当前位置:文档之家› 空调机组控制系统设计

空调机组控制系统设计

空调机组控制系统设计
空调机组控制系统设计

毕业设计(论文)空调机组控制系统设计

学号:08100129

姓名:马雪燕

专业:自动化

系别:电子信息与控制工程系指导教师:张少军教授

二○一二年六月

摘要

智能建筑是利用系统集成方法,将计算机、通信技术、信息技术与建筑艺术有机结合对设备进行自动监控,对信息资源进行管理和对使用者的信息服务与建筑优化组合,获得投资合理、适合需要、安全、高效、舒适、便利灵活的建筑物。楼宇自动化系统(Building Automation System)是楼宇内以微处理器为主导的自动化设备的控制系统,其服务对象是现代化的建筑。本设计主要针对楼控系统中空调机组系统以及其外围设备的研究,侧重研究美国艾顿公司基于BACnet通信协议而开发的BACtalk楼宇自控系统,此系统具有良好的灵活性和开放性。本设计又以青岛极地海洋世界极地馆中央空调为例着重对空调机组进行研究。

关键词:楼宇系统;自动控制;空调机组;BACtalk系统

ABSTRACT

Intelligent building is make use of system integration method, the computer and communication technology, information technology and architecture art organic combination of the equipments to be automatic monitoring, to manage information resource and about the users of the information service and building the optimized combination, get reasonable investment, suitable for need, safety, high efficiency, comfortable, convenient flexible buildings.Building Automation System (Building Automation System) is Building in microprocessor as the leading Automation equipment control System, the service object is a modern Building. This design is mainly aimed at building in the control system of the air conditioning unit system, and its peripherals. This design is focused on the United States a BACnet communication based on ai agreement with good flexibility and openness and development BACtalk building automation system, the design and to Qingdao polar ocean polar world museum central air conditioning, for example focuses on the air conditioning unit for research.

KEYWORDS:Building system; Automatic control; Air conditioning unit;BACtalk system

目录

摘要 ............................................................................................................................... I ABSTRACT .................................................................................................................... II 目录 ............................................................................................................................ I II 1绪论 . (1)

1.1课题背景及意义 (1)

1.2课题内容及目的 (1)

1.3国内外研究现状 (2)

2 建筑智能化系统 (4)

2.1组成与分类 (4)

2.2智能建筑要求 (4)

2.2.1基本功能 (4)

2.2.2投资与回报 (6)

2.3发展趋势 (6)

3 空调末端与冷源设备的协调运行 (8)

3.1楼控系统与空调系统 (8)

3.1.1楼控系统的运行 (8)

3.1.2中央空调组成 (8)

3.2空调系统末端 (9)

3.2.2 新风机组 (16)

3.2.3风机盘管 (18)

3.3系统冷热源 (21)

3.3.1冷水机组(制冷机): (21)

3.3.2 冷却塔 (22)

3.3.3热源 (23)

3.4冷水机组和空调末端设备的配合运行 (24)

3.5空调末端设备比较与选择 (25)

3.5.1末端设备的比较 (25)

3.5.2 末端设备的选择 (27)

4 控制器(DDC)与外围设备 (29)

4.1控制器 (29)

4.2传感器/执行器 (30)

4.2.1传感器 (30)

4.2.2 执行器 (31)

4.3艾顿公司控制器 (31)

4.4控制器与传感器执行器连接规律 (33)

5 控制网络 (36)

5.1BAC NET网络 (36)

5.1.1 BACnet标准的推出 (36)

5.1.2 BACnet的体系 (37)

5.1.3 BACnet的应用分析 (38)

5.1.4 BACnet支持六种控制网络 (40)

5.2L ON W ORKS网络 (41)

5.2.1 LonWorks网络 (41)

5.2.2 LonWorks网络的应用 (41)

5.3控制网络选择的优化分析 (43)

5.3.1 LonWorks与BACnet的比较 (43)

5.3.2 控制网络的展望 (44)

6 设计举例 (45)

6.1工程概况 (45)

6.2空调设计参数 (45)

6.3空调冷热源 (47)

6.3.1空调冷负荷及热负荷计算 (47)

6.3.2空调冷热源设置 (47)

6.4空调风系统 (48)

6.5空调水系统与自控系统 (49)

结论 (50)

致谢 (51)

参考文献 (52)

附录一 (53)

附录二 (60)

1绪论

1.1 课题背景及意义

按照国际上流行的观点,智能楼宇中楼宇自控系统是由采暖、制冷及空调系统、照明设备控制系统、给排水、电梯控制、供配电停车场管理系统、安全监控系统和消防监控系统组成。建筑智能化已经成为当今和今后大中型甚至中小型建筑物发展的主流趋势。

空调系统是楼宇自动化的一个重要组成部分,其能耗通常占楼宇能耗的65%以上。空调机组担负着夏季制冷冬季加热空气的任务,同时还担负起空气质量检测与控制的重任。如何降低控制处理能耗和保持室内空气质量成为智能建筑发展的重点,同时也具有重要的实践意义。世界卫生组织(WHO)的调查指出,许多在室内工作的人员都患有不同程度的大厦相关性病症(BRI)如头痛、疲倦和过度性疲劳等,这些相关性病症都与中央空调系统的设计运行有关。通风系统性能的欠佳或不足是引起室内空气污染的最常见的原因,故设计出性能优异空调系统具有重要意义。

1.2课题内容及目的

现代楼宇自控系统要求采用先进的楼宇自控技术,接入设备使用简便。对应于系统组态的编程简单,具有良好的人性化的人机界面,配备应用数据库,加快编程和调试速度,网络结构合理。楼宇自动控制的神经中枢是通信,采用开放的通信协议与标准是实现系统具有开放性的基本条件。

楼宇自控系统的主要功能是:使整个建筑中的主要机电设备高效协调地工作和经济地运行。除此之外,楼宇自控系统还支持结构化综合布线和使被控设备具有灵活性、兼容性、集成性、开放性。楼宇自控系统使用温度、湿度、压力、空气质量等传感器采集现场物理量,并使用驱动器、控制阀、调节阀、流量计、流量开关、控制器等来实现对机电设备的运行监控。

空调机组是指集中在空调机房的集中式的空气处理设备,是整个空调系统的

重要组成部分和核心,对空调机组进行智能控制具有显著的经济效益。同时,人们对生活环境的要求也越来越高,除了希望智能建筑能带来方便的低成本的生活外,更希望能带来健康的生活环境。本设计采用美国艾顿公司控制系统为主要对象对空调系统进行研究,同时研究了控制器、传感器、执行器的选择,并以青岛极地海洋世界极地馆工程为例说明系统如何运行与控制。

空调系统目的就是为用户提供一个舒适的生活或工作环境,空调系统通过通风换气,加工处理一定质量的空气,使室内热系统和气系统满足要求。本设计通过控制系统实施适时控制使之实现节能运行。

1.3 国内外研究现状

随着我国国民经济水平的不断提高,建筑业也在持续稳定地向前发展。和前几年建筑业的发展相比,目前的发展商将眼光放的更远,他们不再片面的追求容积率及如何将开发成本降得越低越好,而是更多的考虑以人为本,开发真正舒适度高、建筑质量高的居住及商用建筑。

随着中国加入世贸及承办2008年奥运会,中国将向全世界全面开放。为了适应国际贸易、旅游、及城市建设迅速发展的需要,高层建筑的发展不会停留在过去的发展水平,特别是对建筑物内的空气品质及舒适程度的要求也会越来越高。空调系统在建筑物内的作用将不再停留在只对建筑物内的温度进行调节,而是作为控制室内环境的一个重要组成部分。因为室内空气品质已经成为当今世界室内环境最为关注的话题之一。同时,当人们在享受着空调技术给生产和生活带来方便和舒适的同时,也在思考如何减少空调系统所需消耗的能量。

国外发达国家的空调系统与国内通常采用的空调系统的比较:从目前国外发达国家空调技术的发展来看,从八十年代起,变风量空调系统已在发达国家的公共建筑物中出现,到近期在西方国家中,国内目前常用的风机盘管加新风系统已不允许在办公大楼中采用,因为该系统无法解决房间的全面通风问题,特别是在内区的房间(没有外窗的房间)。同时,国内常用的两管制风机盘管加新风系统更无法解决内区房间的冬季制冷问题。欧洲的一些国家更是对建筑物内的空气品质进行检测,如被定为“病态建筑”,该大楼将不允许使用,由此可见发达国家对室内

环境的高标准及室内环保的重视。

变风量空调系统是一种全空气系统,它是用送风温度来控制室内温度的。变风量系统可以同时满足室内的空气品质,又达到节能的目的。是目前发达国家在办公大楼及公共商业建筑中普遍采用的系统。

2 建筑智能化系统

2.1组成与分类

国家标准《智能建筑设计标准》对智能建筑定义为“以建筑物为平台,兼备信息设施系统、信息化应用系统、建筑设备管理系统、公共安全系统等,集结构、系统、服务、管理及其优化组合为一体,向人们提供安全、高效、便捷、节能、环保、健康的建筑环境”。智能型建筑是现代建筑技术与现代通信技术、计算机技术、控制技术相结合的产物。智能建筑由楼宇自动化系统(BAS)、办公自动化系统(OAS)、通信网络自动化系统(CAS)、安防自动化系统(SAS)和火灾自动报警联动控制系统(FAS)组成。楼宇自动化系统(BAS)是对整个建筑的所有公用机电设备,包括建筑的中央空调系统、给排水系统、供配电系统、照明系统、电梯系统,进行集中监测和遥控来提高建筑的管理水平,降低设备故障率,减少维护及营运成本。

2.2 智能建筑要求

2.2.1基本功能

智能建筑的基本功能是实现了楼宇控制的自动化(BAS)、楼宇通信的自动化(CAS)、办公自动化(OAS),而这几个方面的自动化通过系统集成,借助于通信网络自动化系统(CAS)中的通信设施和网络设施,高效率的实现和外界以及建筑物内部之间的信息交互、通信、数据传输和处理。通过楼宇自动化系统(BAS)应能实现楼宇的各种执行设备、终端的自动控制、供配电系统、照明系统和动力设备的高效控制和检测。通过现场总线如LonWorks 来控制楼宇中现场设备、控制仪表,并实现分散控制和现场设备的互操作及彼此间的通信。通过安防自动化系统(SAS)实现对建筑物的安全监控,包括自动报警环节和视频监控环节。通过消防自动化系统(FAS)实现对建筑物内有害性烟尘、异常高温、有害性气体的自动检测并报警和启动联动控制系统及时处理可能导致火灾事件的情况。办公自动化系

统(OAS)实现办公高效化、信息化、数据库化,实现管理高效能化和用户关系亲和化。智能化的楼宇建筑主要能达到以下要求:

1、创造安全、健康、舒适宜人和能提高工作效率的办公环境

智能建筑首先确保环境的安全和健康,其防火与保安系统均已智能化;其空调系统能监测出空气中的有害污染物含量,并能自动消毒,使之成为“安全健康大厦”。智能大厦对温度、湿度、照度均加以自动调节,甚至控制色彩、背景噪声,使人们心情舒畅,从而能大大提高工作效率。

2、节能

以现代化的商厦为例,其空调与照明系统的能耗很大,约占大厦总能耗的70%。在满足使用者对环境要求的前提下,智能大厦应通过其“智能”,尽可能利用自然光和大气冷量(或热量)来调节室内环境,以最大限度减少能源消耗。按事先在日历上确定的程序,区分“工作”与“非工作”时间,对室内环境实施不同标准的自动控制,下班后自动降低室内照度与温湿度控制标准,已成为智能大厦的基本功能。利用空调与控制等行业的最新技术,最大限度地节省能源是智能建筑的主要特点之一。其经济性也是智能建筑得以迅速推广的重要原因之一。

3、能满足多种用户对不同环境功能的要求

传统建筑是根据事先给定的功能要求,完成其建筑与结构设计。智能建筑要求其建筑结构设计必须具有智能功能,必须是开放式结构,允许用户迅速而方便地改变建筑物的使用功能或重新规划建筑平面。室内办公所必需的通信与电力供应也具有极大的灵活性,通过结构化综合布线系统,在室内分布着多种标准化的弱点与强电插座,只要改变跳接线,就可快速改变插座功能,如变程控电话为计算机通信接口等。智能建筑的灵活性与机动性极强,一天之内,使办公环境面目一新已不足为奇。

4、现代化的通信手段与办公条件

在信息时代,时间就是金钱。在智能建筑中,用户通过国际直拨电话、可视电话、电子邮件、声音邮件、视频会议、信息检索与统计分析等多种手段,可及时获得全球性金融商业情报、科技情报及各种数据库系统中的最新信息;通过计算机通信网络,可以随时与世界各地的企业或机构进行商贸等各种业务工作。

2.2.2投资与回报

智能化系统是高科技的产物,技术性强,系统庞大,结构复杂,功能齐全,涉及的领域多,包括从电气、电子、计算机、自动化到暖通空调、系统集成等多方面的内容。智能化系统的实施更是一个完整的系统工程项目。

智能建筑节能是高效能和具有高投资回报率的体现。相对整个建筑和建筑内各种机电设备而言,虽然楼宇自控系统的投资不大,但楼宇自控系统的价格还是不低的。广大业主和楼宇自控系统的设计工程人员都应关注楼宇自控系统的作用和产生的效益,任何业主不可能为追求先进技术或宣传作用,把楼宇自控系统作为一种摆设对其进行投资,它必须能够为业主带来足够的效益。建筑耗能组成中,采暖、空调、通风设备耗能达65%,故如何优化安排协调较大耗能设备使之较大幅度节能是我们当先不断探索的重要课题。

2.3发展趋势

智能建筑是个国家的综合国力和科技水平的具体体现之一,被认为是本世纪建筑发展的主流。目前,世界各国都在加大力度发展信息高速公路。中国也把信息高速公路的建设纳入了重要的议程。智能建筑与国际信息高速公路接轨,也将促进信息高速公路的极大发展。智能建筑要想给人们带来安全、舒适、高效等的工作和生活空间,要综合运用现代高科技,进行规范化、标准化、集约化的开发与设计,既充分利用现有资源,又不破坏周边环境,向“绿色建筑”的方向发展,才能实现智能建筑的可持续发展。

具体来说,随着楼宇智能化技术的发展特别是以太网技术在楼宇自动化系统中的应用,传统的“3A”说法将淡化,系统趋于统一,OAS、CAS、BAS界限将更加模糊,系统集成将更加简便,楼宇智能化系统的成本也将进一步下降。能源危机已经成为当代急需解决的问题之一,也成了当前研究的热点。楼宇智能化系统可对能源进行科学合理的分配达到节能的目的。因此,高效节能也将是楼宇自动化系统发展的重要方向,这其中也包括新能源的利用,如目前的太阳能光伏建筑,如何在智能建筑中利用光伏电能也将是智能楼宇自动化系统研究和发展的一个方

向。无线网络可以省去布线,节约资源,在楼宇自控网络系统中也有较大的研究和应用价值。楼宇自动化系统与网络技术结合紧密,DCS和现场总线在目前楼宇自控系统已经得到广泛应用,但也存在一些诸如没有统一协议标准以致集成成本过高等问题。BACnet标准以其先进的技术、完善的体系结构和开放的理念正式成为建筑智能化系统领域中的唯一ISO标准,将得到广泛应用。工业以太网技术由于其全开放、成本低、带宽高、稳定性和可靠性高、应用广泛、共享资源丰富等优点将成为楼宇自控系统研究应用的热点。家居自动化、家用智能电器的网络化在不久的将来也将进入楼宇自动化控制系统的研究应用领域。节能研究、新能源开发利用、无线网络等技术在智能楼宇领域的应用也将成为楼宇自动化系统的重要研究方向。

智能建筑是信息时代的必然产物,是信息技术与现代建筑的有机集成。其发展趋向主要体现在一下几个方面:

1)使用工程方法设计、开发和进行智能建筑的工程施工;

2)不断提高智能建筑开放性;

3)信息系统中多媒体、视频数据处理技术以及无线网络技术的更深入应用;

4)智能建筑互联网技术更加成熟;

5)办公方式多样化高效化;

6)智能建筑节能定量化和高精度控制。

3 空调末端与冷源设备的协调运行

3.1 楼控系统与空调系统

3.1.1楼控系统的运行

楼控系统可以实现建筑水、电、热量、燃气等能源消耗的自动统计计量。常规仪表对水、电、燃气等能源消耗的计量只能显示能耗总量,不同时段能耗的统计需要靠人工读取常规仪表的数据来完成。楼控系统在总量计量的基础上,自动采集能耗计量数据,将建筑各区域、各时段、各种能源的消耗量记录分类保存到数据库中,并且通过调整采样频率,可以实现逐年、逐月、逐日、逐时,甚至每分钟能源消耗的统计,为建筑能耗的动态分析提供了依据。在能耗分析软件的帮助下,楼控系统利用能耗数据库记录的数据,绘制各个时段、各建筑区域能耗曲线,分析能耗特点以及节能潜力,为节能措施的合理选择提供帮助。合理的配置和设计楼控系统可以事半功倍地改善建筑运行状况,降低系统运行能耗,改善居住办公环境。因而,楼控系统对改善建筑运行有着重要的意义。

3.1.2中央空调组成

中央空调系统是由冷/热源和前端设备两大部分组成。中央空调系统的前端设备主要有:空调机组、分机盘管、新风机组和变风量空调机组等。冷热源设备是空调系统的主要组成部分。冷热源设备不仅监控过程较为复杂,而且节能技术手段内容丰富,其中央空调原理示意图如6.1所示:

图3.1中央空调系统原理图

3.2空调系统末端

当室内空气参数偏离设定值时,采取相应的空气调节技术,使其恢复到定值,完成空气调节的设备叫做空调机组末端设备也叫空气处理设备。空调系统由空调机组和冷/热源组成。常见的空调末端设备包括空调机组、新风机组、风机盘管、变风量空调系统等。

3.2.1空调机组

在一栋大楼里,每层几乎都需要配备空调机组。空调机组如图,它的组成包括:新风阀、回风阀、排风阀、过滤器、冷/热盘管和送风机。空调机组的任务就是把新风和回风两部分的混合风,经过表冷表热,把空气的温度调整到所需要的温度使室内空气参数达到预定要求。控制系统中的现场设备由现场控制器(DD C)、新风温度传感器、新风湿度传感器、回风温度传感器、回风湿度传感器、送风温度传感器、送风湿度传感器、防冻开关、压差开关、电动调节阀、风阀执行器组成。四管制空调机组就是可以表冷也可以表热的空调。每两根管子为一组,一根管子是由自控阀门控制的,另外一根管子是旁通管。当装有自动阀门的管子需要维护维修的时候,旁通管做为备用管来用。其实物如下所示:

图3.2空调机组实物图

空调机组的工作原理:

空调系统的特点是改变送风量来满足室内冷(热)负荷变化的。

空调机组原理图如下:

图3.3 空调机组原理图

空调向室内送冷风,送入室内的冷(热)量及计算公式为:Q=C*P*L(tn-ts) 式中:C—空气的比热容[kj/(kg·℃)];

P—空气密度(kg/m^3);

L—送风量(m^3/s);

tn—室内温度(℃);

ts—送风温度(℃);

Q—吸收(或送入)室内的热流量(kw)。

从上式可看出,为了吸收室内相同的热量,可设L为一常数,改变送风温度ts,ts越小,吸收室内热流量越大,因此改变送风温度就可适应室内负荷变化,维持室温不变,这就是定风量空调系统的工作原理。在该系统中,空调机接通电源后以衡转速运行,风量是恒定的故称为定风量空调系统。

空调机组运行状态及参量监控:

(1)从室外的温度传感器和新风口上的风管式温度传感器采集室外新风温度。

(2)从室外的湿度传感器和新风口上的风管式湿度传感器采集室外新风湿度。

(3)安装在过滤网上的压差开关监测过滤网两侧压差。

(4)从安装在送风管和回风管上的风管空气温度传感器采集送/回风温度。

(5)从安装在送风管和回风管上的风管空气湿度传感器采集送/回风湿度。

(6)使用安装在空调区域或回风管上的空气质量传感器(如CO2传感器)进行空气质量监测。

(7)自安装在送风管表冷器出风侧的防冻开关采集防冻开关状态监测信号(在冬季温度低于0℃的北方地区使用)。

(8)通过送/回风机配电柜热继电器辅助触点处的开闭状态采集到送/回风机故障状态的监测。

(9)通过对送/回风机配电柜热继电器辅助触点,对送/回机运行状态进行监测。

(10)从DDC的DO口到新风口风门驱动器控制电路,调节控制新风口风门开度。

(11)从DDC的DO口到回风/排风风门驱动控制电路,控制调节回风/排风风门开度。

(12)从DDC的AO口输出到冷/热水阀门的驱动控制器控制输入口,控制调节冷/热水阀门开度。

(13)从DDC的DO口到送/回风机配电箱接触器控制回路,进行送/回风

机启停控制。

空调机组的自动控制与节能运行:

(1)连锁控制

空调机组启动时的连锁控制顺序为:新风风门→回风风门→排风风门开启→送风机启动→回风机启动→冷热水调节阀启动→加湿阀开启。

空调机组停机控制顺序:关闭加湿阀→关闭冷热水阀→送风机停机→新风风门关闭→回风风门关闭→排风风门关闭。

(2)空调机组的温度调节与节能运行

空调机组中,用回风温度作为被调参数,由回风温度传感器测出的回风温度量传给DDC,DDC计算回风温度与设定温度的差值,按PID调节规律处理并输出调节控制信号。

通过调节空调机组冷热水阀门开度调节冷/热水量,使被控区域的温度保持在设定值,室外温度变化通过新风温度变化来反映,新风温度只输入给D DC进行处理好后控制相应的调节阀开度,进而达到空调区域的温度控制。

(3)空调机组回风适度控制

由回风湿度传感器测出的回风湿度量值信号送回DDC,通过与给定值比较后产生一个偏差,经由给定算法(PI规律调节)后产生控制调节加湿电动阀开度,使被调节区域的空气湿度值满足设定要求,一般来讲,夏季房间的相对湿度保持在小于75%而冬季则应大于30%。

(4) 新风风门、回风风门及排风风门的控制

由新风温/湿度传感器和回风温/湿度传感器测出的温/湿度信号量值传送给DDC,DDC处根据这些数据进行焓差计算,按回风和新风的焓烩值比例及新风量的要求,调节新风风门和回风风门开度,同时使系统在趋近较佳的新风、回风比例上节能调节。

(5)过滤器压差报警及机组防冻

在过滤网出现堵塞严重、积灰较严重的情况下,装置在过滤器上的压差开关报警。冬季时,还需要对机组进行防冻监测和控制。

(6)空气质量控制

使用CO、CO2等气体传感器监测室内空气质量,DDC接收到这些测出

量后,进行对比运算,再输出控制信号调节新风风门开度,通过调节新风量供给来控制空调区域的空气质量。

(7)空调机组的定时运行和远程控制

通过控制系统,按给定的时间表对空调机组进行定时启/停控制,并能对相关设备进行远程控制。

空调机组主要控制功能:

(1)回风温度自动控制

冬季自动调解热水阀开度,保证回风温度为设定值;夏季自动调节冷水阀开度,保证回风温度为设定值;过度季节根据新风温度计算焓值,自动调节混风比。

(2)回风湿度自动控制

有风道湿度传感器检测回风湿度,当回风湿度低于设定值时,自动开启加湿装置,当湿度达到设定值时关闭加湿器。

(3)新回风量比例调节

根据需要调节新风量,在满足需要的前提下最大限度的节能。

(4)机组报警

空气过滤器两端压差过大时报警,请示清扫,送风机热继电保护时报警。

(5)机组定时起停控制

根据事先排定的工作及节假日作息时间表,定时起停机组,自动统计机组工作时间,提示定时维修,设备保养期间显示保养状态。

(6)连锁保护控制

连锁风机停止后,新、回风阀门自动关闭;风机启动后,如果其前后压力差低于设定值时报警,并连锁停机;盘管处设温控开关,当温度低于5℃关闭新风阀,开启热水阀并报警。

其最重要的控制设备,传感器、执行器设备图以及点表如下:

混动汽车动力系统控制策略设计

4.1控制系统的各状况分析 1.一键启动,车门解锁; 2.进人;由车门传感器检测:车门开启 →进人动作→车门关闭→车门锁死 3.设置路径;由语音提示,根据情况分析最优路径,最短距离,最短时间; 4.开始旅行 (1)判断蓄电池能否正常行驶 当SOC (剩余电量)≥0.4 将由蓄电池启动; 当SOC (剩余电量)≤0.4全程发动机驱动; (2)平地行驶 ①首先蓄电池驱动,然后由车速传感器和扭矩传感器检测分析是否满足下列任 意条件 Tre (汽车需求转矩 ) V (行驶速度) 满足则启动点火装置→发动机启动; ②此时由发动机驱动,后由车速传感器和扭矩传感器检测分析是否 满足下 列所有条件 Tm 满足则关闭发动机,由蓄电池驱动; ③制动 由加速度传感器和节气门位置传感器 (3) 爬坡 ①用坡度传感器检测坡度,同时满足下列时 α≤10% Tre≤Tm

α(坡度) 由蓄电池驱动 ②用坡度传感器检测坡度,满足下列任一项时 Tre≥Tm 发动机启动; ③爬坡制动时 车速传感器和加速度传感器检测车轮的旋转方向当旋转方向与实际方向相反紧 急制动 同时启动电动机发电机; (4)泥泞及高低不平路段 根据转矩传感器检测数据,启动发动机; (5)大风及恶劣天气行驶时 根据转矩传感器检测数据,启动发动机; 5.到达目的地旅行结束 电动机缓慢驱动汽车制动,解锁车门; 4.2控制系统的各个流程图 1.由SOC电量判断启动方式

2.由需求转矩和速度判断工作模式 (1).若由发动机驱动 (2)若由蓄电池驱动 4.0>soc

3制动工况 1)若由蓄电池驱动时发生制动时由加速度传感器和节气门位置传感器 2)若由发动机驱动时发生制动时由加速度传感器和节气门位置传感器 4.0>soc h km V /40<4 .0>soc h km V /40<

全新风空调机组设计

一、全新风空调机组的设计定义: 将室外的新鲜空气经处理后送入封闭区域、房间的机组,其蒸发器进风方式为全部新风(或者新风量占总送风量50%以上的也可以参考本规范),特点是工况恶劣、工况变化大。此类机组包括制冷、制热、加湿、除湿、通风、洁净等功能。 其目的是为了配合回风机组,对房间工况进行调节,一般精度要求不高。在空气调节系统中,其主要作用是: 1、向室内提供新鲜空气,满足室内人员生理所需。 2、对新风进行热湿处理,避免对室内工况造成冲击,一般而言,新风的热湿负荷占 整个空调系统相当大的比例。 3、在有精度要求的环境中,保证室内对外界保持正压,避免未经处理的空气通过门、 窗缝渗入。 4、在卫生医疗场所中,通过控制新/排风比,控制室内正压/负压,确保室内空气不 受外界干扰(正压),或者室内空气经过处理后才排到外界(负压)。 二、全新风空调机组的设计类型: 1、直冷式:单冷型、单冷加热型(有电加热、蒸气加热、热水加热)、恒温恒湿型、 热泵型、除湿型(包括普通除湿、降温除湿、调温除湿)。 2、冷冻水式:各种风柜,ZK及YJS等。 三、全新风空调机组的设计额定工况: 1、处理焓差:制冷约35~40kJ/kg,制热约20~25kJ/kg。 2、进风工况及系统设计工况按下表,需注意:本规范目前仅规定制冷时的设计要求, 制热时的设计要求有待进一步研究后再予以修改、补充。 3、出风工况:以尽量不对房间工况造成冲击为目的。制冷时,干球18-22℃(DB), 相对湿度80-90%RH。 4、调温除湿机:出口温升10℃。 四、全新风空调机组的设计一般设计原则: 1、带压缩机的全新风空调机组:由于工况变化范围大,为了保证压缩机的可靠性, 应对系统采取相应的措施,防止高温时压缩机过载,低温时蒸发器结霜或蒸发器回液,以及保证低负荷时制冷系统的回油。 制冷系统的进风工况及设计方案见表1示。对非标和常规作如下规定: 1)全新风空调常规机:风量为回风型40~50%,额定工况出风温度18~22℃,单压缩机系统24~43℃运行制冷,并联压缩机或螺杆机系统,20~43℃运行制冷,按表1方案。 2)全新风空调非标机:风量为回风型的40~50%,额定工况出风温度18~22℃,制 冷系统15~43℃范围允许运行制冷,按表1方案;风量为回风型30~40%或焓 差>40kJ/kg的非标机,需考虑系统分级方案(见表4)。

组合式空调机组操作手册V1

目录 Content 一、安全须知 (3) I. Safety Tips 二、安装 (5) II. Installation 1. 安装前的准备 (5) 1. Preparation before Installation 2. 散件出厂机组的现场组装和交付 (5) 2. Site Assembly & Delivery of Parts Delivered in Bulks 3. 整机出厂机组的现场吊装和就位 (6) 3. Site Hoisting & Locating of Parts Delivered in Whole Set 4. 机组与风系统的安装和连接 (11) 4. Installation & Connection of Units and Air System 5. 机组与水汽管路系统的安装和连接 (11) 5. Installation & Connection of Units and Water-and-Steam System 6. 机组与电气控制系统的安装和连接 (14) 6. Installation & Connection of Units and Electric Control System 三、调试 (15) III. Commission 1. 调试前的准备 (15) 1. Preparation before Commission 2. 启动关闭机组 (22) 2. Units On & Off 四、运行管理 (26) IV. Operation & Management 1. 性能参数巡检记录 (26) 1. Performance Parameters Inspecting Record 2. 设备运行参数监测 (26) 2. Running Parameters Inspection 3. 设备运行状态监测 (27) 3. Running Status Inspection 五、例行保养和维修 (29) V. Regular Maintenance & Repairing

空调设计设备选型指南

内容: 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等) 2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。 同一机房内可采用不同 类型、不同容量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性能价格比 进行选择。 2.3.2冷水机组机型选择

电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规 定。 2.3.3冷水机组的制冷量和耗功率 冷水机组铭牌上的制冷量和耗功率,或样本技术性能表中的制冷量和耗功率是机组名义工况下的制冷量和耗功率,只能作冷水机组初选时参考。冷水机组在设计工况或使用工况下的制冷量和耗功率应根据设计工况或使用工况(主要指冷水出水温度、冷却水进水温度)按机组变工况性能表、变工况性能曲线或变工况性能修正系数来确定。 2.4热源设备 2.4.1热源设备类型 提供空调热水的锅炉按其使用能源的不同,主要分为两大类:(1)电热水锅炉(2)燃气、燃油热水锅炉 电热水锅炉 电热水锅炉的优点是使用方便,清洁卫生,无排放物,安全,无燃烧爆炸危险,自动控制水温,可无人值守。 《公共建筑节能设计标准》(GB50189-2005)规定:除了符合下列情况之一外,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源:电力充足、供电政策支持和电价优惠地区的建筑; 以供冷为主,采暖负荷较小且无法利用热泵提供热源的建筑; 无集中供热与燃气源,用煤、油等燃料受到环保或消防严格限制的建筑; 夜间可利用低谷电进行蓄热、且蓄热电锅炉不在日间用电高峰和平段时间启用的建筑; 利用可再生能源发电地区的建筑; 内、外区合一的变风量系统中需要对局部外区进行加热的建筑.

组合式空调控制器面板操作说明

DX-9100 数字控制器面板操作说明 1. 请仔细阅读“操作说明”后,参照“操作说明”结合“自控调试表” 操作,非专业人员禁止操作。 2. 所有通讯地址、接线非专业人员禁止操作。 3. 控制程序与之相对应的送风机连锁。 4、控制程序与消防连锁。 一、面板布置 二、启动模式 三、下载模式 四、时间调度模式 五、时间调度事件编程 六、实时时钟日历 七、模拟输入显示模式 八、模式滚动模式 九、数字输入显示模式 十、输出模块显示模式 十一、数字计数器显示模式 十二、可编程功能模块显示模式 十三、模拟/ 数字常量显示模式

一、面板布置 本空调机组中采用美国江森DX-9100-8154 控制器(2 型),控制器内的 工作参数和值可以通过前面板显示出来并修改。前面板的布置由七个功能块组成,这些功能块包括用来完成许多种任务的发光二极管、数码管和操作键。 A C B E2 D2 G F Service Module Socket 1 2 3 4 5 6 7 8 R D TD AL XT X D K X Y Z D A/M Y XT 0 1 1 0 Z A 0 K A/M E ESC emdxtb60 图:DX-9100-8454(2 型) 的前面板布置图 1. 功能块的功能 1)功能块A:两个七段绿色数码管显示所选项目的索引号。 2)功能块B:四个七段红色数码管监视、显示并更新所选项目的值: ·模拟输入、输出和常数以数字表示。 ·数字输入、输出和常数以“ON”或“OFF”表示。 ·数字输入的计数器及其他合计值以数字表示,交替显示“个”位和“千”位数。 3) 功能块C:八个红色发光二极管指示DX(或为在功能块A中选中的XT)的数 字输入的状态,在时间调度模式下为定时模块中的星期日期以及在实时时钟模式下的当前星期日期。 4)功能块D2:上方的两个红色发光二极管分别指示,在N2总线(91 总线)上接收数据时RD灯点亮,DX-9100控制器经N2总线(91 总线)发送数据时TD

ADVISOR控制策略优化方法(原创教程)

ADVISOR控制策略优化 毛冲2014年7月8日 1、综述 控制策略优化程序的目的确定控制策略参数,以满足用户指定的目标和约束,通过调整控制策略参数和重新评估性能标准直至满足所有要求。目前,advisor有两种优化方法。第一种方法基于matlab,它通过扫描一维和二维多级参数,并且使用内置逻辑来确定合适的配置参数。第二种方法使用VisualDOC优化软件来确定合适的配置参数。每一种控制策略优化程序都只提供一种方案来解决优化问题。因此,结果只能作为参考。在这两种方法中,建议先自动改变汽车参数,但是不是必须的。在优化过程中,控制策略优化程序要定义坡度和加速度性能约束条件。当调整设计变量时,控制策略优化程序将会确保汽车让然满足这些约束条件这种控制策略优化程序适用于串联(包括燃料电池汽车)和并联混合动力汽车。在advisor中传统和纯电动汽车不能优化控制策略参数。 2、控制策略优化设置窗口 图1是控制策略优化设置窗口,这个界面允许用户定义如何使优化程序进行设置设计变量、目标和约束条件。

图1:控制策略优化设置窗口 2.1选择优化方法 用户选择优化程序的计算方法。如果选择 "Optimize using VisualDOC" 按钮,将会使用VisualDOC优化软件确定解决方案。另外,也可以使用基于matlab的优化方法。VisualDOC只有有限的版本支持advisor,如果在你的电脑中没有安装一个完整的VisualDOC的授权版本,你将会仅限于5个设计变量。 2.2选择循环/测试过程Cycle/Test Procedure Selection 用户必须决定是否为一个单独的驾驶循环或者测试过程来优化控制策略参数,用户可以选择在控制策略优化设置窗口中所有可用的驾驶循环和测试过程。要注意对测试过程的优化可能显著增加解决优化问 题所需的时间,也要注意汽车对单一循环的优化不一定能够为气体驾

空调机组设计规范标准

风机和电机的设计选型 一、风机的一些基本知识及分类 风机的定义:风机是一个装有两个或多个叶片的旋转轴推动气流的机械。主要有三个部分组成:叶轮(亦称涡轮或转子)、壳体以及驱动设备。 一般没有直联电机的风机主要组成部分:风轮、机壳、框架、轴承、轴、出风法兰(部分有),其中风轮、轴承、轴是关键的部件,需要特别注意。 风机性能参数:风量、静压、动压、功率、效率、静压效率等,性能曲线:Q(风量)-η(效率)、P(压力,包括动压、静压)-Q(风量)等,其中Pst(静压)-Q(风量)曲线是风机最重要的性能曲线,也是风机选型中最重要的依据。 风机的类型:离心式,轴流式,贯流式。 离心式:空气从轴向进入,径向吹出,风量较大,压力大; 轴流式:空气从轴向进入,轴向吹出,风量大,压力较小; 贯流式:空气在风机是两进两出,径向进径向出,再径向进径向出,风量小、压力小、噪声低。 二、离心式风机的分类和特点 离心式风机是末端机组常用到的风机类型,另外也用到风管机,天顶机等按叶片旋转方向分类: (1)前向离心叶轮的旋转方向与叶片的弯曲方向一致,叶片宽度较小,其叶片形式有: a 、前弯型薄叶片,b、机翼型叶片; (2)后向离心叶轮的旋转方向与叶片的弯曲方向相反,叶片宽度大。其叶片形式有:a、后倾后弯叶片,b、后弯斜扭叶片。 特点:风量较大,压力大。前向离心适用于风量大,而压力相对较小的场合,比如末端产品的空调箱、风机盘管、阻力较小的组合空调、桂式空调、移动空调等;后向离心适合与风量大,压力大,比如,高阻力的组合空调,还有需要四面出风的场合,比如天顶机等。 三、轴流风机的分类和特点 轴流风机的特点:风量大,压力低,运行转速比较低,噪声大。主要用在一些通风设备中,对风量要求大,而压力要求较低的场合。比如家用空调的室外机、

组合式空调机组各段体设计选型

概述 本课件描述了组合式空调机组的设计参数、性能要求、设计工况及各元件设计和选型方法。功能段包括混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、各种加湿、风机段、消声段等二十余种功能段。 组合式空调机组的具体命名方法可参阅GB/T14294-2008《组合式空调机组》: 组合式空调机组的基本设计工况: 风机段、消声段等进行自由组合,对空气的进行处理,满足客户对空气洁净度和舒适度、环境噪声的需求。 现行标准:GB/T14294-2008《组合式空调机组》,该标准侧重空气动力和热工能; EN1886-1998《建筑通风用空气处理机组机械性能》,该标准是EN标准系列中建筑通风和空调用机组系列标准的一部分,侧重箱体结构的机械性能。 换热器设计计算方法 换热器用来实现空气与热源载体——水进行能量交换的设备,是空调末端产品中最重要的部件之一。主要构件有进出水管、集水管、铜管、翅片、U型管、端板等,下面主要介绍表冷器大小、翅片形式、铜管大小等的选择,其结构上的知识不做介绍。 一般换热器的命名方法: 换热器的中文名称加三个主参数,即:换热器 M*N*L,M表示换热器厚度方向铜管排数,N表示换热器高度方向的铜管数,L表示换热器有效长度(即换热铜管长度),如:换热器 4*20* 1500,表示4排换热器,高度方向有20根管,换热器铜管的有效长度为1500。换热器的其他构件相关尺寸都是以这三个基本参数为依据换算而来。换热器的的系列代号方法如下:

完整的换热器的表示方法如下: ZK.HRQ3Z 换热器M×N×L (换热器系列部件图样代号及名称) ZK.HRQ3Z 换热器8×24×2015 (换热器系列部件图样代号及名称) 表示换热管规格为φ16、总水管通径为DN65(3型管)、8排(M=8)换热管、 每排管数为24(N=24)、换热器迎风面长度或换热管有效长度为2015mm (L=2015)的左式换热器。 具体名称命名方式可参阅换热器命名。 换热器的设计: 一、基本参数的设计: M 一般尽量按客户要求选择,在客户没有要求的情况下,我们根据N、L的值,加上我们的经验公式(见后)进行计算。 N、L 根据我们规划的段位尺寸,保证换热器在表冷段中便于安装,且有最大的换热面积和迎风面积,具体的段位尺寸见组合空调标准段位图。 二、翅片和铜管的选择 一般情况下有波纹片、开窗片、平片三种翅片形式。波纹片主要是与φ16铜管 配套,开窗片、平片与φ9.52铜管配套。风机盘管主要采用φ9.52铜管套平片,空调箱按风量区别,5000m3/h以上的采用φ16铜管套波纹片,5000m3/h以下的 采用φ9.52铜管套开窗片。 波纹片与φ16铜管换热器特点:风阻较小,换热能力较小。开窗片与φ9.52的换热器特点:风阻较大,换热能力较大。平片与φ9.52的换热能力最小。 三、铜管管路的分布 根据载体——水在管路中的走向及流程分布,管路可以分为:全回路、1/2回路、3/4回路等,目前多采用的为全回路、1/2回路。

组合式空调机组

高压喷雾加湿器是将加湿器的过滤器、泵机组、水箱、控制箱安装在车间或机房内,喷雾系统(喷嘴、管道)等安装在车间顶部的一种等焓加湿方式。这种加湿方式是将自来水经加湿器主机增压并通过超细过滤后,经过特制的喷嘴雾化高速喷出,形成5~10μm的水雾粒子,与流动的空气进行热湿交换,吸收空气中的热量,汽化、蒸发,使空气的湿度增加,实现对空气的加湿处理,同时起到降温控制粉尘的作用。高压喷雾加湿器可独立对车间降温加湿喷液。 对于中央空调机的湿膜蒸发式加湿器的工作原理很简单,水从湿膜的顶部通过疏水器沿湿膜的波纹表面均匀流下,使湿膜从上到下均匀的湿润,当干燥的热空气流过湿膜的表面,就会与湿膜中的水分进行热交换,水分受热蒸发变成水蒸气进入空气当中,增加了空气的湿度,从而使得干燥的热空气变为洁净湿润的空气。湿膜材料(又称“赛代克”)是湿膜加湿器的核心,它以植物纤维为基材,经过特殊 成分的树脂处理烧结形成波纹板状交*重叠的高分子复合材料,具有极强的吸水性、很好的自我清洗能力、无毒、耐酸碱、耐霉菌、阻燃及提供水分与空气间最大的接触表面积。 组合式空调机组本身不带冷、热源,是以冷、热水或蒸汽为媒介,用以完成对空气的过滤、加热、冷却、加湿、消声、热回收、新风处理和新、回风混合等功能的箱体组合式机组。比如二次回风系统中组装式空调机组的处理过程:新风通过过滤器过滤滤去尘埃和杂物,经一次加热后进入喷水室进行湿热处理,降温除湿后接着与二次回风进行混合。混合后的空气经二次加热器加热到规定的送风状态点,由送风机经消声器降噪,最后送入室内。由室内排出的空气经回风管道内设置的消声器降噪,由回风机将一部分空气排除出系统,其余部分作为回风加以利用。一次回风量和二次回风量由各自的回风阀开度来控制。实际工程中组合式空调机组的组成由各自的工艺的处理要求而定。 对全空气空调系统的所有监测、控制功能都是通过空气处理机组完成的。 控制方法 DDC控制器计算回风温度传感器测量的回风温度与给定值比较的偏差,用PID规律输出信号控制空调冷/热水调节阀开度以控制冷/热水量,使空调区域的气温保持在设定值(夏季使房间温度低于28 ℃,冬季则高于16 ℃)。 采用前馈补偿方式消除室外新风温度变化对输出的影响。 在过渡季节,可采取全新风工作方式。 对比: 新风机组空气处理机组 监测功能相同 被调参数送风(新风)温度、湿度各房间空气温度、湿度 处理对象新风新风、回风 扰动室外空气状态(外扰) 室外空气状态(外扰) 、内扰 变风量空调系统(Variable Air Volume System,VAV)是通过空调送风温度的调节实现空调 区域温湿环境的控制。 (1) 基本思想

制冷电气控制系统

冷库制冷电气控制系统 一名词解释 1、vvvf变频调速 VVVF意为可变电压、可变频率,也就是变频调速系统。VVVF控制的逆变器连接电机,通过同时改变频率和电压,达到磁通恒定(可以用反电势/频率近似表征)和控制电机转速(和频率成正比)的目的。 2、PLC可编程控制器 答案一:一种具有微处理机的数字电子设备,用于自动化控制的数字逻辑控制器,可以将控制指令随时加载内存内储存与执行。可编程控制器由内部CPU,指令及资料内存、输入输出单元、电源模组、数字模拟等单元所模组化组合成。 答案二:可编程逻辑控制器是一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。可编程逻辑控制器及其有关外部设备,都按易于与工业控制系统联成一个整体,易于扩充其功能的原则设计。 3、星三角形启动 电动机启动时,把定子绕组接成星形,以降低启动电压,限制启动电流。等电动机启动后,再把定子绕组改接成三角形,使电动机全压运行。 4、压缩机油压差保护 是一种压缩机安全保护的控制器,用来感知压缩机的压缩腔内润滑油压力与压缩机的曲轴箱(等同吸气压力)内的回油压力差是否符合设定值,并通过传导机构和加热装置控制触点通断的传感控制器件。当油压差过高或过低时断开压缩机交流接触器线圈串联的触点,自动切断电源,使制冷压缩机停机,避免制冷压缩机的传动部件烧坏。活塞油压差规定比吸气压力高0.15~0.3Mpa,螺杆比排气压力高0.15~0.3Mpa。 5、无触点继电器 指依靠半导体器件和电子元件如晶闸管的电、磁和光特性来完成履行其隔离和继电切换等功能而无机械运动构件的,输入和输出隔离的一种继电器。主要用于集成控制电路一次接线图上的。 6、调功器 又称调压器,是应用晶闸管及其触发控制电路并加以正弦等宽脉冲等技术,可连续调整负载上的电压电流、盘装功率的调整单元。 7、专业模块控制系统 包括输入输出模块,是针对某一专业系统联动控制的重要组成部分,模块多有一对常开、常闭触点,通过模块上面的触点连接外接电路来实现外部设备的联动控制。 8、压缩机能量调节控制系统 二填空 1、调节控制器常用方式主要有比例、微分、比例积分、比例积分微分、开停 2、大功率制冷空调系统压缩机电机,常用星三角形、自耦变压器减压启动、软启动器三种电路 3、一般控制电路根据二次接线图主要分为__外接形图_ _P形图_ _T形图_三种类型 4、制冷电气控制系统中,压缩机保护电路主要有油温、电机过热、冷凝压力、蒸发压力、油压差,排气温度

组合式空调机组设计规范.

编制:许辉

目录 概述 第一章换热器(表冷器)如何设计 第二章风机和风机电机的设计选型 第三章加湿器的知识和设计选型 第四章风阀及电动执行器的设计选型 第五章过滤器的知识和设计选型 第六章消声器知识和设计选型 第七章减震器的知识和设计选型 第八章转轮热回收装置的知识和设计选型第九章框架防冷桥原理介绍 第十章挡水板的设计选型方法和工作原理

概述 本规范描述了组合式空调机组的设计参数、性能要求、设计工况及各元件设计和选型方法。组合式空调机组基本型号有24个,功能段包括混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、各种加湿、风机段、消声段等二十余种功能段。 组合式空调机组的长、宽、高是按模数进行设计,标准规定:1M=158mm,基本命名方式为:MKZXXXX,前两为数字表高度上的模数,后两位表示宽度上的模数,尺寸的计算方法为:L=XX*158+50(70)。 组合式空调机组的基本设计工况: 混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、加湿段、风机段、消声段等进行自由组合,对空气的进行处理,满足客户对空气洁净度和舒适度、环境噪声的需求。

第一章 换热器设计计算方法 换热器用来实现空气与热源载体——水进行能量交换的设备,是空调末端产品中最重要的部件之一。主要构件有进出水管、集水管、铜管、翅片、U 型管、端板等,下面主要介绍表冷器大小、翅片形式、铜管大小等的选择,其结构上的知识不做介绍。 我们公司换热器的命名方法: 以换热器的中文名加三个主参数,即:换热器 M*N*L ,M 表示换热器的排数,N 表示换热器高度方向的铜管数,L 表示换热器有效长度(即换热铜管长度),如:换热器 4*20* 1500,表示4排换热器,高度方向有20根管,换热器铜管的有效长度为1500。换热器的其他构件相关尺寸都是以这三个基本参数为依据换算而来。 换热器的的系列代号方法如下: 完整的换热器的表示方法如下: MK .HRQ3Z 换热器M ×N ×L (换热器系列部件图样代号及名称) MK .HRQ3Z 换热器8×24×2015 (换热器系列部件图样代号及名称) 表示换热管规格为φ16、总水管通径为DN65(3型管)、8排(M=8)换热管、每排管数 为24(N=24)、换热器迎风面长度或换热管有效长度为2015mm (L=2015)的左式换热器。 换热器的设计: 一、 基本参数的设计: M 一般尽量按客户要求选择,在没有客户要求的情况下,我们根据N 、L 的值,加上我们的经验公式(见后)进行计算。 N 、L 根据我们规划的段位尺寸,保证换热器在表冷段中便于安装,且有最大的换热面积和迎风面积,具体的段位尺寸见组合空调标准段位图。 二 、翅片和铜管的选择 目前我们公司有波纹片、开窗片、平片三种翅片形式。波纹片主要是与φ16铜管配套,开窗片、平片与φ9.52铜管配套。风机盘管主要采用φ9.52铜管套平片,空调箱按风量区 换热器基本代号,换热器汉语拼音缩写,用HRQ表示 空调末端产品基本代号,美的空调汉语拼音缩写,用MK表示MK ·HRQ 部件分隔符,用“·”表示 □换热管代号,φ16换热管缺省不表示,φ9.52用U表示 □换热器总水管代号,用1、2、3、4表示,分别代表通径 为DN40、DN50、DN65、DN80的总水管 □ 左、右式换热器区别代号,左式用Z表示、右式用Y表示。

电力系统稳定器的设计及控制策略仿真

电力系统稳定器的设计及控制策略仿真 Power system stabilizer design and control strategy simulation 党剑飞,李明明,高小芳,周淑辉 DANG Jian-fei, LI Ming-ming, GAO Xiao-fang, ZHOU Shu-hui (河南省电力公司驻马店供电公司,驻马店 463000) 摘 要:本论文首先建立了发电机、原动机、调速器及励磁系统的基本模型。然后针对电力系统的特点,对励磁控制影响进行了数学分析并介绍PSS的设计原理,最后通过动态仿真对几种PSS控制策略进行了分析比较。 关键词:电力系统;pps; 控制仿真 中图分类号:TH166 文献标识码:A 文章编号:1009-0134(2010)10(下)-0189-03 Doi: 10.3969/j.issn.1009-0134.2010.10(下).61 0 引言 电力系统稳定器(pps)是一种附加励磁控制技术,其作用是抑制低频振荡。pps在励磁电压调节器中,引入领先于轴的附加信号,产生一个正阻尼转矩,去克服原励磁电压调节器中产生的负阻尼转矩作用。它抽取与振荡有关的信号,如发电机有功功率、转速或频率,加以处理,产生的附加信号加到励磁调节器中,使发电机产生阻尼低频振荡的附加转矩。根据以上分析可以得到,电力系统稳定器的设计能够增强系统的稳定性,对电力系统稳定性的提高有重要作用。 随着我国电力系统容量和输电距离不断增长,大容量机组更多的采用,电力系统稳定问题不断出现。PSS技术的发展对于改善电压调节的动态品质,提高静态电压调节精度和电网运行的暂态稳定显示明显的优点。21世纪以来各种不同输入信号的电力系统稳定器已在我国几个大型发电厂运行,并经受各种运行的考验。 1 电力系统电气元件的数学模型 电力系统的每一个主要元件的特性都对电力系统稳定产生影响。有关这些特性的知识对于理解和研究电力系统稳定是至关重要的。电力系统稳定及其控制技术与电力系统各电气元件的暂态特性有着非常密切的关系。为了分析电力系统静态稳定,并且进行有效地控制,必须首先研究电力系统电气元件的数学模型。它们包括:同步发电机、水轮发电机、汽轮机、调速器以及励磁系统等模型。1.1 同步发电机基本模型 影响电力系统动态特性的最主要元件是同步电机。同步发电机在dq0坐标系下的标么瞬时功率和电磁转矩方程分别为: 不考虑轴系分段时,同步发电机组的转子运 动方程为: 其中,H—转子惯性常数;T m —原动机力矩; T e —电磁力矩;T D —阻尼力矩;D一阻尼系数。1.2 原动机及调速系统基本模型 1.2.1 汽轮机的数学模型 在汽轮机中,调节汽门和第一级喷嘴之间存在管道和空间,当汽门开启和关闭时,进入汽机的蒸汽量虽有改变,但有一定惯性,这就形成原动机出力机械功率的变化要滞后于汽门开度的变化,这一现象称为汽容效应。对于大容量中间再过热机组,由于再热器的存在,汽容效应更加显著。当以阀门开度为输入量,汽轮机总机械功率为输出量时候,中间再过热机组的传递函数可表 收稿日期:2010-07-14 作者简介:党剑飞(1978 -),男,河南驻马店人,工程师,硕士。

空调机组系统设计计算书汇总

家庭专用中央空调机组 设计计算书

目录 1. 机组简介 (3) 2. 设计条件[1] (3) 3. 热力计算 (3) 4. 冷凝器设计计算 (5) 4.1 有关温度参数及冷凝热负荷确定 (5) 4.2 翅片管簇结构参数选择与计算 (6) 4.3 计算冷凝风量 (7) 4.4 计算空气侧换热系数 (7) 4.5 计算制冷剂侧换热系数 (8) 4.6 计算冷凝器总传热系数K (9) 5. 室外机风叶电机的选型 (10) 6. 蒸发器的设计计算 (10) 6.1 结构规划 (10) 6.2 翅片管各部分传热面积计算 (11) 6.3 确定冷却空气的状态变化过程 (12) 6.4 计算空气侧换热系数 (13) 6.5 计算管内表面传热系数i 和传热面积A0 (14) 7. 风侧阻力计算与内风机选型 (15) 8. 毛细管的选型 (15) 9. 配管设计 (16) 9.1 压缩机吸气管管径的计算 (16) 9.2 压缩机排气管管径的计算 (17) 9.3 冷凝器到毛细管前的液体管路管径的计算 (18) 参考文献: (18)

1. 机组简介 该XXX机组主要由压缩机、蒸发器、冷凝器、节流机构以及电控系统等组成。它通过直接向空调区域送冷却空气来达到调节室内空气环境的目的,适用于面积在约10-25㎡的办公室、酒店客房、小型营业场所或家居等场所。 2. 设计条件[1] 根据GB/T 18836-2002《风管送风式空调(热泵)机组》的要求,名义制冷工况:室内侧入口空气状态干球温度27℃,湿球温度19℃,室外侧入口空气状态干球温度35℃,湿球温度24℃。 3. 热力计算 根据名义制冷工况:室内侧入口空气状态干球温度27℃,湿球温度19℃,室外侧入口空气状态干球温度35℃,湿球温度24℃,初步确定:冷凝温度t k 为47℃,对应的冷凝压力P k为18.12bar(绝对压力,下同);蒸发温度t0为4℃,对应的蒸发压力P0为5.66bar,并做如下假设:冷凝器过冷度为6℃,蒸发器过热度为6℃,蒸发器出口到压缩机入口的温升为2℃,冷凝器出口到膨胀阀前的温降为1℃。压缩机的指示效率ηi为0.8,忽略系统中的压力损失,循环参数及压焓图如下:

电气控制回路八种常用元件原理介绍1

电气控制回路八种常用元件原理介绍 断路器、接触器、中间继电器、热继电器、按钮、指示灯、万能转换开关和行程开关是电气控制回路中最常见的八种元件,以图文并茂的方式介绍常用电气元件的原理及应用,通过了解它们在电气回路中的作用来掌握这些元件平时的运行情况。 1、断路器 低压断路器又称为自动空气开关,可手动开关,又能用来分配电能、不频繁启动异步电机,对电源线、电机等实行保护,当它们发生严重过载、短路或欠压等故障时能自动切断电路。常用断路器外形图(如下图) 1P微型断路器 3P微型断路器

塑壳断路器断路器文字符号为:QF 断路器图形符号为: 单极断路器图形符号三极断路器图形符号

2、接触器 接触器由电磁机构和触头系统两部分组成,接触器最常见线圈电压有AC380V、AC220V、AC110V、AC36V、AC24V、AC12V和DC220V、DC36V、DC24V、DC12V等多种。常用的有AC380V、AC220V,机床常用的有AC110V、AC36V 、DC36V、DC24V、等几种,外形一样,就是线圈的电压有区别。 接触器电磁机构由线圈、动铁心(衔铁)和静铁心组成;接触器触头系统由主触头和辅助触头两部分组成,主触头用于通断主电路,辅助触头用于控制电路中。常用接触器外形图片 接触器文字符号为:KM 接触器图形符号表示为:

接触器线圈图形符号: 接触器主触头图形符 号 : 接触器辅助常开触头图形符号接触器辅助常闭触头图形符号 3、热继电器 热继电器是利用电流通过元件所产生的热效应原理而反时限动作 的继电器。 热继电器文字符号:FR 热继电器图形符号: ---------------------------------

家用空调器电气控制系统故障检修

家用空调器电气控制系统故障检修 (一)室内风机不转 遇到此故障时应观察一下室内风机是否真的不转还是转速慢误认为不转。 开机后用工具推动一下窒内风机,观察室内机风扇是否能正常起动,如果能够起动,则是室内风机起动电容器损坏;否则可能是室内风机的电动机或室内机板出现了故障。 (二)自动停机 首先判断是室内机还是室外机自动停机。 室内机的自动停机可能足风机反馈不良或室内机板损坏,风机反馈线的检查可以用万用表的200kΩ电阻挡位测量一下风机反馈线是否开路,如果没有则检修或更换室内机板。 室外机的自动停机大多是由室外机设定的保护所引起的,包括传感器不良、电压保护、电流保护、模块保护、通信不良等。检修步骤如下: (1)先对室外机的传感器进行全面的测量,排除传感器故障。 (2)过电压保护:可能是模块、室外机电源板或压缩机不良。 (3)电流保护:首先用电流表测量室内、外机的主线电流是否高于额定电流,再用压力表测量室外机的压力是否高于正常值。如果压力高于正常值则把制冷剂放掉一些,把压力降到正常压力,如果压力正常,则室外机主板存在故障。 (4)模块保护:在维修过程中如遇到模块烧坏的情况,在更换新模块时在模块的表面应涂导热硅脂,否则会导致模块在短时间内因散热不良,造成模块保护,时间长了有可能击穿模块。 (5)通信故障:在变频空调中,当空调器显示屏在开机后立即或隔一段时间显示通信异常或接线错误故障代码,即出现通信故障时,可以遵循下面步骤: 1)检查室内外联机线、通信信号线是否压接不牢、接错或接反,用万用表检测信号线是否开路。如果是联机线、通信信号线压接不牢,重新调整或压紧。如果是信号线断路,则进行更换。

组合式空调机组相关知识与设计选型

组合式空调机组相关知识及设计选型 编制:许辉 目录 概述 第一章换热器(表冷器)如何设计 第二章风机和风机电机的设计选型 第三章加湿器的知识和设计选型 第四章风阀及电动执行器的设计选型 第五章过滤器的知识和设计选型 第六章消声器知识和设计选型 第七章减震器的知识和设计选型 第八章转轮热回收装置的知识和设计选型 第九章框架防冷桥原理介绍 第十章挡水板的设计选型方法和工作原理

概述 本规范描述了组合式空调机组的设计参数、性能要求、设计工况及各元件设计和选型方法。组合式空调机组基本型号有24个,功能段包括混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、各种加湿、风机段、消声段等二十余种功能段。 组合式空调机组的长、宽、高是按模数进行设计,标准规定:1M=158mm,基本命名方式为:MKZXXXX,前两为数字表高度上的模数,后两位表示宽度上的模数,尺寸的计算方法为:L=XX*158+50(70)(面板厚度为30mm时取50,面板厚度为50mm时取70)。 组合式空调机组的具体命名方法可参阅组合式空调机组产品分类与型号命名(QMZ-J20.011-2007) 组合式空调机组的基本设计工况:

混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、加湿段、风机段、消声段等进行自由组合,对空气的进行处理,满足客户对空气洁净度和舒适度、环境噪声的需求。 第一章换热器设计计算方法 换热器用来实现空气与热源载体——水进行能量交换的设备,是空调末端产品中最重要的部件之一。主要构件有进出水管、集水管、铜管、翅片、U型管、端板等,下面主要介绍表冷器大小、翅片形式、铜管大小等的选择,其结构上的知识不做介绍。 我们公司换热器的命名方法: 换热器的中文名称加三个主参数,即:换热器M*N*L,M表示换热器厚度方向铜管排数,N表示换热器高度方向的铜管数,L表示换热器有效长度(即换热铜管长度),如:换热器4*20* 1500,表示4排换热器,高度方向有20根管,换热器铜管的有效长度为

全新风空调机组设计

、全新风空调机组的设计定义: 将室外的新鲜空气经处理后送入封闭区域、房间的机组,其蒸发器进风方式为全部新风(或者新风量占总送风量50%以上的也可以参考本规范),特点是工况恶劣、工况变化大。此类机组包括制冷、制热、加湿、除湿、通风、洁净等功能。其目的是为了配合回风机组,对房间工况进行调节,一般精度要求不高。在空气调节系统中,其主要作用是: 1、向室内提供新鲜空气,满足室内人员生理所需。 2、对新风进行热湿处理,避免对室内工况造成冲击,一般而言,新风的热湿 负荷占整个空调系统相当大的比例。 3、在有精度要求的环境中,保证室内对外界保持正压,避免未经处理的空气通 过门、窗缝渗入。 4、在卫生医疗场所中,通过控制新/ 排风比,控制室内正压/ 负压,确保室内 空气不受外界干扰(正压),或者室内空气经过处理后才排到外界(负 压)。 二、全新风空调机组的设计类型: 1、直冷式:单冷型、单冷加热型(有电加热、蒸气加热、热水加热)、恒温恒湿 型、热泵型、除湿型(包括普通除湿、降温除湿、调温除湿)。 2、冷冻水式:各种风柜,ZK及YJS等。 三、全新风空调机组的设计额定工况: 1、处理焓差:制冷约35~40kJ/kg ,制热约20~25kJ/kg 。 2、进风工况及系统设计工况按下表,需注意:本规范目前仅规定制冷时的设计 要求,制热时的设计要求有待进一步研究后再予以修改、补充。 3、出风工况:以尽量不对房间工况造成冲击为目的。制冷时,干球18- 22℃ (DB),相对湿度80-90%RH。 4、调温除湿机:出口温升10℃。 四、全新风空调机组的设计一般设计原则: 1、带压缩机的全新风空调机组:由于工况变化范围大,为了保证压缩机的可靠 性,应对系统采取相应的措施,防止高温时压缩机过载,低温时蒸发器结霜或蒸发器回液,以及保证低负荷时制冷系统的回油。 制冷系统的进风工况及设计方案见表 1 示。对非标和常规作如下规定: 1)全新风空调常规机:风量为回风型40~50%,额定工况出风温度18~22℃,单 压 缩机系统24~43℃运行制冷,并联压缩机或螺杆机系统,20~43℃运行制冷,按表 1 方案。 2)全新风空调非标机:风量为回风型的40~50%,额定工况出风温度

组合式空调机组知识及设计选型

组合式空调机组知识、设计选用、ZK型 目录 概述 第一章换热器(表冷器)如何设计 第二章风机和风机电机的设计选型 第三章加湿器的知识和设计选型 第四章风阀及电动执行器的设计选型 第五章过滤器的知识和设计选型 第六章消声器知识和设计选型 第七章减震器的知识和设计选型 第八章转轮热回收装置的知识和设计选型 第九章框架防冷桥原理介绍 第十章挡水板的设计选型方法和工作原理

概述 组合式空调机组的型号很多,不同公司的产品也不一样,功能段包括混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、各种加湿、风机段、消声段等二十余种功能段。 组合式空调机组的具体命名方法可参阅组合式空调机组产品分类与型号命名(QMZ-J20.011-2007) 组合式空调机组的基本设计工况: 混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、加湿段、风机段、消声段等进行自由组合,对空气的进行处理,满足客户对空气洁净度和舒适度、环境噪声的需求。 第一章换热器设计计算方法

换热器用来实现空气与热源载体——水进行能量交换的设备,是空调末端产品中最重要的部件之一。主要构件有进出水管、集水管、铜管、翅片、U 型管、端板等,下面主要介绍表冷器大小、翅片形式、铜管大小等的选择,其结构上的知识不做介绍。 我们公司换热器的命名方法: 换热器的中文名称加三个主参数,即:换热器 M*N*L ,M 表示换热器厚度方向铜管排数,N 表示换热器高度方向的铜管数,L 表示换热器有效长度(即换热铜管长度),如:换热器 4*20* 1500,表示4排换热器,高度方向有20根管,换热器铜管的有效长度为1500。换热器的其他构件相关尺寸都是以这三个基本参数为依据换算而来。 换热器的系列代号方法如下: 完整的换热器的表示方法如下: MK .HRQ3Z 换热器M ×N ×L (换热器系列部件图样代号及名称) MK .HRQ3Z 换热器8×24×2015 (换热器系列部件图样代号及名称) 表示换热管规格为φ16、总水管通径为DN65(3型管)、8排(M=8)换热管、每排管数 为24(N=24)、换热器迎风面长度或换热管有效长度为2015mm (L=2015)的左式换热器。 具体名称命名方式可参阅换热器命名 。 换热器的设计: 一、 基本参数的设计: M 一般尽量按客户要求选择,在客户没有要求的情况下,我们根据N 、L 的值,加上我们的经验公式(见后)进行计算。 N 、L 根据我们规划的段位尺寸,保证换热器在表冷段中便于安装,且有最大的换热面积和迎风面积,具体的段位尺寸见组合空调标准段位图。 二 、翅片和铜管的选择 目前我们公司有波纹片、开窗片、平片三种翅片形式。波纹片主要是与φ16铜管配套,开窗片、平片与φ9.52铜管配套。风机盘管主要采用φ9.52铜管套平片,空调箱按风量区 换热器基本代号,换热器汉语拼音缩写,用HRQ表示 空调末端产品基本代号,美的空调汉语拼音缩写,用MK表示MK ·HRQ 部件分隔符,用“·”表示 □换热管代号,φ16换热管缺省不表示,φ9.52用U表示 □换热器总水管代号,用1、2、3、4表示,分别代表通径 为DN40、DN50、DN65、DN80的总水管 □ 左、右式换热器区别代号,左式用Z表示、右式用Y表示。

相关主题
文本预览
相关文档 最新文档