统的状态x(t)。状态观测器主要用来实时观测非线性动态系统的状态或参数,观测的方式是用电机的数学模型来预测(估计)电机的状态,而这个估计状态要被连续的以反馈校正方式进行校正。该方法首先将输出变量定义为观测器的状态量,观测器的输出与实际电机检测值作比较,用其误差来纠正观测器的估计值。具体方法是在状态估计方程中加一个校正项,包含有状态估计误差(状态估计值和测量值的偏差),于是该校正项就相当于一个误差补偿器,由它产生对状态估计方程的校正输入,由此构成了闭环状态估计,这样由状态估计方程(电机数学模型)加之校正环节就构成了状态估计器。状态观测器位置估计法已在很多电机上得到应用。

(5)扩展卡尔曼滤波(EKF)[13-16]。EKF是线性系统状态估计的卡尔曼滤波算法在非线性系统的扩展应用,是一种非线性系统的随机观测器,其优点是当出现系统和测量噪声时,仍能对系统状态进行准确估计。

EKF适用于高性能伺服驱动系统,可以在很宽的速度范围内工作,甚至在很低的速度下完成转速估计,也可以对相关状态和某参数进行估计。另外,滤波器增益能够适应环境而自动调节,所以EKF本身就是一个自适应系统。

采用EKF估计法算法复杂,计算量大,需要计算功能强大的数字信号处理器(DSP)芯片支持;滤波器模型复杂、涉及因素多,很难确定实际系统的噪声级别和算法中的卡尔曼增益,且受电机参数的影响较大。虽然可以在很宽的速度范围内运行,甚至可以降至很低的速度,但是在零速附

30

2009,36(8)控制与应用技术 EMC A

近,系统会散失控制能力,因为此时定子电压变得很小,其测量误差和电机模型的不确定性将会突

出,这会导致状态估计误差增大。

(6)滑模观测器

[17-20]

。滑模观测器是利用

滑模变结构控制系统对参数扰动鲁棒性强的特点,把一般状态观测中的控制回路修改成滑模变结构的形式。滑模变结构控制的本质是滑模运动,通过变结构变换开关以很高的频率来回切换,使状态的运动点以很小的幅度在相平面上运动,最终运动到稳定点。滑模运动与控制对象的参数变化及扰动无关,因此具有很好的鲁棒性。但是滑模变结构控制在本质上是不连续的开关控制,因此会引起系统抖动,在低速时将会引起比较大的转矩脉动。在对位置或速度估计时会含有高次谐波,这是滑模观测器的不足之处,也影响了它在高性能伺服控制中的直接应用。因此去抖动的同时仍然保证系统的鲁棒性是需要解决的问题。

2 高频信号注入法

基于基波激励的方法虽然实施简单,但在零速或低速时会因反电势过小或根本无法检测而失败,故多只适用于高转速运行。高频信号注入法为解决这一问题提供了有效途径。这种方法的基本原理是:向电动机定子注入高频电压信号,使其产生幅值恒定的旋转磁场或者产生沿着某一轴线脉动的交变磁场,这个轴线可以是静止的,也可以是旋转的。如果转子具有凸极性,这些磁场一定会受到凸极转子的调制作用,结果在定子电流中就会呈现与转子位置或速度相关联的高频载波信号,从这些载波中进一步提取出转子的位置或速度信息,由此确定位置或速度。

高频信号注入法从注入信号的不同,可以分为旋转高频信号注入法和脉动高频信号注入法。(1)旋转电压注入法[21-22]

。旋转电压注入法是向电机在基波激励的基础上再迭加三相对称的高频正弦电压信号,在电机内产生旋转磁场,其旋转速度要远高于转子旋转速度,一定会受到转子凸极周期性的调制,调制结果自然要反映在电流上,使定子高频电流成为包含有转子位置信息的载波电流,进行调制处理后即可从中提取出相关的转子位置信息,以此来构成各种闭环控制。

该方法具体的高频电流载波调制方法有矢量

变换和外差法,但从低幅度负序电流分量中获取转子位置自检测系统较为复杂,转子估算角度需作相位补偿,且转子位置信息提取过程的算法对其系统的动态性能影响较大。旋转高频电压注入法利用电机的凸极性,因此主要用于凸极率较大的内埋式P M S M 。旋转电压注入法不仅可以估计转子静止时的初始位置,还可进行低速时的位置和转速估计,但因为反电势过大,不适合高速区。

(2)脉动电压注入法[23-24]

。脉动高频电压注入法只在估计的同步旋转dq 坐标系中的d 轴上注入高频正弦电压信号,该信号在静止坐标系中是一个脉动的电压信号。此电压信号将会改变励磁磁路的饱和程度,使励磁磁路呈现一定的凸极性,这种变化也会反映在高频电流响应中,在响应电流中会有转子位置估计误差的信息。当转子位置估计误差角为零时,q 轴高频电流等于零,因此可以对q 轴高频电流进行适当的信号处理后,作为转子位置跟踪观测器的输入信号,以此获得转子的位置和速度。

脉动电压注入法是利用脉动电压来影响电机内部磁路的饱和特性,使电机表现出一定的凸极性,因此该方法适用于凸极性不强的表贴式P M S M 的位置或速度估计。另外,此种方法对q 轴产生的转矩电流影响小,产生的电磁转矩脉动小。和旋转电压注入法一样,该方法可以进行转子静止时的初始位置,也可进行低速时的位置和转速估计,但不适合高速区。

3 基于人工智能估计方法

近年来,随着现代控制理论和人工智能

[25-26]

的发展,许多新的理论方法不断地应用到无传感

器控制技术中,其中人工神经网络的应用是研究的热点。人工神经网络(ANN )用于无传感器,可以充分发挥其控制非线性系统的特长,同时又可使系统对参数摄动、噪声和干扰具有较强的稳健性。但其结构复杂,设计和调试难度大,特别是实时性是否能满足系统要求是个很重要的问题。

4 结 语

为解决机械传感器带来的诸多缺陷,无传感器控制技术的研究已成为国内外的研究热点,并取得了一定成果,但还存在许多问题。最重要的

31

是目前还没有一种单一的无传感器技术能够适用于在各种运行条件下有效地控制电机。在以上列

举的方法中,或适用于低速运行,或适用于高速运行,或受电机参数影响较大,或计算量很大、结构复杂,或稳定性不是很好。因此,许多学者考虑将适用于不同速度段的方法结合起来设计无传感器控制系统,以使适用的速度范围更宽。另外,随着现代控制理论和人工智能及DSP 技术的发展,P M S M 无传感器技术将来的发展方向将是利用新的控制理论和新的硬件条件,提高调速精度、拓宽调速范围,重点是改进低速段的调速性能。

参考文献

[1] 李永东.交流电机数字控制系统[M ].北京:机械

工业出版社,2002.

[2] 王成元,夏加宽,杨俊友,等.电机现代控制技术

[M ].北京:机械工业出版社,2006.

[3] R usong W u ,G ordon R S l emon .A per m anentm agne t

m otor drive w it hout a shaft senso r[C ] Con ference R ecord o f IEEE IAS A nnua lM eeti ng ,1990(1):553-558.

[4] 窦汝振,顾凌云,宁保涛.基于锁相环的永磁同

步电动机无位置传感器控制[J].电机与控制应用,2005,32(7):53-57.

[5] 王峰,张波.基于锁相环模型的P M S M 无传感器

矢量控制研究[J].电力电子技术,2004,38(3):48-49.

[6] 张春茂.基于锁相环模型的永磁同步电机无传感

器控制[J].微电机,2005,38(4):14-16.[7] Y an L i ang ,L i Y ongdong .

Sensor l ess control o f P M

synchronous m oto rs based on M RA S m e t hod and i n-i ti a l pos i tion l esti m ati on i[C ] I CE M S 2003,2003

(1):96-99.

[8] Zhang B i ngy,i Chen X i ang j un ,Sun G uanggu,i et a.l

A position sensor l ess vecto r -contro l syste m based on M RA S for lo w speed and h i gh torque PM S M dr i ve[C] ICE M S 2005(2):1682-1686.

[9] 齐放,邓智泉,仇志坚,等.基于M RA S 的永磁同

步电机无速度传感器[J].电工技术学报,2002,22(4):53-58.

[10] P ii ppo A,H i nkkanenM,Luom i J .Ana l ys i s o f an a -daptive observer for sensorless control of PM S M dr i ves [C] IECON 200531st Annual Conference ,2005:6.

[11] R as mussen H,V adstrup R,Borsti ng H.A dapti v e

observer for speed sensor l ess PM m oto r contro l [C] 200338th I A S Annua lM eeting ,2003(1):599-603.

[12] Sepe R B ,Lang J H.R ea-l ti m e adaptive contro l o f

the per m anent -magnet synchronous m otor [J].IEEE T ransacti ons on Industry A ppli cations ,1991,

27

(4):706-714.

[13] Dhaouadi R ached ,M ohan N ed ,N oru m L ars .Des i gn

and i m p l ementation o f an ex tended ka l m an filter f o r the state esti m a tion o f a pe r manent m agnet synchro -nous mo tor [J].

IEEE T ransactions on Pow er E l ec -tron ics ,1991,6(3):491-496.

[14] Bo l ognan i S ,O boe R,Z ig liotto M.Sensorless ful-l

d i g ita l P M S M dr i v

e w ith EKF esti m a ti on o

f speed and ro tor positi on[J].I EEE T ransac ti ons on Industrial E -lectron ics ,1999,46(1):184-191.

[15] 吴永前,李玉忍.扩展K a l m an 滤波在永磁同步电

机无速度传感器调速系统中的应用[J].电气传动自动化,2001,23(6):3-6.

[16] 章玮,姚卫忠,梁文毅.基于卡尔曼滤波器的永磁

同步电动机转速精确控制[J].微电机,2008,41(1):4-6.

[17] K ang K L,K i m J M,Hw ang K B ,et a.l Senso rless

contro l of P M S M i n h i gh speed range w ith iterati v e sli d i ng m ode observ er[C ] A PEC 04,2004(2):1111-1116.

[18] E l bul uk M,Changsheng L.i Sli d i ng m ode observer

for w i de -speed senso rless con tro l o f P M S M dri ve [C] 38t h I A S A nnua lM eeti ng ,2003(1):480-485.

[19] 吴静,杨俊友,何国锋.永磁同步电动机无传感

器控制的滑模观测器[J].沈阳工业大学学报,2006,28(1):45-49.

[20] 尚喆,赵荣祥,窦汝振.基于自适应滑模观测器

的永磁同步电机无位置传感器控制研究[J].中国电机工程学报,2007,23(7):23-27.

[21] Jang JH,H a J I ,O hto M,e t a.l A na l y si s o f perma -nent m agnet m ach i ne for sensorless contro l based on h i gh frequency si gnal injecti on [J].IEEE T ransac -ti ons on Industry A pp licati ons ,2004,40(6):1595-1604.

[22] 王丽梅,郑建芬,郭庆鼎.基于载波注入的凸极

永磁同步电动机无传感器控制[J].电机与控制学报,2005,9(4):334-336.

[23] Jang JH,Sul S K,H a J I ,et a.l Sensor l ess dr i ve o f

surface -m ounted per m anent -m agne tm otor by high fre -quency si gnal i njecti on based on m agneti c sali ency [J].

IEEE T ransacti ons on Industry A pp licati ons ,2003,39(4):1031-1039.

(下转第36页)

32

图5

a 相电流波形(模糊P I 控制

)

图6 a 相电流波形(传统P I 控制)

仿真结果表明:采用模糊PI 时滞补偿算法的网络控制系统,在2000r /m i n 的参考转速下,响

应快速且平稳,相电流和转速波形较为理想;在t =0.2s 或0 7s 时突加负载,转速发生突降,但又能迅速恢复到平衡状态;同样,在t =0.4s 或0.9s 时将负载转矩突减至零,转速发生突增,但也能够迅速恢复到平衡状态,稳态运行无静差,动、静态性能令人满意。较传统PI 控制,这种新型控制方法响应快、超调小、鲁棒性较强、脉动幅度小、抗干扰能力好,仿真结果证明了该方法的有效性和可行性。

4 结 语

基于模糊逻辑理论,设计了模糊PI 时滞补偿算法,模糊调制器充分利用了模糊控制理论规则少、应用简单灵活的特点,与离线寻优方法相结

合,在保证系统稳定性的同时,有效削弱了控制系统中由不确定性时滞造成的脉动与振荡,在改善远程网络控制系统的动、静态性能方面表现出了

较传统PI 控制更强的功能特性。将这种新型的补偿算法应用于实时性要求较高的无刷直流电机远程调速系统,仿真结果证明了该方法的正确性和有效性,它为分析和设计远程网络控制系统提供了有效的手段和新的思路。

参考文献

[1] 王飞跃,王成红.基于网络控制系统的若干基本思

考和分析[J].自动化学报,2002(28):60-65.[2] W e i Zhang ,B ranicky M S ,Philli ps S M.S tab ilit y o f

net wo rked contro l syste m s [J].IEEE Contro l Syste m s M agazine ,2001,21(1):84-99.

[3] N il sson J ,Bernha rdsson B ,W itten m ark B.Stochastic

ana l ysis and contro l o f rea -l ti m e syste m s w i th random ti m e de lays [J].Autom atica ,1998(34):57-64.[4] W a lsh G C ,H ong Y e .Schedu li ng o f net wo rked con -tro l syste m s [J].

IEEE Contro l System s M agazi ne ,

2001,21(1):57-65.

[5] 戴冠中,郑应平.网络化系统及其建模、分析、控制

与优化[J].自动化学报,2002,28(S1):60-65.[6] 纪志成,沈艳霞,姜建国.基于M ATLA B 无刷直流

电机系统仿真建模的新方法[J].系统仿真学报,2003,15(12):1745-1749.

收稿日期:2008-03-19

(上接第32页)

[24] 秦峰,贺益康,刘毅.两种高频信号注入法的无传

感器运行研究[J].中国电机工程学报,2005,25(5):116-121.

[25] B atze l T D ,Lee K Y.A d iagonall y recurrent neural

ne t w ork approach to senso rless ope ration of the per m a -nent m agne t synchronous mo tor [C ] I EEE P o w er

Eng i neer i ng Soc iety Su mm er M eeti ng ,2000(4):

2441-2445.

[26] 李鸿儒,顾树生.基于神经网络的P M S M 速度和

位置自适应观测器的设计[J].中国电机工程学报,2002,22(12):32-35.

收稿日期:2008-04-24

36

永磁同步电机无传感器控制技术

哈尔滨工业大学,电气工程系 Department of Electrical Engineering Harbin Institute of Technology 电力电子与电力传动专题课 报告 报告题目:永磁同步电机无传感器控制技术 哈尔滨工业大学 电气工程系 姓名:沈召源 学号:14S006040 2016年1月

目录 1.1 研究背景 (1) 1.2 国内外研究现状 (1) 1.3 系统模型 (2) 1.4 控制方法设计 (4) 1.5 系统仿真 (7) 1.6 结论 (8) 参考文献 (8)

1.1 研究背景 永磁同步电机具有体积小、惯量小、重量轻等优点,在各领域的应用越来越广泛。目前在永磁同步电机的各种控制算法中,使用最多的是矢量控制和直接转矩控制,而这两种控制方式都需要转子位置,但转子位置传感器的采用限制了系统使用范围。永磁同步电机控制系统大多采用测速发电机或光电码盘等传感器检测速度和位置的反馈量,这不但提高了驱动装置的造价,而且增加了电机与控制系统之间的连接线路和接口电路,使系统易于受环境干扰、可靠性降低。由于永磁同步电机无传感器控制系统具有控制精度高、安装、维护方便、可靠性强等一系列优点,成为近年来研究的一个热点。 1.2 国内外研究现状 无传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用电机绕组中的有关电信号,通过直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量如定子电压、定子电流中提取出与速度、位置有关的量,利用这些检测到的量和电机的数学模型推测出电机转子的位置和转速,取代机械传感器,实现电机闭环控制。 最早出现的无机械传感器控制方法可统称为波形检测法。由于同步电机是一个多变量、强耦合的非线性系统,所要解决的问题是采用何种方法获取转速和转角。目前适合永磁同步电机的最主要的无速度传感器的控制策略主要有以下几种 (1)利用定子端电压和电流直接计算出θ和ω。该方法的基本思想是基于场旋转理论,即在电机稳态运行时,定子磁链和转子磁链同步旋转,且两磁链之间的夹角相差一个功角δ,该方法适用于凸极式和表面式永磁同步电机。该方法计算方法简单,动态响应快,但对电机参数的准确性要求比较高,应用这种方法时需要结合电机参数的在线辨识。 (2)模型参考自适应(MRAS)方法。该方法的主要思想是先假设转子所在位置,利用电机模型计算出该假设位置电机的电压和电流值,并通过与实测的电压、电流比较得出两者的差值,该差值正比于假设位置与实际位置之间的角度差。当该值减小为零时,则可认为此时假设位置为真实位置。采用这种方法,位置精度与模型的选取有关。该方法应用于PMSM时有一些新的需要解决的问题。 (3)观测器基础上的估计方法。观测器的实质是状态重构,其原理是重新构造一个系统,利用原系统中可直接测量的变量,如输出矢量和输入矢量作为它的输入信号,并使输出信号在一定条件下等价于原系统的状态。目前主要存在的观测器:全阶状态观测器、降阶状态观测器、推广卡尔曼滤波和滑模观测器。其中滑模观测器有很好的鲁棒性,但其在本质上是不连续的开关控制,因此会引起系统发生抖动,这对于矢量控制在低速下运行是有害的,将会引起较大的转矩脉动。扩展卡尔曼滤波器提供了一种迭代形式的非线性估计方法,避免了对测量的微分

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

永磁同步电机的无传感器控制策略

2009,36(8)控制与应用技术 EMC A 永磁同步电机的无传感器控制策略 吴 奇, 程小华 (华南理工大学电力学院,广东广州 510640) 摘 要:机械传感器应用存在的诸多缺陷,使无传感器控制技术成为研究热点。介绍了多种常见的估算 永磁同步电机转子位置和转速的方法,并指出了各种方法的优缺点。分析了无传感器技术研究现状和今后的 研究发展趋势。 关键词:永磁同步电机;无传感器控制;位置检测 中图分类号:TM301.2 TM351 文献标识码:A 文章编号:1673-6540(2009)08-0029-04 Sensorless Control of Per m anent M agnet SynchronousM otor W U Q i, C HENG X i a o-hua (Co llege of E lectric Pow er,South China Un i v ersity of Techno l o gy,Guang zhou510640,Ch i n a) Abstrac t:In orde r to reso l ve the va rious defects for usi ng m echanica l sensors,sensorless contro l techno l ogy be-come a research ho tspo t.T he v arious m ethods o f t he esti m a ti on about the positi on and speed of P M S M roto r are pres-ented,and po i nted out the advantages and disadvantages of them.The sta t us and the deve l op m ent trend of the re-search about the sensor l ess are g i ven. K ey word s:perman en t magne t s ynch ron ous m otor(P M S M);sensorless contro;l positi on detection 0 引 言 永磁同步电动机(P M S M)因其高转矩惯性比、高能量密度和高效率等优点被广泛应用于国防、工业控制和日常生活等领域。传统的P M S M 控制系统通常采用电磁或光电传感器来获取所需的转子位置和转速信号。传感器的安装、电缆连接和环境限制等问题,带来了系统成本增加、体积增大、可靠性降低、易受环境影响等缺陷[1-2]。为了解决机械传感器带来的各种问题,许多学者开展了无传感器控制技术研究,其主要思想是利用电机绕组中的有关电信号,通过适当的方法估算出转子的位置和转速,实现转子位置的自检测。无传感器控制技术可以有效地解决机械传感器带来的诸多问题,使系统结构简化,成本降低,对提高系统可靠性有重要意义,已成为电机驱动领域的研究热点。 1 基波激励法 在各种转子位置和速度的检测方法中,大多通过检测基波反电势来获得转子的位置信息,但采用的具体方法有所不同,大致可分为以下几种。 (1)基于数学模型的开环估计[2]。该方法基于电机的电磁关系从电机的动态方程直接推导出转速或者位置角的关系表达式,并利用检测到的定子三相端电压和电流计算出转子位置角和转子角速度。 文献[3]中提出一种方法:在定子二相静止坐标系中,通过定子电压、电流得到实轴、虚轴的定子磁链值,根据二相磁链反正切值可得当前时刻的定子磁链位置,由定子磁链的变化率可得到电机的转速。该方式用到的电机参数不多,所以受参数影响较小,但电机必须工作在功率因数cos =1的方式下才能实现转子位置估计。 开环估计法一方面简单直观,动态响应快,几乎没有延时问题。另一方面,数学模型虽然可以有多种选择,但无论采用什么数学模型,都涉及电机参数,而电机参数在电机运行时是动态变化的。虽然对定子电阻和电感等参数可以进行在线辩识,但辩识的实现也需要复杂的技术。因此,开环 29

永磁同步电机控制方法以及常见问题

永磁同步电机控制方法以及常见问题永磁同步电机控制方法以及常见问题。永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 1.掌握永磁同步电机的成熟控制方法和开发内容后如何转型 (1)仿真:连续simulink+线性电机模型仿真,离散模型+线性电机+线性电机模型,q 格式离散模型+线性电机模型,simplorer+ansoft+无位置开环和闭环q格式仿真,模拟实际电机的线性电机模型建立,matlabgui+simulink仿真。都是无位置开环切闭环模式,各种仿真变着花样玩,ekf,hfi,pll,atan,磁连观测,扩展反电视等各种无位置仿真。仿真和实际跑板子其实只要电流采样底层做得好,过调制出得来都可以和仿真对的上。 (2)电机参数识别,通过变频器激励与响应实现,其余的表示不靠谱,可以在电机启动前10s内辨识出来。没啥用。 (3) 控制性能优化,6次谐波自适应陷波滤波,sogi等手段。 (4) 压缩机驱动自动力矩补偿。

(5) svpwm简单快速实现与单电阻采样结合研究。 (6) 各种各样电机调试与性能测试,我调试的电机型号应该有上千款了,仅限于 10w-20kw永磁同步电机,都快调试吐了,测试电机单体性能,带变频器运行极限测试 2.永磁同步电机初始角设置的问题 电机控制的调试里除却方波驱动,基本都会有一个类似于超前角的变量,该变量非常重要,直接影响速度,效率和抖动性。改变该角可以降低输出转矩,但可能会带来其他问题。 旋转转子使d轴指向A+与A-的中心线,就找到了初始角!但是对模型的初始角修改一下之后,在同样Thet角下,转矩下降好多!现在问题是在在修改初始角之后输出转矩能够稳定吗?这个输出转矩应该是与负载大小有关! 修改后的初始角与原来A相反电势为0对应的初始角,他们对应的输出转矩一定会变化的,且修改后的初始角中设定的功率角不是真正的模型功率角;至于设定负载我还没尝试过,不过我觉得你说的应该是对的。 其实我刚开始主要是对修改初始角后模型输出转矩稳定性有疑问,按照你的说法现在转矩应该是稳定的!那么对于一个永磁同步电机模型,峰值转矩可以达到,但是要求的额定转矩却过大,当修改模型之后达到要求的额定转矩时,峰值转矩却达不到,敢问你觉得应该从方面修改模型??或是我修改模型的思路有问题 3.永磁同步电机控制的建模问题讨论,如模型仿真慢、联合仿真问题、PI控制问题等 两种控制方式不一样的所有输出量不一样。 永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 无刷电机是电压源控制模式,而且计算出来都是开环的。性能由空载转速,电阻,电感

无速度传感器永磁同步电机发展与控制策略评述

无速度传感器永磁同步电机发展与控制策略评述潘萍付子义 中图分类号:TM351TM344.4文献标识码:A文章编号:1001-6848(2007)06-0091-02无速度传感器永磁同步电机发展与控制策略评述 潘萍,付子义 (河南理工大学,焦作454003) 摘要:介绍了永磁同步电机无速度传感器控制策略,分析了无速度传感器技术研究现状,指出状态观测器法及谐波注入法是目前无速度传感器技术的研究热点。 关键词:永磁同步电机;无速度传感器;评述;控制策略;状态观测器;谐波注入法 DevelopmentRenewandStrategyofPermanentM_agnetSynchronousMoOrSpeedSensorless PANPing,FUZi—yi (HenanPolytechnicUniversity,Jiaozuo454003,China) ABSTRACT:Thispapersummarizesthestrategyofpermanentmagnetsynchronousmotor.Itanalyzesthepresentofspeedsensorlesstechonologyofpermanentmagnetsynchronousmotor,indicatesthatthestateobserverandharmonicinjectionprocessarecurrentresearchfocus. KEYWORDS:Permanentmagnetsynchronousmotor;Speedsensorless;Review;Controlstrategy;Stateobserver;Harmonicinjectionmethod O引言 永磁同步电机控制系统离不开高精度的位置和速度传感器,但在实际的系统中,传感器的存在不仅增加了系统成本,还易受工作环境影响,同时也降低了系统的可靠性,因此,无速度传感器交流调速系统成为近年研究热点¨j。 1无速度传感器永磁同步电机研究及发展 无速度传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量,如定子电压、定子电流中提取出与速度有关的量,从而得出转子速度,并应用到速度反馈控制系统中。 国际上对永磁同步电机无速度传感器的研究始于20世纪70年代旧J。1975年,A.Abbondanti等人推导出了基于稳态方程的转差频率估计方法, 收稿日期:2006—09-26 基金项目:河南省杰出青年科学基金(0211060500);河南省重要攻关项目(9911020429)在无速度传感器控制领域作出首次尝试,调速比可达10:l。但由于其出发点是稳态方程,动态性能和调速精度难以保证。1979年,M.Ishida等学者利用转子齿谐波来检测转速,限于当时的检测技术和控制芯片的实时控制能力,仅在大于300r/rain的转速范围取得较好的结果。1983年R.Joetten首次将无速度传感器技术应用于永磁同步电机矢量控制。近年来,德国亚探工大(RWTHAachen)电机研究所的学者又先后开展了采用推广卡尔曼滤波器的永磁同步电机和感应电机无机械传感器调速系统的研究。美国麻省理工学院(MIT)电机工程系的学者在1992年发表了采用全阶状态观测器的无传感器永磁同步电机调速系统的论文。由于状态观测器受电机参数变化的影响较大,还需要另外一个状态观测器来估计电机的参数,这样使无传感器永磁同步调速系统的估计算法变得比较复杂,同时系统还存在对负载变化比较敏感等问题。国内自90年代中开始,也开始对永磁电机无速度传感器控制技术进行研究,但主要局限于各高等院校,研究主要还是着重于理论和仿真方面。 一91—   万方数据

永磁同步电机控制系统仿真模型的建立与实现资料

永磁同步电机控制系统仿真模型的建立与 实现

电机的控制 本文设计的电机效率特性如图 转矩(Nm) 转速(rpm) 异步电机效率特性 PMSM 电机效率特性 本文设计的电动汽车电机采用SVPWM 控制技术是一种先进的控制技术,它是以“磁链跟踪控制”为目标,能明显减少逆变器输出电流的谐波成份及电机的谐波损耗,能有效降低脉动转矩,适用于各种交流电动机调速,有替代传统SPWM 的趋势[2]。 基于上述原因,本文结合0=d i 和SVPWM 控制技术设计PMSM 双闭环PI 调速控制。其中,内环为电流环[3],外环为速度环,根据经典的PID 控制设计理论,将内环按典型Ⅰ系统,外环按典型Ⅱ系统设计PI 控制器参数[4]。 1. PMSM 控制系统总模型 首先给出PMSM 的交流伺服系统矢量控制框图。忽略粘性阻尼系数的影响, PMSM 的状态方程可表示为 ??????????-+????????????????????----=??????????J T L u L u i i P J P L R P P L R i i L q d m q d f n f n m n m n m q d ///002/30//ωψψωωω& && (1) 将0=d i 带入上式,有 ???? ??????-+??????????? ??? ??--=????? ?????J T L u L u i J P P L R P i i L q d m q f n f n m n m q d ///02/3/0ωψψωω& && (2) 转 矩 (N m )转速 (n /(m i n )) 效率 转速 (rpm) 转矩 (N m )

(完整word版)开题报告:永磁同步电机控制系统仿真

1.课题背景及意义 1.1课题研究背景、目的及意义 近年来,随着电力电子技术、微电子技术、微型计算机技术、传感器技术、稀土永磁材料与电动机控制理论的发展,交流伺服控制技术有了长足的进步,交流伺服系统将逐步取代直流伺服系统,借助于计算机技术、现代控制理论的发展,人们可以构成高精度、快速响应的交流伺服驱动系统。因此,近年来,世界各国在高精度速度和位置控制场合,己经由交流电力传动取代液压和直流传动[1][2]。 二十世纪八十年代以来,随着价格低廉的钕铁硼(REFEB)永磁材料的出现,使永磁同步电机得到了很大的发展,世界各国(以德国和日本为首)掀起了一股研制和生产永磁同步电机及其伺服控制器的热潮,在数控机床、工业机器人等小功率应用场合,永磁同步电机伺服系统是主要的发展趋势。永磁同步电机的控制技术将逐渐走向成熟并日趋完善[3]。以往同步电机的概念和应用范围己被当今的永磁同步电机大大扩展。可以毫不夸张地说,永磁同步电机已在从小到大,从一般控制驱动到高精度的伺服驱动,从人们日常生活到各种高精尖的科技领域作为最主要的驱动电机出现,而且前景会越来越明显。 由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合获得广泛的应用[4][5]。 尽管永磁同步电动机的控制技术得到了很大的发展,各种控制技术的应用 - 1 -

基于MTPA的永磁同步电动机矢量控制系统分解

基于MTPA的永磁同步电动机矢量控制系统 1 引言 永磁同步电动机由于自身结构的优点,再加上近年来永磁材料的发展,以及电力电子技术和控制技术的发展,永磁同步电动机的应用越来越广泛。而对于凸极式永磁同步电动机,由于具有更高的功率密度和更好的动态性能,在实际应用中越来越受到人们的重视[1]。 高性能的永磁同步电动机控制系统主要采用的矢量控制。交流电机的矢量控制由德国学者blaschke在1971年提出,从而在理论上解决了交流电动机转矩的高性能控制问题。该控制方法首先应用在感应电机上,但很快被移植到同步电机。事实上,在永磁同步电动机上更容易实现矢量控制。因为该类电机在矢量控制过程中不存在感应电机中的转差频率电流而且控制受参数(主要是转子参数)的影响也小。 永磁同步电动机的矢量控制从本质上讲,就是对定子电流在转子旋转坐标系(dq0坐标系)中的两个分量的控制。因为电机电磁转矩的大小取决于上述的两个定子电流分量。对于给定的输出转矩,可以有多个不同的d、q轴电流的控制组合。不同的组合将影响系统的效率、功率因数、电机端电压以及转矩输出能力,由此形成了各种永磁同步电动机的电流控制方法。[2]针对凸极式永磁同步

电动机的特点,本文采用最优转矩控制(mtpa),并用一种更符合实际应用的方法进行实现,并进行了仿真验证。

图1 电流id、iq和转矩te关系曲线 2 永磁同步电动机的数学模型 首先,需要建立永磁同步电动机在转子旋转dq0坐标系下的数学模型,这种模型不仅可用于分析电机的稳态运行性能,还可以用于分析电机的暂态性能。 为建立永磁同步电机的dq0轴系数学模型,首先假设: (1)忽略电动机铁芯的饱和; (2)不计电动机中的涡流和磁滞损耗; (3)转子上没有阻尼绕组; (4)电动机的反电动势是正弦的。 这样,就得到永磁同步电动机dq0轴系下数学模型的电压、磁链和电磁转矩方程,分别如下所示:

永磁同步电机无位置传感器

Performance Comparison of Permanent Magnet Synchronous Motors and Controlled Induction Motors in Washing Machine Applications using Sensorless Field Oriented Control Aengus Murray, Marco Palma and Ali Husain Energy Saving Products Division International Rectifier El Segundo, CA 90245 Abstract—This paper describes two alternative variable speed motor drive systems for washing machine applications. Three phase induction motors with tachometer feedback and direct drive permanent magnet synchronous motors with hall sensor feedback are two drive systems commonly used in North American washers today. Appliance manufacturers are now evaluating sensorless drive systems because of the low reliability and high cost of the speed and position feedback sensors. A Field Oriented Control Algorithm with an embedded rotor flux and position estimation algorithm enables sensorless control of both permanent magnet synchronous motors and induction motors. The estimator derives rotor shaft position and speed from rotor flux estimates obtained from measured stator currents and the applied voltages. Sampling of currents in the dc link shunt simplifies stator current measurement and minimizes cost. Field oriented control algorithm allows good dynamic control of torque and enables an extended speed range through field weakening. The digital control algorithm runs on a unique hardware engine that allows algorithms to be designed using graphical tools. A common hardware platform can run either the PMSM or IM using sensorless field oriented control in a front loading washer application. Test results are presented for both drives in standard wash cycles. Keywords-component; Advanced Control; Field Oriented Control Algorithm;, Appliance control architecture; I.I NTRODUCTION Accurate control of drum speed is required in both horizontal and vertical axis washer machines [1]. In front loading horizontal axis washers, the drum speed determines the washing action. There is a critical drum RPM, depending on the drum radius, above which the clothes stick to the inside edge of the drum. At this speed, the centrifugal force due to rotation balances the weight of the wet clothes. At speeds below this, the clothes will stick to the side of the drum until the component of the weight acting along the radius is greater than the centrifugal force. Once this angle is reached, the clothes fall back down into the base of the drum. The speed of the drum determines how vigorously the clothes are washed and allows a gentle wash cycle to be selected for delicate items. In the spin mode, the water is drained and the drum speed is increased well beyond the critical speed and the water forced out of the cloths by the centrifugal force. In traditional top loading vertical axis machines, the agitation action is produced mechanically using a gearbox and clutch. However, the introduction of speed control systems not only simplifies the mechanical system but also allows for wash cycle control. The control of the speed and angle of stroke allows the system designer to better manage the washing action and so develop wash cycles that use less water. European front-loading washers have used variable speed control for many years and typically use a universal ‘brush type’ motor. However, the American washer uses a larger drum size, which requires a motor with a power range beyond that of the universal motor solution. The front-loading drive solutions on the market today include direct drive permanent magnet synchronous motor drives or a belt drive using an induction motor. Appliance manufacturers are now evaluating these two drive types in top-loading machine to reduce cost and improve performance. However, both these drive systems use shaft feedbacks sensors. The direct drive PMSM typically uses a Hall Effect sensor for position feedback while the induction motor drive typically uses an analog or digital tachometer for speed feedback. The ideal universal drive can run either a PMSM or an induction motor without shaft feedback sensors. However, a single hardware platform can efficiently run either a PMSM or an induction motor using sensorless field oriented control algorithm. In both cases, speed and position estimates derive from motor terminal voltages and currents. Induction motors were initially preferred for washing machine drives because of the ease of running in high speed field weakening mode even with simple scalar control methods. However, the PMSM is now becoming a viable solution because field oriented control approach enables high speed field weakening. In an induction motor, the torque producing current flows in both the rotor and stator windings while the air gap field generation needs additional field current. Therefore, in washing mode, the total copper losses are more than double

基于SVPWM的永磁同步电机控制系统的仿真

基于SVPWM的永磁同步电机控制系统的仿真 随着电动机在社会生产中的广泛应用,由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合已获得广泛的应用。我国制作永磁电机永磁材料的稀土资源丰富,稀土资占全世界的80%以上,发展永磁电机具有广阔的前景。 第一章永磁同步电机的矢量控制原理 1.1 永磁同步电机控制中应用的坐标系 交流电机的数学模型具有高阶次,多变量耦合,非线性等特征,难以直接应用于系统的设计和控制,与直流电机单变量,自然解耦和线性的数学模型相比较,交流电机显得异常复杂。因此需要通过适当的转换,将交流电机的控制变换为类似直流电机的控制将大大简化交流电机控制的复杂程度。 永磁同步电机矢量控制的基本思想是把交流电机当成直流电机来控制,即模拟直流电机的控制特点进行永磁同步电机的控制。为简化感应电机模型,可将电机三相绕组电流产生的磁动势按平面矢量的叠加原理进行合成和分解,使得能够用两相正交绕组来等效实际电动机的三相绕组。由于两相绕组的正交性,变量之间的耦合大大减小。 1.1.1系统中的坐标系 1)三相定子坐标系(U-V-W坐标系) 其中三相交流电机绕组轴线分别为U、V、W,彼此之间互差120度空间电角度,构成了一个U-V-W三相坐标系。空间任意一矢量在三个坐标上的投影代表了该矢量在三个绕组上的分量。 2)两相定子坐标系(α-β坐标系) 两相对称绕组通以两相对称电流也能产生旋转磁场。对于空间的任意一矢量,数学描述时习惯采用两相直角坐标系来描述,所以定义一个两相静止坐标系,即α-β坐标系。它的轴α和三相定子坐标系的A轴重合,β轴逆时针超

一种永磁同步电机转子初始位置的判断方法

说明书摘要 本发明公开一种永磁同步电机转子初始位置的判断方法,步骤是:首先利用脉振高频电压注入法得到初次估计的转子位置,然后在初次估计的交轴上注入一个正方向扰动信号,再估计转子位置,根据估计得到的转速方向判断磁极极性,得到电机转子初始位置。此种方法可解决脉振高频电压信号注入法检测转子初始位置时磁极极性的收敛问题,无需在直轴上注入正负方向的脉冲电流,可以有效地实现转子初始位置估算。

摘要附图

1、一种永磁同步电机转子初始位置的判断方法,其特征在于包括如下步骤: (1)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,给定?q 轴电压?0q u =; (2)检测电机的两相电流,并经过Clarke 和Park 坐标系变换,得到??d q -估计同步旋转坐标系的?q 轴电流?q i ,并依照以下步骤估计转子的位置和转速:首先,将检测得到的?q 轴电流?q i 乘以调制信号cos()t h u t ω=;然后,对相乘后所得的信号低通滤波,得到?q 轴电流?q i 的幅值信号()f θ?;最后,对该幅值信号()f θ?进行PI 调节,得到估计转速?ω ,对估计转速?ω积分得到估计的转子位置; (3)重复步骤(2),直至估计的转子位置收敛为一恒定值,即为初次估计 的转子位置?first θ; (4)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,在?q 轴注入一个正方向扰动信号,重复步骤(2),直至电机转过一定角度γ,0γ>; (5)根据步骤(3)估计得到的转速方向判断磁极极性,当转速为正时,收 敛的磁极极性为N 极,转子初始位置??=initial first θθ;当转速为负时,收敛的磁极极性为S 极,转子初始位置??=initial first θθπ+。 2、如权利要求1所述的一种永磁同步电机转子初始位置的判断方法,其特 征在于:所述步骤(1)中,采用转子的估计位置?θ进行Park 逆变换,获得实际两相静止坐标系下电压的给定值?u α和?u β。

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park 变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM的控制信

基于FPGA 的永磁同步电动机矢量控制IP 核的研究

基于FPGA的永磁同步电动机矢量控制IP核的研究 赵品志 摘要 论文首先分析了永磁同步电动机的数学模型及矢量控制的原理。研究了使用现代EDA工程设计方法,在FPGA上实现单芯片交流伺服控制系统的结构和具体实现方法。其次,详细分析了空间矢量脉宽调制(SVPWM)原理,利用Verilog HDL硬件电路描述语言,编写了SVPWM、坐标变换、串行通信、位置检测等IP模块,并进行了仿真和验证。最后,将本文编写的主要SVPWM IP模块、串行通信、位置检测等IP模块在Quartus II 3.0软件中进行综合编译,并通过ByteBlaster II下载电缆将生成的网络表配置到NIOS II开发板上的Cyclone 系列FPGA EP1C20F400C7芯片中,经过实验测试,验证了所编写的IP模块的正确性。 关键词:矢量控制,空间矢量脉宽调制,FPGA,IP 引言 为满足现代数控系统技术与市场发展需求,伺服系统出现交流化、数字化、智能化三个主要发展动向。伺服系统按其采用的驱动电动机的类型来分,主要有两大类:直流伺服系统和交流伺服系统,其中交流伺服系统又可分为感应电动机伺服系统和永磁同步电动机交流伺服系统[1]。以直流伺服电机作为驱动器件的直流伺服系统,控制电路比较简单,价格较低。其主要缺点是直流伺服电机内部有机械换向装置,碳刷易磨损,维修工作量大,运行时易起火花,给电机的转速和功率的提高带来较大的困难。交流异步电机虽然价格便宜、结构简单,但早期由于控制性能差,所以很长时间没有在伺服系统上得到应用。随着电力电子技术和现代电机控制理论的发展,1972年,德国西门子的Blaschke提出了交流异步电动机的矢量控制理论。该理论通过矢量旋转变换和转子磁场定向,将定子电流分解为与磁场方向一致的励磁分量和与磁场方向正交的转矩分量,得到类似直流电动机的解耦的数学模型,使交流电动机的控制性能得以接近或达到他励直流电动机的性能。1980年,德国人Leonhard为首的研究小组在应用微处理器的矢量控制的研究中取得进展,使矢量控制实用化[2]。90年代以来,随着永磁材料性能的大幅度提高和价格的降低,永磁同步伺服电动机得到了长足的发展。交流伺服系统采用永磁同步伺服电机作为驱动器件,可以和直流伺服电机一样构成高精度、高性能的半闭环或全闭环控制系统,由于永磁同步伺服电机内是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高。目前永磁同步交流伺服系统已在很大范围内取代了直流伺服系统。在当代数控系统中,伺服技术取得的突破可以归结为:交流伺服取代直流伺服、数字控制取代模拟控制[3][4]。 最初,交流伺服电机的变频调速都是由分立器件实现的,不可避免地存在温漂、老化等问题。这种方法所使用的器件数目非常多,而且结构也很复杂,这就使得系统的可靠性、精度很难保证在一个较高的水平。另外,用分立元件实现数字脉宽调制需要使用波形发生器,而分立元件的工作频率有限,因而很难实现高性能高精度的数字脉宽调制。利用分立元件实现较复杂的脉宽调制技术(如SVPWM)有很大的困难,复杂的逻辑关系难以实现。这些都驱使人们寻求其它实现数字脉宽调制的方法。其中单芯片系统(SOPC)使这种想法成为可能,在单芯片上可以实现复杂而精确的逻辑运算,运算速度比分立元件高得多,因而越来越受到人们的重视。本文对实现SOPC有很大帮助,利用Quartus软件生成的网络表可以直接用于芯片的生产[5]。

基于某SVPWM的永磁同步电机控制系统的仿真

基于SVPWM的永磁同步电机控制系统的仿真随着电动机在社会生产中的广泛应用,由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合已获得广泛的应用。我国制作永磁电机永磁材料的稀土资源丰富,稀土资占全世界的80%以上,发展永磁电机具有广阔的前景。 第一章永磁同步电机的矢量控制原理 1.1 永磁同步电机控制中应用的坐标系 交流电机的数学模型具有高阶次,多变量耦合,非线性等特征,难以直接应用于系统的设计和控制,与直流电机单变量,自然解耦和线性的数学模型相比较,交流电机显得异常复杂。因此需要通过适当的转换,将交流电机的控制变换为类似直流电机的控制将大大简化交流电机控制的复杂程度。 永磁同步电机矢量控制的基本思想是把交流电机当成直流电机来控制,即模拟直流电机的控制特点进行永磁同步电机的控制。为简化感应电机模型,可将电机三相绕组电流产生的磁动势按平面矢量的叠加原理进行合成和分解,使得能够用两相正交绕组来等效实际电动机的三相绕组。由于两相绕组的正交性,变量之间的耦合大大减小。 1.1.1系统中的坐标系 1)三相定子坐标系(U-V-W坐标系) 其中三相交流电机绕组轴线分别为U、V、W,彼此之间互差120度空间

电角度,构成了一个U-V-W三相坐标系。空间任意一矢量在三个坐标上的投影代表了该矢量在三个绕组上的分量。 2)两相定子坐标系(α-β坐标系) 两相对称绕组通以两相对称电流也能产生旋转磁场。对于空间的任意一矢量,数学描述时习惯采用两相直角坐标系来描述,所以定义一个两相静止坐标系,即α-β坐标系。它的轴α和三相定子坐标系的A轴重合,β轴逆时针超前α轴90度空间电角度。由于α轴固定在定子A相绕组轴线上,所以α-β坐标系也是静止坐标系。 3)转子坐标系(d-q坐标系) 转子坐标系d轴位于转子磁链轴线上,q轴逆时针超前d轴90度空间电角度,该坐标系和转子一起在空间上以转子角速度旋转,故为旋转坐标系。对于同步电动机,d轴是转子磁极的轴线。 矢量控制中用到的变换有:将三相平面坐标系向两相平面直角坐标系的转换(Clarke 变换)和将两相静止直角坐标系向两相旋转直角坐标系的变换(Park变换)。 1.1.2 由三项平面坐标系向两相平面坐标系(Clarke变换) 三相同步电动机的集中绕组U、V、W的轴线在与转子垂直的平面分布如上图所示,轴线依次相差120°,可将每相绕组在气隙中产生的磁势分别记为:Fu、Fv、Fw。由于Fu、Fv、Fw不会在轴向上产生分量,所以可以把气隙的磁场简化为一个二维的平面场。简单起见,可以U为α轴,由α起逆时针旋转90°作β轴,建立起二维坐标系,用此两相坐标系(α-β)产生的磁动势来等效三相静止坐标系(U-V-W)产生的磁动势。如图1.1所示。

相关主题
文本预览
相关文档 最新文档