当前位置:文档之家› 梁格法在桥梁异型结构中的应用-典尚设计

梁格法在桥梁异型结构中的应用-典尚设计

梁格法在桥梁异型结构中的应用-典尚设计
梁格法在桥梁异型结构中的应用-典尚设计

梁格法在桥梁异型结构中的应用

徐 强, 梁亚宁

(哈尔滨市市政工程设计院, 哈尔滨 150001)

【摘 要】 梁格法是城市立交桥梁复杂上部异型结构分析的一种便利、有效的方法。本文以某立交工程上部异型结构为例,介绍了梁格法,指出分析时应注意的几个问题。

【关键词】 异型结构;结构分析;梁格法

【中图分类号】 T U312 【文献标识码】 B 【文章编号】 

1001-6864(2008)02-0098-02

城市立交桥梁较为复杂的上部异型结构的设计中,常常

采用预应力(普通)混凝土连续箱梁方案,以适应交通功能对桥梁上部结构的要求。运用梁格法对这种构造及受力状态复杂的桥梁上部异型结构进行结构计算分析具有很多优点,满足设计精度需要和符合设计人员的使用习惯要求。

1 梁格法基本原理

梁格法力学概念明确,操作使用方便。其主要内涵是将分散在板式或箱梁每一区段内的弯曲刚度和抗扭刚度集中于邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格构件内,而横向刚度则集中于横向梁格构件内[1]。这是梁格法要义之所在,一切后续工作都要围绕这个内涵为中心来进行,深入理解内涵的意义,着重把握基本原理在有限元建模的运用,而不是过分注重模型的外形。

梁格法基于理想的刚度等效原则:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲将是恒等的,并且每一梁格内的弯矩、剪力和扭矩等于该梁格所代表的实际结构部分的内力。由于实际结构和梁格体系在结构特性上的差异,这种等效只是近似的,对于一般的设计,梁格法的计算精度是足够的。

2 梁格模型的建立211 网格划分

梁格法的主要特点是力学概念明确,所以,在建立梁格模型的时候

,首先要弄清楚结构的传力方式,使模型的建立尽量和实际结构的实际传力路径相一致。利用Dr 1Bridge 结构计算程序建立上部结构离散模型,如图2所示。

(1) 在肋梁桥或异型箱梁桥上部结构中模型纵向梁格单元的建立要以梁肋为基础,不可偏离梁肋,因为梁肋是抵

抗剪力和弯矩的主要受力构件。

(2) 在端横隔梁处,以及内横隔梁处设置横向梁格单

元。

(3) 为模拟箱梁顶板和底板在整个上部结构中对梁肋

所起到的横向联系的作用,在横向设置虚拟横梁。(4) 单元长度的划分,即要保证计算结果的准确性又要考虑到计算机所耗费的机时和效率。笔者认为:单元长度(或数量)划分的原则是在约束和关键节点必须设置节点,在连续梁结构中纵向的一个反弯点范围内要设置4~5个单元,一跨内划分4~8个单元即可很好地反映出内力沿梁长的变化情况。

212 单元截面

结构运算中,通过准确地给定单元的截面形式来模拟各单元的弯曲刚度、剪切刚度和抗扭刚度等。确定截面形式问题有两方面的作用:第一,模拟各单元的弯曲刚度和抗扭刚度,即结构的承担荷载的能力(将影响到内力的分配)。第二,模拟结构的自重,作为荷载出现。截面的这两个作用是同时进行的,但又不能简单地等同。

文献[1]中要求:梁格模型的截面划分应尽量使各部分的形心轴位置和整体的形心轴位置相同。但这样做需要将各单元的截面的形式进行特殊处理,会给设计者带来很大的麻烦,经过笔者试算认为直接将截面按照梁肋之间对中切开,其计算结果与保持一致的切法的结果相差不大,按照本文建立的模型结果看,正弯矩相差不超过5%,满足一般设计精度要求。截面不同的划分方式示意图如图3。

213 施加荷载

(1) 一期恒载计算单元自重,当计算程序自动计算自

8

9低 温 建 筑 技 术2008年第2期(总第122期)

重时,注意结构模型叠加时自重系数的调整;二期恒载应根据施工顺序及计算程序的特点考虑,可作为集中线荷载或均布荷载施加到梁格模型。

(2) 活荷载以行车道形式加载,考虑不同荷载组合时所产生的各种不利情况。(3) 温度荷载分为两种,即季节性的温度效应及日照温差效应。(4) 干缩徐变荷载,按照规范规定,参照季节性的温度效应做类似考虑。

214 支座约束

支座约束的设置影响着梁体的受力行为。由于本桥属于异形结构,且宽跨比较大,支座的布置方法应经过多种支座布置方案比选后确定。

经过比选,本桥共设置了20个支座,即沿横梁D 、E 一线设置了顺桥向的约束,在386支座处设置了横桥向的约束。

215 分析结果

经过不断的结构形式和约束方式的调整,最后得出较为合理的计算结果,作为设计的依据。在正常使用极限状态荷载组合Ⅲ的情况下,同一横梁上的各竖向反力较为均匀,说明各个方案中支座的位置比较合理。最小支反力在匝道到

处出现负值,即要求该处设置抗拉支座(如表1)。

表1

正常使用极限状态荷载组合Ⅲ支座反力汇总(×103

)

kN

F&H 横梁

G 横梁

D&E 横梁

B&C 横梁

A 横梁

M ax M in 点

M ax M in 点

M ax M in 点

M ax M in 点

M ax M in 40811060136395211801793825153316337861664112365213211244091111-010439621060193385612841173806181

31

82363216511224060157-014439721461133386711451113766175317236621671122407

2102

1138

398

2124

1100

384

6174

4147

373

6153

3187

368

2136

1126

提取异型结构的内力,供结构设计使用。异型的内力图如图4、图5所示。

3 结语

梁格法是桥梁复杂上部异型结构分析的有力工具。把复杂的多室箱梁桥的异型结构模拟成一个纵、横梁格模型,是符合实际受力情况的和设计者习惯要求的,既能得到足够的精度结果,又适宜设计人员掌握和操作。

参考文献

[1] 戴公连,李建桥1桥梁结构空间分析设计方法与应用[M]1北

京:人民交通出版社,20011

[2] (英)E C 汉勃利著,郭文辉译1桥梁上部构造性能[M]1北京:

人民交通出版社,1982,51

[收稿日期] 2007-08-18

[作者简介] 徐 强(1968-),男,哈尔滨人,高级工程师,从事

市政道路与桥梁的设计与研究工作。

(编辑 王亚清)

欢迎订阅《低温建筑技术》

9

9徐 强等:梁格法在桥梁异型结构中的应用

异形柱结构设计要点

异形柱结构设计要点 异形柱结构体系 异形柱结构体系是指采用轻质填充墙及隔墙的现浇钢筋混凝土异形柱框架及异形柱框架-剪力墙结构体系。柱肢的截面高度与柱肢宽度的比值在2-4,相对于正方形与矩形柱而言是异形的柱子。它包括异形柱框架和异形柱框架剪力墙,常用的有“L”型、“T”型、“十”字型。 一、异形柱结构特点 1、由于截面的这种特殊性,使得墙肢平面内外两个方向刚度对比相差较大,导致各向刚度不一致,其各向承载能力也有较大差异; 2、对于长柱(H/h>4)可以不考虑剪切变形的影响,控制轴压比较小时,受力明确,变形能力较好。而对短柱(H/h<4),剪切变形占有相当比例,构件变形能力下降。异形柱通常在短柱范围,且属薄壁构件,即使发生延性的弯曲形破坏,也因截面曲率M/EI或εcu/χ(εcu 为砼的极限压应变,χ为截面受压区高度)较小,使弯曲变形性能有限,延性较差; 3、异形柱由于是多肢的,其剪切中心往往在平面范围之外,受力时要靠各柱肢交点处核心砼协调变形和内力,这种变形协调使各柱肢内存在相当大的翘曲应力和剪应力,而该剪应力的存在,使柱肢易先出现裂缝,也使得各肢的核心砼处于三向剪力状态,它使得异形柱较普通截面柱变形能力低,脆性破坏明显; 4、特别是异形柱不同于矩形柱,它存在着单纯翼缘柱肢受压的情况,其延性更差。由国内外大量的试验资料和理论分析[2],异形柱的破坏形态为:弯曲破坏、小偏压破坏、压剪破坏等,影响其破坏形态的因素有:荷载角、轴压比、柱净高与截面肢长比(剪跨比),配箍率以及箍筋间距S与纵筋直径D的比值等。由于其受力性能的复杂,设计中必须通过可靠的计算和必要的构造措施来保证其强度和延性。 二、异形柱结构适用条件 1、居住建筑(住宅及宿舍); 2、抗震设防烈度为7度(0.10g及0.15g)和8度(0.20g,I、II、III类场地); 3、柱网尺寸不宜大于6.6m; 4、房屋总高度的限制。 三、异形柱结构的平面布置: 1、在异形柱结构的一个独立结构单元内,宜使结构平面形状简单、规则,刚度和承载力分布均匀。 2、结构平面布置应减小扭转效应的不利影响。在考虑偶然偏心影响的地震作用下,楼层竖向构件的最大水平位移和层间位移分别不宜大于该楼层两端相应平均值的1.2倍,不应大于该楼层两端相应平均值的1.4倍。结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比不应大于0.85。 3、异形柱框架结构和异形柱框架-剪力墙结构均应设计成双向抗侧力结构体系。 4、异形柱结构的框架纵横柱网轴线宜对齐拉通;异形柱肢截面厚度中线与梁及剪力墙中线宜对齐重合。 5、异形柱结构不应用于单跨框架结构。 四、异形柱结构的竖向布置: 1、结构竖向抗侧力构件宜上下连续贯通。 2、异形柱结构的侧向刚度沿竖向宜均匀分布,楼层侧向刚度不宜小于相邻上部楼层侧向刚度的75%,或其上相邻三层刚度平均值的85%。 3、楼层抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的85%,不应小于其上一层受

XX桥梁结构设计

概述: (一)设计依据: 1、XX公司提供的商务区电子版地形图,电子版道路图纸,电子板河道及景观图纸; 2、甲方确定的规划河底宽度为20米,设计最高水位4.8米,设计河底高程2.0米; 3、桥梁方案汇报会确定桥位和桥型布置方案; 4、xx公司其它要求。 (二)工程概况: 二级桥包括涵洞两座,位置分别在规划一路与水街交叉处和规划二路与水街交叉处,新区商 务区水街规划河底宽度为20米,设计最高水位4.8米,设计河底高程2.0米,其中按3-6m 框架涵设计,道路规划宽度为20米,两侧景观带按景观要求设计。框涵俩侧按悬挑结构设 计。 二、桥梁工程场地地质条件、水文地质条件等介绍 (一)自然、气候条件 天津市属于暖温带半湿润季风气候,位于大陆性与海洋性气候的过渡带上,四季分明。冬季 受蒙古冷高气压控制,盛行西北风;夏季受太平洋副热带高气压左右,多为偏南风。气候特 点是:春季干旱多风,冷暖多变;夏季温高湿重,雨热共济;秋天天高云淡,风和日丽;冬 季寒冷干燥,雨雪稀少。 年平均气温11.1~12.3 C,七月平均气温26 C以上,一月份平均气温-4 C以下,偶然最 高温40.3 C,极端最低温-21 C。] 年平均降水量为550~680mm ,一日最大暴雨量304.4mm 。每年6~9月为汛期,平 均雨日34天左右,占全年总降水量的73%以上,冬季雨雪量只占全年总降水量的 1%~3% 。 (二)拟建场地概况 拟建场地位于华北平原北部,属滨海冲积平原,地貌单一,场地地表略有起伏。本次勘探揭 示埋深50.00m 以上的地层属海相、陆相沉积地层。

(三)地质条件及地下水情况 1、场地地形地貌、场地土土质特征及分布规律 根据《岩土工程技术规范》(DB29-20-2000 )第3.2节、附录A及本次勘察资料,本次 勘探50.0m 深度范围内,场地土按成因年代可分为9层,按物理力学性质进一步划分为 18个亚层。各层土的土质特征及分布规律描述如下: (1 )人工填土层(Qml )) 主要由素填土(地层编号①)组成,厚度0.30?1.20m,黄褐色,主要粘性土组成,含少量植物根系,水平方向分布连续。人工填土填垫年限小于十年。02、04、06号孔夹有厚 度0.3?0.4m的灰黑色坑底淤泥质土。 (2 )全新统新近组坑底淤积层(Q43Nsi ) 地层编号②,该层土在本场地缺失。 (3)全新统新近组古河道、洼淀冲积层(Q43Nal ) 系北运河洪泛冲积而成,层顶标高为 5.95?1.75m,主要由上部的粘土、粉 质粘土(地层编号为③1)及下部的粉土(地层编号为③2)组成: ③1粘土、粉质粘土,层顶标高为 5.95?1.75m,厚度0.60?4.10m,灰黄色,可塑, 含少量有机质,属中偏高压缩性土,水平方向分布不连续,在02、06#孔附近缺失。 ③2粉土,层顶标高为5.85?1.15m,厚度1.00?2.70m,灰黄色,稍密,饱和,含少量有机质,夹粉质粘土薄层,分布不连续,属中压缩性土。 (4)全新统上组河床?河漫滩相沉积层(Q43al ) 地层编号④,该层土在本场地缺失。 (5)全新统上组湖沼相沉积层(Q43l+h ) 层顶标高为2.35?-0.38m ,主要由上部的粘土(地层编号⑤1),中部的粉土(地层编号 ⑤2 ),以及下部粉质粘土(地层编号⑤3 )、粉土(地层编号⑤4)组成: ⑤1粘土,厚度0.80?3.00m,灰黑色?青灰色,可塑,含少量有机质及腐殖物,夹粉质粘土薄层,属中偏高压缩性土,水平方向分布连续。 ⑤2粉土,层顶标高为1.55?-2.44m ,厚度0.70?5.70m,青灰色,稍密?中密,饱和,含少量有机质,属中压缩性土,水平方向分布不连续,在20#孔附近缺失。 ⑤3粉质粘土,层顶标高为0.05?-4.29m ,厚度0.50?5.00m,青灰色,可塑,含少量有机质,夹粉质粘土薄层,属中偏高压缩性土,水平方向分布不连续,分布于1#桥、2# 桥和4?6#桥(01?12#、20?23#孔)附近。 ⑤4粉土,层顶标高为-2.58?-7.85m ,厚度0.50?2.50m,青灰色,稍密?中密,饱 和,含少量有机质,属中压缩性土,水平方向分布不连续,在3#桥和6#桥区域(13?19#、 22#、23#孔)缺失。 (6)全新统中组浅海相沉积层(Q42m ) 层顶标高为-4.68?-8.85m ,主要由上部粘土、粉质粘土(地层编号⑥1 )和下部的粉土 (地层编号⑥2 )组成: ⑥1粘土、粉质粘土,层顶标高为-4.75?-8.85m ,厚度1.60?4.00m,灰色,可塑, 含少量有机质及贝壳,属中偏高压缩性土,水平方向分布不连续在1#桥局部和5#桥区域 (19#、21#、22# 孔)缺失。 ⑥2粉土,层顶标高为-4.68?-10.85m ,厚度0.50?4.10m,灰色,稍密?中密,砂粘互层,含少量有机质及贝壳,属中压缩性土,水平方向分布不连续,仅在1#桥和2#桥、 6#桥局部(01?05#、17#、08#、10#、24#孔附近),以及5#、6#桥所在区域(19?22#孔附近)有分布。

桥梁结构设计中的耐久性设计 王永超

桥梁结构设计中的耐久性设计王永超 发表时间:2018-04-02T16:23:41.447Z 来源:《基层建设》2017年第36期作者:王永超 [导读] 摘要:桥梁结构设计中耐久性问题一直以来是桥梁设计人员研究的重点问题,在桥梁设计过程中,采用哪种方式提升桥梁耐久性是非常重要的,结合作者实际,从桥梁安全性耐久性存在的问题以及提高桥梁结构耐久性设计的主要措施进行了分析,希望在分析过后能够给广大设计人员提供一些参考。 唐山市交通勘察设计院有限公司河北唐山 063000 摘要:桥梁结构设计中耐久性问题一直以来是桥梁设计人员研究的重点问题,在桥梁设计过程中,采用哪种方式提升桥梁耐久性是非常重要的,结合作者实际,从桥梁安全性耐久性存在的问题以及提高桥梁结构耐久性设计的主要措施进行了分析,希望在分析过后能够给广大设计人员提供一些参考。 关键词:桥梁;结构设计;耐久性 随着现代经济发展,桥梁建筑有了很大的发展空间,在施工过程中,使用建筑材料问题上,要重视混凝土以及桥梁结构的耐久性,两者在建筑过程中起到重要作用,减少施工问题发生的可能性。在设计前,要掌握各个结构的承载力、根据材料使用过程进行设计。在使用混凝土前,要对各个施工结构的承载力进行控制,根据基本原则进行设计。 1影响桥梁安全性与耐久性的因素分析 1.1环境影响不容忽视 现代建设桥梁过程中,其的施工过程以及施工环境问题与设计内容仍然存在着一定的距离,施工人员必须要重视环境影响问题。混凝土实际施工的抗拉强度只是设计抗拉强度的10%,早期水化热现象以及干缩现象都有较大变化,环境的温度以及湿度在加上日晒雨淋不断的冲击荷载力,导致混凝土的总体结构出现裂缝现象,出现裂缝后,遭到水分子以及氯离子进入到其中,使钢筋面层不断出现纯化现象,直至腐蚀,导致钢筋表面和混凝土之间的胶结力达不到化学标准,钢筋与混凝土在后期施工中无法顺利完成作业。混凝土结构的耐久性遭到破坏的主要原因是因为其构件的强度以及刚度都达不到标准。 1.2 施工和管理水平低 目前,大多数桥梁的安全性以及耐久性都达不到设计标准,其主要原因是因为在施工过程中,施工人员没能按照设计要求进行作业,在管理问题上也存在着很多问题。大部分桥梁的施工质量与规范要求以及设计要求存在着一定的差距,施工材料的强度以及施工技术都达不到规范标准,导致桥梁在短期使用中就出现破坏以及倒塌现象;另外,部分桥梁在施工过程中,管理人员没能做好管理工作,导致偷工减料现象发生,对桥梁的安全问题带来很大影响。 1.3设计理论和结构构造体系不够完善 设计过程中,在桥梁的施工过程以及使用过程的安全问题上设计不够全面。在设计桥梁结构时,应当根据合理的结构方案进行设计,做好整个桥梁结构的分析工作,设计出构件连接过程,并按照规范要求,掌握桥梁的安全系数以及指标,确保整个施工结构达到安全性。 在设计过程中,设计人员不能单只按照规范要求满足结构强度的安全度,应当根据结构的体系以及构造和使用材料、维护和耐久性等问题进行设计,总结出设计过程以及施工过程和使用过程出现的问题,在根据总结出的结果进行改进,加强桥梁稳定性的同时不断提升桥梁结构的安全性。 此外,在施工过程中,个别结构的整体性以及延性达不到标准,导致冗余性小;设计的计算图式与实际受力路线不相符,导致局部的受力超出设计标准;混凝土的强度以及保护层的厚度与钢筋直径和构件戴面都达不到设计要求;导致桥梁结构的耐久性达不到预算要求,无法确保桥梁结构的安全性。大部分桥梁结构达到设计规范要求强度的情况下,无法确保桥梁的耐久性,在使用时间上,达不到预算标准,导致结构的安全问题得不到保障。因此,在设计过程中,设计人员应当加强重视桥梁的结构以及使用的施工材料,提高桥梁结构的耐久性。 2桥梁结构耐久性设计 2.1要满足接混凝土耐久性指标 要想提高桥梁结构的耐久性,就要确保混凝土的耐久性能够达到标准。混凝土的耐久性是由混凝土材料决定的,材料中的水灰比例以及水泥的用量和强度等级与混凝土的耐久性有着密切联系。在设计时,应当围绕《桥规JTG1362》制定的标准进行设计,在施工过程中,根据不同的施工环境制定合理的施工方案,并要自觉遵守设计标准进行作业,控制好水灰比例以及水泥用量、了解强度等级以及大氯离子的含量与碱含量,提升混凝土的耐久性。 2.2 重视钢筋混凝土保护层设计厚度 钢筋的锈蚀程度是由混凝土的碳化决定的。一般情况下,混凝土的保护层一旦出现碳化,会直接影响到钢筋表层的钝化膜,导致钢筋出现锈蚀现象。在施工过程中,首先,要注重钢筋混凝土,应当根据标准增加其保护层的厚度,减少钢筋出现锈蚀的可能性,确保混凝土结构的耐久性。其次,相关管理部门制定钢筋混凝土保护层的厚度范围跟以往实际设计范围不同,两者之间存在着一定的距离。在设计过程中,根据现场实际施工情况增加混凝土保护层的厚度,确保混凝土结构的耐久性。 2.3 做好构造配筋设计,减少混凝土裂缝出现 混凝土一旦出现裂缝,桥梁整体结构会受到一定的损害,混凝土的结构在遇到日晒雨淋影响后容易出现裂缝现象,出现裂缝后,混凝土的渗透性有所提高,侵蚀速度不断提高,增加侵蚀力度,导致混凝土结构的耐久性达不到标准。因此,要想提升混凝土结构的耐久性就必须要预防混凝土出现裂缝现象,在施工过程中,必须要按照规范标准进行作业,并掌握实际施工情况围绕混凝土结构制定合理的施工方案,对混凝土施工过程做好监督工作,减少在使用中出来多数裂缝的可能性。 2.4提高后张法预应力钢筋管道压浆质量 根据了解《混凝土结构耐久性设计与施工指南》具体内容得知,在设计钢筋耐久性过程中,必须要重视预应力钢筋的锈蚀程度,在没有任何提示的情况下,其会直接影响到钢筋的整体结构,应根据实际情况制定合理的施工防护措施。对混凝土结构出现预应力氯盐侵蚀程度以及筋和锚具与连接器等钢材做好防护工作,可以运用环氧或锌对钢材进行涂抹,根据施工进度往密封性能方向制定合理的预应力体系,在施工过程中,不允许出现金属螺旋管,应当运用具有密封性能的塑料波形管进行作业,另外,在施工前,管理人员要对管道灌浆材

结构设计大赛之桥梁模型设计

结构设计大赛之桥梁模型设计戴洁 (广东交通职业技术学院,广东广州510650) 摘要:文中从结构设计大赛的模型要求及比赛加载方式分析入手,提出桥梁模型的设计方案构思,选择结 构方案.并进一步对模型进行了强度、刚度和稳定性受力分析。试验证明本次设计制作的桥梁模型非常坚固, 承受极限荷载接近于封顶值50 kg。 1桥梁模型设计 1.1模型要求及加载方式分析 结构设计大赛拟设计桥梁结构模型。桥梁结构模型设计尺寸要求为:桥面总长l 000 mln;桥面高不低于120 toni:桥面总宽160~180rnITl;桥面净空高度不小于200 toni:最大跨径不小于400 mm。尺寸要求体现了桥梁设计的桥下净空和桥面净空等功能要求。比赛加载方式为动静载结合方式,初赛要求徒手将一辆l5 kg的小车从桥头拉至最大跨的跨中位置.并在该位置停留不少于5 S 然后拉到桥部。模型不至于失效方可进入决赛。决赛采用跨中集中力加载方式,初始荷载为20 ,荷载增加梯度为5 k 次,封项荷载为50 。每次加载后停留5 S。模型不失效即加载成功。模型不失效的标准:模型强度足够、不失去整体承载力:模型跨中挠度不超过l5 mm。小小桥模型须承受l5~50 kg的重量,由此带来的跨中弯矩较大,承载亦不易。但更

难控制的还是弯曲变形,挠度不超出15 mln即要求模型具有足够的抗弯刚度。 1.2材料分析 参赛的结构模型要求采用组委会统一提供的绘图纸、棉线和乳胶。主体材料为绘图纸.辅助材料为棉线和乳胶。单张的绘图纸只能承受少量拉力,不能作为受弯、受压构件,即使多张绘图纸叠放具有抗弯强度.也不能提供足够的抗弯刚度。要使纸构件提供足够的强度和刚度.一种方法将纸卷成圆柱形.作成圆形梁和圆形柱:另一种方法将纸张切片叠成一定厚度并粘在一起.作成一定高度的薄梁.可以用作桥面的抗弯构件。但从整体结构上必须布置成纵、横梁网格系。棉线抗拉能力强,不能受压.只能用来做受拉构件,吊(拉)桥面或捆绑节点,增强节点强度。白乳胶主要起粘结作用。 1.3结构选型与方案构思 鉴于比赛的加载重量大。且挠度变形量控制严格,桥型结构不能采用单一的梁桥、拱桥、悬索桥,而必须采用组合体系桥梁。为使桥面平整,便于行车,主体结构采用梁式桥型。为了增强模型的整体抗弯强度和抗弯刚度.布置斜拉杆(索)或垂直吊杆(索)。用卷成圆柱形的纸杆作为刚性斜拉杆或吊杆.节点用棉线捆绑牢固,做成类似斜拉桥的板拉桥刚性拉杆。桥面下可用拱形结构支撑桥面.也可以采用桥墩加斜撑辅助支撑桥面。拱形结构受力合理.但制作困难。下部结构主要采用实心的圆柱形纸杆作桥墩.由于直径有限(直径大时耗材多),难以保证桥墩的稳定性,而空心纸卷制作起来有困难.也不能提供足够的抗压强度,所以桥墩结构上必须加强各杆件的横向联系.以增强桥梁的整体稳定性。主孔纵向设计为梁式桥结合“A” 型塔斜拉桥。主

什么样的桥梁结构承重最大

什么样的桥梁结构承重最大 (春光小组:周鹏徐德闯) 一、项目概述 1. 开展年级:五年级、六年级 2.学科:科学、数学、信息技术 3. 简介: 本学习项目主要对象是五年级至六年级学生,桥梁是他们日常生活中常见事物,但桥梁的承重量有多大,什么样的地理环境适合建造什么结构类型的桥梁等等问题却很少同学去关心。本次项目探究 活动,将从少年儿童身边熟悉的桥梁入手,让他们自己提出有关对桥梁感兴趣的问题,设计探究方法,通过调查、实验、观察、搜集资料、整理信息等方法,培养他们对科学探究的兴趣及数学、信息技术 应用的能力。 二、学习团队 1. 教师: 周鹏:综合实践 徐德闯:科学 2.学生: 旅顺口区迎春小学: 庄河光明山中心小学: 三、学习目标与任务 1. 教学目标分析 认知目标:了解不同结构的桥梁承重力是不同的 能力目标:能通过改变桥梁的结构来改变桥梁的承重力 情感与价值观:培养学生科学探究的方法与能力,知道科学就在我们身边。 信息素养:提高学生利用现在网络技术、高科技手段搜集、整理文字、图片信息的能力。 2. 学习任务

5位同学为一小组,合作完成以下任务: ●任务1:从日常生活中同学们司空见惯的桥梁入手,让学生提一些比较感兴趣、乐于研究的问题, 确立研究主题。 ●任务2:从电视、杂志、互联网等寻找一些有关桥梁的图片、数据信息。 ●任务3:通过信息的整理与分析,从中发现问题及思考解决问题的方案,设计对比实验。 ●任务4:把任务1、2、3的研究成果进行整理,做出一份可以相互交流的项目报告。 四、学习过程 项目学习活动过程(概念图): 任务一寻找世界各地的桥梁设计

?报章、杂志:你们可以从报章或杂志寻找你们所熟悉的桥梁结构,把图片及设计方案(或有关新闻)剪下,并记录你是从哪一份报章(报章名称)和哪一天(日期)取得的。 ?互联网:你亦可以从互联网上寻找桥梁结构设计并把它打印出来,记录你是从哪个网址中取得的。 ?其他途径:其实,若你能细心观察,亦可以从其他途径发现桥梁结构的设计应用,例如电视节目等。把有关的桥梁结构设计记录下来,并记录你是从哪里获得有关资料。 想一想以下的问题: ?桥梁的整体形状是什么样子? ?桥梁的主体结构是怎样设计的? ?最突出的、最令人印象深刻的桥梁结构设计对你的启发? 任务二设计桥梁结构设计图 学生搜集力学原理,结构以什么样的形式制作最稳定? 注意:进行访问时,紧记要表现应有的礼貌! 根据搜集讨论得来的思路绘制桥梁设计图(可以是多个设计方案) 从绘制成的桥梁结构设计图中,你们发现什么? 有什么总结? 把你们的发现记录下来。并思考问题: ?桥梁的整体形状及桥体的结构特征? ?你会如何解释你们的发现? ?你们的发现对你有什么启示? 任务三制作项目实践探究整理

桥梁结构设计中的耐久性设计

龙源期刊网 https://www.doczj.com/doc/3c3476007.html, 桥梁结构设计中的耐久性设计 作者:张振华 来源:《科学与技术》2018年第13期 摘要:随着城市规模的不断扩大,城市布局错综复杂,为了是人们的出行更方便,城市中的桥梁建设越来越多,桥梁负荷越来越重,这就使得混凝土结构桥梁的耐久性大大降低。在目前的混凝土结构桥梁设计中还存在不少问题,这些严重影响了桥梁的使用寿命。因此,对混凝土结构桥梁耐久性设计进行研究,就显得十分有必要了。本文对桥梁结构设计中的耐久性设计进行了探讨。 关键词:桥梁结构设计;耐久性设计;措施 耐久性是桥梁工程结构设计的重要内容之一,其会受到设计问題和超载问题等因素影响。所以要保证桥梁工程结构设计整体质量,就应在优选结构设计材料的基础上,重视结构冗余设计和桥梁构造设计,确保可以增强其耐久性。 1桥梁结构耐久性的概念与重要作用 桥梁结构设计过程中必须考虑其结构耐久性,为了更有助于相关设计人员采用有效合理的设计方案来保证桥梁的耐久性要求,首先有必要对结构耐久性加以充分仔细的了解,完全掌握领会其含义要求,所谓结构耐久性,是指结构所具备的在有限的使用寿命和维护措施的前提下,针对外界荷载、环境变化以及材料等因素可能受到的各种力的作用,能够有效抵御恶劣影响的能力,而这种能力,无论对于提升桥梁的安全运行效率、经济营收效益,还是促进社会交通秩序发展、百姓日常出行的便利都具有着无比重要的作用,这不再是某个人或某个企业为追求经济利润所做出的工程业绩,而是国家的公共交通基础设施建设的巨大需要,所以其作用意义是深远的。 2影响桥梁耐久性的因素 2.1结构构造与设计体系存在缺陷 桥梁结构的耐久性设计是桥梁设计领域急需解决的一个重要问题。在实际操作过程中,桥梁工程设计人员很容易只重视桥梁结构强度,用结构强度满足工程安全性的需求,而忽视溺寸过程和施工过程中的人为错误,因为人为错误极易使结构耐久性降低。当桥梁工程计算标准不明确、设计标准较低、混凝土强度较低时,会给结构的耐久性带来一定的影响。与此同时,按照工程的使用条件和使用环境的不同,对体系的设计要求也有所不同。要保证桥梁结构具有较强的可靠性,设计过程中一定要严格依据设计规范进御蜀十,确保设计人员深刻了解桥梁结构的本性,仔细判断设计结构是否真正科学合理日。 2.2设计规范存有不足

异形柱 规范

1总则 1.0.1为在混凝土异形柱结构设计及施工中贯彻执行国家技术经济政策,做到安全适用、技术先进、经济合理、确保质量,制定本规程。 1.0.2本规程主要适用于非抗震设计和抗震设防烈度为6度、7度(O.10g,O.15g)和8度(0.20g)抗震设计的一般居住建筑混凝土异形柱结构的设计及施工。 1.0.3混凝土异形柱结构的设计及施工,除应符合本规程的规定外,尚应符合国家现行有关标准的规定。 2术语、符号 2.1术语 2.1.1异形柱specially-shaped column 截面几何形状为L形、T形和十字形,且截面各肢的肢高肢厚比不大于4的柱。 2.1.2异形柱结构structure with specially-shaped columns 采用异形柱的框架结构和框架-剪力墙结构 2.1.3柱截面肢高肢厚比ratio of section height to section thickness of column leg 异形柱柱肢截面高度与厚度的比值。 2.2符号 2.2.1作用和作用效应 Gj——第j层的重力荷载代表值; Mbl、Mbr——框架节点左、右侧梁端弯矩设计值; Mx、My——对截面形心轴x、y的弯矩设计值; N——轴向力设计值; Vc——柱斜截面剪力设计值; VEKi-—第i层对应于水平地震作用标准值的剪力; Vj-—节点核心区剪力设计值; σi——第i个混凝土单元的应力; σj——第j个钢筋单元的应力。 2.2.2材料性能 fc——混凝土轴心抗压强度设计值; ft-—混凝土轴心抗拉强度设计值; fy——钢筋的抗拉强度设计值; fyV——箍筋的抗拉强度设计值。 2.2.3几何参数 as'——受压钢筋合力点至截面近边的距离; A——柱的全截面面积; Aci-—第i个混凝土单元的面积; Asj-—第j个钢筋单元的面积; Asv--验算方向的柱肢截面厚度bc范围内同一截面箍筋各肢总截面面积; Asvj-—节点核心区有效验算宽度范围内同一截面验算方向的箍筋各肢总截面面积; bc-—验算方向的柱肢截面厚度; bf——垂直于验算方向的柱肢截面高度; bj——节点核心区的截面有效验算厚度; d——纵向受力钢筋直径;

桥梁设计存在的主要问题

桥梁设计存在的主要问题 桥梁设计存在的主要问题 现在,国内的结构设计过程中,有这样的倾向:设计中考虑强度多而考虑耐久性少;重视强度极限状态而不重视使用极限状态,而结构在整个生命周期中最重要 。 的问题包括材料强度不足和施工工艺不合格等;也有个别桥梁存在诸如偷工减料、以次充好等严重的管理问题,更是对桥梁安全造成致命的损害。 而大量的桥梁在远没有达到预期使用寿命时,出现了影响正常使用的病害与劣化;特别是一些桥梁在只使用了几年、甚至刚建成不久就出现严重的耐久性不足的问题,这也与施工质量低下有重要关系,典型的问题有钢筋保护层不足及目前

广泛存在于施工现场的严重的构件开裂问题(主要原因包括:水泥选用、混凝土配合比、振捣、养护不当及预应力施加不合理等)。这些施工上的缺陷虽然短期不会对桥梁的正常使用产生明显的影响,但却会对结构的长期耐久性产生非常不利的危害。 2)设计理论和结构构造体系不够完善 在承认施工存在问题的同时,也不可否认,在桥梁设计领域,特别是关于 和构造等方面的要求。规范再详细也不能包罗本应由设计人员解决的各种问题、规范更新得再快也适应不了新认识、新技术、新材料快速发展对结构提出的各种新的要求。因此,合理可靠的结构设计除了满足规范的要求外,还要求设计人员具有对结构本性的正确认识、丰富的经验和准确的判断。 需要改进和努力的方向

1)应该更加重视结构的耐久性问题 桥梁在建造和使用过程中,一定会受到环境、有害化学物质的侵蚀,并要承受车辆、风、地震、疲劳、超载、人为因素等外来作用,同时桥梁所采用材料的自身性能也会不断退化,从而导致结构各部分不同程度的损伤和劣化。在大跨桥梁领域,国内从上世纪80年代以来,修建了大量的斜拉桥;虽然迄今为止出现倒塌或 强调使结构易于检查、维修,以保证桥梁的安全使用、尽可能地减少维修费用,取得了较好的综合经济效益。实际上,国内外的研究和实践都表明,结构耐久性对于桥梁的安全运营和经济性起着决定性作用。 2)重视对疲劳损伤的研究 桥梁结构所承受的车辆荷载和风荷载都是动荷载,会在结构内产生循环变

桥梁结构设计问题

桥梁结构设计问题探讨 摘要:近年来,随着科学技术的发展,桥梁结构设计也得到了相应的发展,但是我国的桥梁设计理论和结构构造体系仍不够完善。本文通过桥梁结构设计中应注意事项,对桥梁结构设计的理论及设计问题进行探讨。 关键词:桥梁结构;设计问题;分析 abstract: in recent years, with the development of science and technology, the bridge structure design also got the corresponding development, but china’’s bridge design theory and structure system is still not perfect. this article through the bridge structure design should note, bridge structure design theory and design issues were discussed. keywords: bridge structure; design problems; analysis 中图分类号:u443文献标识码:a 文章编号: 一、桥梁结构设计现状 目前的桥梁设计中,对于耐久性更多的只是作为一种概念受到关注,既没有明确提出使用年限的要求,也没有进行专门的耐久性设计。这些倾向在一定程度上导致了当前工程事故频发、结构使用性能差、使用寿命短的不良后果,也与国际结构工程界日益重视耐久性、安全性、适用性的趋势相违背,也不符合结构动态和综合经济性的要求。

设计院结构统一技术措施

结构统一技术措施 目录

一、总则 (1) 二、荷载 (9) 三、计算参数设置 (11) 四、基础及地下室设计 (17) 五、结构构件设计 (22) 六、钢结构设计 (31) 七、人防结构设计 (43) 八、其他 (47)

一、总则 1、一般规定 设计原则 要精心设计。结合工程具体情况,做到安全、适用、经济,并尽可能技术先进,以确保设计质量。 设计前,必须对建筑物使用要求(安全性、耐久性、舒适性) 工程特点、材料供应、施工技术条件以及地质地形等情况进行充分调查和研究分析,做到心中有数,使设计符合实际情况。 对所采用的标准图、通用图等,要弄清设计意图及适用范围,以便正确选用。当结构有部分分包时(如预应力、钢结构等),应有结构分包设计合同,分包单位应具备相应设计资质。如分包设计使用本单位设计图签,工程设计人应对分包的图纸和计算进行审核,并负相应审核责任。 凡采用标准图、通用图者,应注意正确选用,如选用不当,由采用者负设计责任。采用通用构件时,必须对各类构件之适用范围,应注意事项等,仔细了解清楚,以避免误用,造成安全问题。 结构设计应保证建筑物有足够的承载力、刚度及稳定性。在结构关键部位,材料要求严格部位、施工操作有一定困难部位,或将来使用上可能有变化部位,应适当留有余地,以保安全。 对于在已建成之工程上续建加层或改造之工作,应审慎进行,并遵守以下两条原则: 1.凡在建成之工程未按要求进行抗震设防者(即原设计未按抗震设计,或原设防烈度不够)应先按加层进行抗震加固及承载力的验算,再进行加层或改造(设计工作可同时进行),加层设计必须满足现规范要求; 2.非本单位设计之工程,在接受加层的设计任务时,应对设计文件及工程现状仔细研究,在确保整个工程安全的前提下,采取可靠措施。 设计使用年限和安全等级 设计基准期和设计使用年限 按《建筑结构可靠度设计统一标准》GB50068-2001要求,一般工业与民用建筑结构设计规范采用的设计基准期为50年,因此一般建筑结构设计使用年限取50年。对于轻钢结构(属于易替换的结构构件)一般取25年,临时建筑按5年确定,对年限低于50年的建筑采用的规范仍参照现行有关规范执行,高于50年的需另行确定在基准期内荷载及其设计参数的取值,可靠度指标、结构构件的性能指标、地震的概率分布等方面内容。混凝土结构一般为50年,幕墙为25年,门

一般梁的设计方法与步骤

一般梁的设计方法与步骤 一、梁截面的确定根据建筑功能的要求,确定梁系的布置形式后,按照建筑外立面造型、室内净高、外观要求、使用功能等需要,并结合结构受力和变形所需,综合确定梁截面的高度。当某梁高度因受力或变形所需而大于典型梁高时,需判断是否会对建筑使用功能造成影响,可能存在影响时,则必须跟建筑专业协商后确定最终解决方案。 二、有关梁的基本计算参数的确定 SATWE中与梁有关的主要有如下参数: 1.梁端负弯矩调幅系数:因混凝土本身就是一种非纯弹性的材料,在梁的裂缝宽度没有超出规范限制的情况下,砼也会进入弹塑性的工作状态,故在竖向荷载作用下,钢筋混凝土框架梁设计允许考虑混凝土的塑性变形内力重分布,适当减小支座负弯矩,相应增大跨中正弯矩。为避免梁支座处出现过宽裂缝,对现浇结构,梁端负弯矩调幅系数可在0.8~0.9的范围内取值,一般可取0.85。 2.梁设计弯矩放大系数:通过此参数可将梁的正负设计弯矩均放大,提高其安全储备。工程设计一般取1.0,不必高于规范的标准而对梁弯矩进行专门的放大。 3.梁扭距折减系数:对于现浇楼板结构,当采用刚性楼板假定时,可以考虑楼板对梁抗扭的作用而对梁的扭距进行折减。折减系数一般可取0.4。 4.连梁刚度折减系数:结构设计允许连梁开裂,开裂后连梁的刚度有所降低,程序中通过连梁刚度折减系数来反映开裂后的连梁刚度。取值大小以尽量使连梁不超筋为宜,程序限定不小于0.5。 5.中梁刚度增大系数:

当采用刚性楼板假定时,可用此系数来考虑楼板对梁刚度的贡献。按《高规》第 5.2.2条的条文说明,通常现浇楼面的中梁可取2.0,边梁由程序自动计算为1.5。 6.梁柱重叠部分简化为刚域:一般点选该项,以使计算模型较接近实际。 7.梁主筋及箍筋强度:按实际情况取用。 8.梁箍筋间距:为加密区间距,对实际配箍没有影响,仅会影响计算配筋简图中输出的数值,为便于以统一的标准对计算配箍值进行判断,现规定设计时均取为100。此外,还需在计算模型中,准确地定义框架梁的抗震等级、框支梁、需进行刚度折减的连梁、需设置的计算铰等,才会得到较符合实际的、合理的计算结果。 三、按计算配筋简图及规范的构造要求配置梁钢筋对于一个标准层对应多个计算层的平面,需经比较后选出一个配筋普遍较大的计算层作为配筋的基准平面,以该平面为依据完成配筋设计后,再对其它计算层中配筋较大的部位进行局部的修正。 配筋的具体步骤按以下顺序进行: 1.配置梁箍筋 一般设计人员习惯上往往较专注于梁纵筋的配置,而容易忽略梁计算箍筋超过说明中的箍筋缺省值的部位,从而造成若干部位配箍不足的情况时有发生。配箍不足会带来较不利的后果, 原因为:(1)由于抗剪计算的复杂性,其结果的准确性远没有抗弯计算成熟,各国对抗剪承载力的计算还没有得出统一的计算模式,故某些部位即使按计算箍筋配足,亦不一定有太大的富裕(相对于受弯),因此当实际配箍与计算箍筋相差较大时,可能会在正常使用或经受风及小震作用时即发生剪切破坏或出现过宽

异形柱 规范

1 总则 1.0.1 为在混凝土异形柱结构设计及施工中贯彻执行国家技术经济政策,做到安全适用、技术先进、经济合理、确保质量,制定本规程。 1.0.2 本规程主要适用于非抗震设计和抗震设防烈度为6度、7度(O.10g,O.15g)和8度 (0.20g)抗震设计的一般居住建筑混凝土异形柱结构的设计及施工。 1.0.3 混凝土异形柱结构的设计及施工,除应符合本规程的规定外,尚应符合国家现行有关标准的规定。 2 术语、符号 2.1 术语 2.1.1 异形柱 specially-shaped column 截面几何形状为L形、T形和十字形,且截面各肢的肢高肢厚比不大于4的柱。 2.1.2 异形柱结构 structure with specially-shaped columns 采用异形柱的框架结构和框架-剪力墙结构 2.1.3 柱截面肢高肢厚比 ratio of section height to section thickness of column leg 异形柱柱肢截面高度与厚度的比值。 2.2 符号 2.2.1 作用和作用效应 Gj——第j层的重力荷载代表值; Mbl、Mbr——框架节点左、右侧梁端弯矩设计值; Mx、My——对截面形心轴x、y的弯矩设计值; N——轴向力设计值; Vc——柱斜截面剪力设计值; VEKi-—第i层对应于水平地震作用标准值的剪力; Vj-—节点核心区剪力设计值; σi——第i个混凝土单元的应力; σj——第j个钢筋单元的应力。 2.2.2 材料性能 fc——混凝土轴心抗压强度设计值; ft-—混凝土轴心抗拉强度设计值; fy——钢筋的抗拉强度设计值; fyV——箍筋的抗拉强度设计值。 2.2.3 几何参数 as'——受压钢筋合力点至截面近边的距离; A——柱的全截面面积; Aci-—第i个混凝土单元的面积; Asj-—第j个钢筋单元的面积; Asv--验算方向的柱肢截面厚度bc范围内同一截面箍筋各肢总截面面积; Asvj-—节点核心区有效验算宽度范围内同一截面验算方向的箍筋各肢总截面面积; bc-—验算方向的柱肢截面厚度; bf——垂直于验算方向的柱肢截面高度; bj——节点核心区的截面有效验算厚度; d——纵向受力钢筋直径;

桥梁工程建设中的结构设计问题及其策略

桥梁工程建设中的结构设计问题及其策略 发表时间:2018-07-16T10:00:17.297Z 来源:《基层建设》2018年第14期作者:李海金[导读] 摘要:桥梁工程建设中的结构设计要严格执行设计标准,并且和实际设计目标达到一致,要充分重视工期,任务要在预定的工期内完成,在设计标准化的前提下,加强对新工艺和新技术的有效应用,而且在桥梁工程建设中的结构设计中还要充分考虑经济、合理的设计方案。 身份证号码:45092319880708xxxx 柳州欧维姆工程有限公司摘要:桥梁工程建设中的结构设计要严格执行设计标准,并且和实际设计目标达到一致,要充分重视工期,任务要在预定的工期内完成,在设计标准化的前提下,加强对新工艺和新技术的有效应用,而且在桥梁工程建设中的结构设计中还要充分考虑经济、合理的设计方案。基于此,本文阐述了桥梁工程建设中的结构设计方案选择,对桥梁工程建设中的结构设计问题及其策略进行了探讨分析。关键词:桥梁工程建设;结构设计;方案选择;问题;策略;桥梁工程建设中的结构设计是一个较为复杂的系统工程,只有将一些比较丰富的理论知识运用于实践才能够有效防止一些经验因素给设计带来一些不利的影响,从而推动桥梁工程建设的健康发展。以下就桥梁工程建设中的结构设计问题及其策略进行了探讨分析。 一、桥梁工程建设中的结构设计方案选择分析桥梁工程建设中的结构设计方案制定需要考虑诸多影响因素,设计方案的科学性是对整个桥梁工程建设中的结构设计质量的保障。在桥梁结构要素的选择过程中,要从桥梁工程建设中的结构设计的经济性以及技术性和适用性层面进行考虑。对桥梁工程建设中的结构设计中的一些新技术工艺的应用能有效提升工作的效率及质量,决策者要能将其得到充分考虑。然后就是在桥梁工程建设中的结构设计中要能对方案的经济性得到充分重视,将施工中的成本以及工期等都要结合实际进行详细分析,保障在最少成本下将设计工作和整个工程的质量得以保障。最后就要对桥梁工程建设中的结构设计适用性加以重视要考虑其是否和法律规程相符合,在经济效益上的创造情况也要充分考虑。这样才能将桥梁工程建设中的结构设计的完善性得以体现。除此之外,还要能在桥梁工程建设中的结构设计过程中将设计的方法运用以及模型的选择等进行客观科学的加以择取,保障方案的高效实施。 二、桥梁工程建设中的结构设计问题分析城镇化建设进程的加快,促进了道路交通运输的发展,使得桥梁工程建设不断增多,为了居民出行提供了便利,但是基于各种因素的影响,使得桥梁工程建设中的结构设计过程中仍然诸多问题,笔者认为主要表现在以下几方面:(1)桥梁工程建设中的结构设计理论以及结构构造体系的问题。针对桥梁工程建设中的结构设计,特别是桥梁工程施工和使用期的安全性问题在一定的程度上还需要改进。并且在设计过程中,其首要任务就是在一定程度上选择一套经济并且实用性比较强的结构方案,然后进一步分析出结构和结构与其连接过程中的设计,并在一定程度上选出施工规范能够允许的安全系数以及各种可靠性指标进一步确保结构的安全性。(2)大多数设计人员都过于侧重施工过程中的规范在结构强度设计上的各种安全度的相关需要,但是却忽视了结构体系、构造体系、维护以及结构耐久性和施工设计与施工过程到整个使用全过程中往往会出现各种人为措施,没有加强并提高结构的安全性。(3)设计过程中对强度因素考虑在一定程度上是胜于对耐久性的考虑。大多数设计单位都是比较重视强度极限状态,但是常常都会把极限状态使用进行相应的忽视,然而桥梁结构在一定的程度上属于整个生命周期里最为重要的使用性能表现,经常在一定程度上出现重视结构建造却忽视结构维护。在实际施工中,大多数的桥梁工程在进行设计的过程中,对于耐久性设计的关注在一定的程度上是限于表面上的概念,不仅对明确使用年限的要求有着一定的缺乏,同时还进一步的忽视了关于耐久性力的设计方面。总的来说,这些倾向就是目前桥梁工程工程在进行施工的过程中各种事故频发的不良后果、结构的使用性能较差的不良后果、使用寿命较短的不良后果等带来的直接导火索,并且这些倾向在一定的程度上普遍跟国际桥梁工程结构界所提倡的耐久性、安全性以及适用性等设计原则进行相背离,另外也很难满足当前结构动态以及综合经济性力面的要求。 三、桥梁工程建设中的结构设计策略 1、严格桥梁工程构造设计。桥梁工程构造设计中最为典型的问题就是伸缩缝问题,有些只是设置普通橡胶当作支座,通常需要对其进行改称为橡胶活动的制作,不然一旦要是受到汽车荷载的作用就会很容易使结构安全和耐久性受到一定影响。桥面通常情况下不会设计一个整体的钢筋网,并且也不会把考虑汽车荷载的问题,但是在我国的公路运输过程中关于超载的想象是一种十分普遍的现象,例如汽车的超载运营,将会十分容易导致桥梁工程结构长期实用性以及耐久性,因此在遇到这种问题的时候,不仅仅要交给有关部门进行管理,同时还需要在结构设计的过程中将把超载可能造成的严重后果进行分析以及研究,并且还需要将其耐久性问题考虑到施工设计的范围之内。伸缩缝的位置所预埋的空心量数量通常都是不够的,建立以及施工单位必须要做好前期的复查工作。在此之外因为桩基础的钢筋保护和建筑制图的并不是一样的,所以,监理以及施工单位必须要对其进行加强重视,不然将会十分容易出现桩基础的主盘保护层不能够满足施工设计的需要。 2、强化桥梁工程结构耐久性设计。桥梁工程建造使用过程中,由于桥梁主体本身长期在外暴漏,并且十分容易就会受到环境和一些有害化学物质等方面的侵蚀,在加上桥梁的结构还要承受车辆、地震以及超载等各种因素的影响,同时桥梁工程施工的过程中所采用的材料性能在风吹日晒的过程中将会不断的出现退化,这样也十分容易导致桥梁的每个部位出现不同程度的损伤以及劣化。在目前阶段桥梁倒塌综合严重损害的例子是越来越少,之后还是有很多的桥梁工程因为拉锁耐久性的问题使其使用的性能受到一定的印象,一些桥梁的拉锁并没有到使用的期限不可以对其进行更好,如果进行更换,不仅仅会影响到正常的使用,同时还带来严重的经济损失。对于这些问题将会对桥梁的耐久性设计有着直接的影响,所以,也会促进人们更加关注桥梁工程耐久性的问题。在长期以来,人们都十分侧重于研究结构计算的方法,然而却忽视了关于总体结构和细节处理方面的重视,因此,必须要对桥梁的耐久性以及安全性的研究进行加强。 3、充分考虑桥梁结构的疲劳损伤。桥梁工程建设中的结构设计过程中,其结构通常是需要承受的荷载,并且会在结构内部形成循环变化的应力,对于这些应力不仅仅会导致结构出现震动,同时还会促进结构由于积累所出现的疲劳损失等问题。通常情况下,桥梁工程所使用的材料都不是均匀以及连续性的,并且材料上经常也会有着各种微小的缺陷,在循环荷载的作用之下,这类缺陷将会日益发展并且结合到一起,从而变造成的损伤,在严重的时候还会在材料的内部出现裂纹。如果施工人员不能够及时有效的控制住这些裂纹,那么将会导致材料和结构出现断裂的现象。疲劳损伤通常是被认作为桥梁工程建设中的结构设计过程中最为核心的问题,并且因为它所引发的钢材开裂的情况也比较多。因此,在结构设计的过程中必须要把这个问题列入到结构设计过程中所需考虑因素的重中之重。结束语

(完整版)钢筋砼异形柱结构设计要点

钢筋砼异形柱结构设计要点 钢筋砼异形柱结构设计要点 (一)、异形柱结构体系:是指采用轻质填充墙及隔墙的现浇钢筋混凝土异形柱框架及异形柱框架-剪力墙结构体系。异形柱结构是指L形、T形和十形截面柱。 (二)、异形柱结构适用条件: 1、居住建筑(住宅及宿舍); 2、抗震设防烈度为7度(0.10g及0.15g)和8度(0.20g,I、II、III类场地); 3、柱网尺寸不宜大于6.6m; 4、房屋总高度的限制。 (三)、异形柱结构的平面布置: 1、在异形柱结构的一个独立结构单元内,宜使结构平面形状简单、规则,刚度和承载力分布均匀。 2、结构平面布置应减小扭转效应的不利影响。在考虑偶然偏心影响的地震作用下,楼层竖向构件的最大水平位移和层间位移分别不宜大于该楼层两端相应平均值的1.2倍,不应大于该楼层两端相应平均值的1.4倍。结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比不应大于0.85。 3、异形柱框架结构和异形柱框架-剪力墙结构均应设计成双向抗侧力结构体系。 4、异形柱结构的框架纵横柱网轴线宜对齐拉通;异形柱肢截面厚度中线与梁及剪力墙中线宜对齐重合。 5、异形柱结构不应用于单跨框架结构。 (四)、异形柱结构的竖向布置: 1、结构竖向抗侧力构件宜上下连续贯通。 2、异形柱结构的侧向刚度沿竖向宜均匀分布,楼层侧向刚度不宜小于相邻上部楼层侧向刚度的75%,或其上相邻三层刚度平均值的85%。 3、楼层抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的85%,不应小于其上一层受剪承载力的70%。 4、异形柱框架不应采用楼层错层的设计方案。 5、异形柱不宜在楼层半层处单面设置挑梁。 (五)、异形柱结构应按下列原则考虑地震作用: 1、抗侧力结构正交布置时,应允许在结构两个主轴方向分别考虑水平地震作用。 2、有斜交抗侧力构件的结构,当相交角度大于15度时,应分别计算各抗侧力构件方向的水平地震作用。 3、质量与刚度明显不对称、不均匀的结构,应计入双向水平地震作用下的扭转影响;其他情况,应允许采用调整地震作用效应的方法计入扭转影响。 (六)、异形柱结构应根据不同情况,分别采用下列地震作用计算方法: 1、异形柱结构宜采用振型分解反应谱法,当质量和刚度不对称、不均匀时应采用考虑扭转耦联振动影响的振型分解反应谱法。 2、高度不超过40m,以剪切变形为猪,且质量与刚度沿高度分布较均匀的异形柱结构,可采用底部剪力法。 (七)、异形柱结构构造做法: 1、异形柱截面各肢肢高与肢厚之比不应大于4,且肢厚不应小于200mm,肢高不应小于500mm。 2、框架梁截面高度Hb可按(1/10~1/15)L b确定(Lb为计算跨度),且不应小于400mm。梁的截面宽度Bb不宜小于1/4Hb及200mm。

相关主题
文本预览
相关文档 最新文档