当前位置:文档之家› 比较几种无线网卡

比较几种无线网卡

比较几种无线网卡
比较几种无线网卡

一、无线网卡概述

无线网卡是终端无线网络的设备,是无线局域网的无线覆盖下通过无线连接网络进行上网使用的无线终端设备。具体来说无线网卡就是使你的电脑可以利用无线来上网的一个装置,但是有了无线网卡也还需要一个可以连接的无线网络,如果在家里或者所在地有无线路由器或者无线AP的覆盖,就可以通过无线网卡以无线的方式连接无线网络可上网。

二、无线网卡分类

1.按照接口类型:

1.台式机专用的PCI接口无线网卡

2.笔记本电脑专用的PCMCIA接口无线网卡

3.USB接口无线网卡

4.笔记本电脑内置的MINI-PCI无线网卡

USB网卡不管是台式机用户还是笔记本用户,只要安装了驱动程序,都可以使用。在选择时要注意的只有采用USB2.0接口的无线网卡才能满足802.11g或802.11g+的需求。USB无线网卡除此而外,还有笔记本电脑中应用比较广泛的MINI-PCI无线网卡。MINI-PCI 为内置型无线网卡,迅驰机型和非迅驰的无线网卡标配机型均使用这种无线网卡。其优点是无需占用PC卡或USB插槽,并且免去了随时身携一张PC卡或USB卡的麻烦。目前这几种无线网卡在价格上差距不大,在性能/功能上也差不多,按需而选即可。

2.按端口

分为E型、T型、PC型、L型和USB等接口。

3.按标准

1.IEEE 80

2.11a:使用5GHz频段,传输速度54Mbps,与802.11b不兼容

2.IEEE 802.11b :使用2.4GHz频段,传输速度11Mbps

3.IEEE 802.11g :使用2.4GHz频段,传输速度54Mbps,可向下兼容802.11b 4.IEEE 802.11n:可向下兼容,传输速度300Mbps。

三、无线网卡生产厂商

Allied Telesyn安

奈特

ASUS华硕Belkin贝尔金Broadcom博通Buffalo巴比禄

DigitalChina神州数码D-Link友讯DWnet中怡数宽FAST迅捷

Haoxinghongda昊星

宏达

HuaWei华为IBM Intel英特尔JCG金辰光KingNet金浪MSI微星Netcore磊科Netgear网件Realtek瑞昱SiS矽统Tenda腾达TP-link普联VIA威盛Wonda网达ZTE中兴

2wire3COM3DSP创蕊科技

AboveCable宽讯时Accton智邦ADMtek Aigo爱国者AirLive

Alpha阿尔法ANYFRE飞子笑AOCOS东方胜通AOpen建基Atheros AXIMcom Aztech快捷达AzureWave海华BENQ明基BeWAN billionton互亿BIRD波导B-Link必联Bora波乐通信Creative创新DELL戴尔DGC大吉DTT大唐电信EAGET忆捷EagleTec鹰泰EDIMAX爱迪麦斯Foxconn富士康GIGABYTE技嘉GreatWall长城Hardlink固网iCAMView ICC慧谷IO DATA IP-COM irxon水木行Kinstone今视通K-Touch天语LANBID兰必得Lantech蓝特Lenovo联想

LINK WIRElESS中讯

互联

LINKSYS Longway龙维LSI Marvell Mercury水星Netac朗科Olitec Panda熊猫Phoebe Micro

Proxim Ralink雷凌Ruijie锐捷SMC智邦科技Sony Ericsson索尼爱立信

Soyo梅捷Start(Star)实达SUM三目通SZYLINK深资源TIMESPOWER时代动力

Toshiba东芝TOTOLINK TwinMOS勤茂UCOM友康UNIS清华紫光

USRobotics(USR)

美国机器人

VTION网讯XINGNET网域Zyxel合勤安特嘉华

波音汉铭品速讯畅亿通

四、无线网卡比较

1.Realtek RTL8191U无线wifi网卡(54元)

这款无线网卡采用Realtek RTL8191U芯片,符合802.11n标准,传输功率高达300Mbps,价格便宜实惠,功率更强,信号接收多。适用于各种网络高清播放器、网络WIFI电视机、网络收音机等。

特点:

采用1T2R天线技术,提供优越的信号覆盖范围和接收能力;

支持USB2.0接口标准;

支持64/128/152位WEP无线数据安全加密,同时支持MIC/IV扩展;

支持的操作系统:Windows 98/ME/2000/XP/Vista;

技术指标:

支持的标准:支持IEEE 802.11n、802.11g、802.11b标准;

动态数据速率:可支持300Mbps动态数据传输速率(自适应);

工作频率范围:2.4 - 2.4835GHz;

支持两种工作模式:Ad Hoc Mode (对等式)和Infrastructure mode (集中控制式);

传输功率:20dBm 最大值

接收灵敏度:130M: -68dBm@10% PER; 108M: -68dBm@10% PER; 54M: -68dBm@10% PER; 11M: -85dBm@8% PER; 6M: -88dBm@10% PER; 1M: -90dBm@8% PER

应用:

这款无线网卡适合用于高清媒体播放器,网络高清点播机,上网本,网络电视机,网络收音机等终端设备。

2.MiniPCI无线模块Ralink RT2561 (58元)

54Mbps MiniPCI无线模块采用Ralink RT2561方案, 符合IEEE 802.11b/g标准,无线传输速率高达54Mbps,支持无线漫游。可外接2根天线(经由I-PEX座连接)适应于不同的应用环境,是嵌入式应用的优良选择。

特点:

支持标准32位mini-PCI接口;

SMT同轴连接器可连接2根外置天线;

支持22Mbps数据包二进制卷积码(PBCC);

支持64/128位WEP、WPA、WPA2(TKIP/AES)等加密与安全机制;

支持Windows 2000, XP,Vista, Win 7, Win CE, Linux等操作系统;

技术指标:

支持的标准:IEEE802.11b, IEEE802.11g;

动态数据速率:可支持54, 48, 36, 24, 18, 12, 11, 9, 6, 5.5, 2 和1Mbps动态数据传输速率;

工作频率范围:2.412 - 2.4835GHz;

传输功率:15dBm@54Mbps 典型值;

接收灵敏度:-84dBm 典型值

工作电压:3.3V

产品尺寸:59.6 x 44.6 x 4.0mm (长x宽x厚);

应用:

1、适合无线AP方案、无线网络收音机等的应用。

2、广泛应用于数据、视频、音频等数据的传输。

3.MiniPCI无线网卡Athero AR9220 (264元)

WL-9292M20是一种高速双频段Mini - PCI模块,这是完全符合IEEE 802.11n标准和向后兼容802.11g和802.11b的。通过使用智能的MIMO 2T2R技术,它提供了比普通802.11g产品的吞吐量提高6倍,达到了令人难以置信的数据传输速率高达300Mbps,这有助于增加覆盖范围,减少盲区。

特点:

支持标准32位mini-PCI接口;

采用2T2R MIMO天线技术,使传输性能更稳定;

输出功率高达100mW / 400mW/ 500mW;

支持DFS(动态频率选择2.4/5GHz);

支持802.11d全球漫游;

支持WEP、TKIP/AES, 802.1x等加密与安全机制;

支持Windows 2000, XP, Vista和Linux操作系统;

技术指标:

支持的标准:IEEE802.11a, IEEE802.11b, IEEE802.11g;

动态数据速率:高达300Mbps(自适应);

工作频率范围:2.4 - 2.484GHz / 5.150 - 5.875GHz;

工作电压:3.3V;

产品尺寸:59.6 x 51 x 3.5mm (长x宽x厚);

应用:

1、适合无线AP方案、无线网络收音机等的应用。

2、广泛应用于数据、视频、音频等数据的传输。

4.UART串口wifi模块可外接天线(216元)

该串口Wifi模块兼容IEEE 802.11b标准,传输速率11Mbps。可外接天线适应于不同的应用环境,是嵌入式应用的优良选择。

特点:

32位高性能板载CPU;

支持的总线接口有UART(RS232或TTL);

2.54mm间距4针式连接器;

可选19.2/38.4/57.6/115.2 kbps波特率;

支持基于TCP/UDP/RAW协议的数据传输;

支持WEP/WPA/WPA2/WAPI等多种加密方式,支持OPEN/WEP鉴权;

免驱动;

技术指标:

支持的标准:IEEE802.11b;

动态数据速率:可支持11Mbps动态数据传输速率;

工作频率范围在2.412 - 2.484GHz;

传输功率:16(±2)dBm

接收灵敏度:-84dBm@11M 8%PER;-92dBm@54M 8%PER;

工作电压:5V

产品尺寸:55.3 x 25.4 x 4.2mm (长x宽x厚);

应用:

1、适合工业无线数据采集系统、工业手执终端、设备参数监测等。

2、适合医疗仪器、智能卡终端、无线POS机(公交/金融)、智能交通等。

3、适合LED屏显、互联网收音机、无线数码相框、游戏机等。

电压缩式制冷直燃型吸收式制冷技术比较

随着社会生产力的发展和人民生活水平的提高,空调已成为各类建筑不可缺少的重要组成部分,夏季用于空调制冷的能耗相当巨大。 现广泛使用的空调制冷方式有:(1)电压缩式制冷,包括活塞式、螺杆式、离心式压缩机制冷;(2)直燃型吸收式制冷,有燃油型和燃气型直燃机;(3)蒸汽(或热水)型吸收式制冷。它们所消耗的主要能源分别为电、天然气和蒸汽。 目前北京市的能源供应情况为:电力供应的峰谷矛盾严重,尤其在空调季该矛盾更为突出,给电力生产带来很大困难和浪费;天然气供应虽较以前有很大提高,但仍供不应求,且天然气作为一种消耗性能源,不可再生;很多集中热源厂冬夏季热负荷存在较大峰谷差,夏季蒸汽使用一直处于低负荷状态,给安全、高效的蒸汽输配带来不利影响,且不利于提高热源厂设备利用率和经济效益。 空调制冷方式选择得是否合理及切合实际,将直接影响社会能源的利用和人类的生存环境,如选择得当,既可安全可靠地供冷,还可合理利用和节约能源,改善城市的环境质量。 本文结合实例,对电压缩制冷、直燃型吸收式制冷、蒸汽型吸收式制冷三种制冷方式进行技术、经济比较,可为实际制冷方案的确定提供参考。 2.某建筑三种制冷方式的技术、经济比较 2.1项目概况 某建筑夏季需空调制冷,其建筑面积为20000m2,冷负荷指标为100W/m2,其总冷负荷为2000kW(1720×103kcal/h)。 2.2方案选择 方案1:选用1台制冷量为2093kW(1800×103kcal/h)的水冷螺杆式冷水机组,制冷剂为R22;方案2:选用1台制冷量为2110kW(1815×103kcal/h)的直燃型双效吸收式冷热水机组,燃料为天然气; 方案3:选用1台制冷量为2040kW(1754×103kcal/h)的蒸汽型双效吸收式冷水机组,热源为0.6MPa饱和蒸汽。 2.3计算参数 2.3.1地区参数 配电设备费:1200元/kW用电电价:0.8元/kW•h 天然气热值:8650kcal/Nm3天然气价格:1.90元/Nm3 蒸汽价格:80元/吨制冷期:120天/年 日运行时间:10小时/天制冷负荷率:0.6 2.3.2技术参数 根据上述方案制冷主机的选择,配设相应的冷冻水系统和冷却水系统等主要设备,各方案的技术参数统计如表1。 从表2可知,以设备初投资进行比较,直燃机制冷方案设备初投资为最大,电制冷方案设备初投资为最低,蒸汽制冷方案比电制冷方案设备初投资稍高。 2.5运行费用比较 运行费用包括设备运行能源消耗费(耗电费、燃料费、热源费)、耗水费、设备维护费、折旧费等。其中能源消耗费占较大比例,不考虑其它各项费用,各方案运行费用统计如下表:从表3可知,以年运行费用进行比较,直燃机制冷方案的年运行费用为最高,蒸汽制冷方案的年运行费用为最低,而电制冷方案比蒸汽制冷方案的年运行费用稍高。从整个制冷期的单位面积年运行费用看,蒸汽制冷方案比电制冷方案每平米节约1.47元,比直燃机制冷方案每平米节约5.45元。对于整个建筑(建筑面积20000m2),蒸汽制冷方案比电制冷方案每年节约运行费用2.94万元,约3.74年可收回比电制冷方案增加的初投资。 2.6能源利用率比较

几种育种方法的比较

育种的方法和应用 生物育种是一门很复杂的技术,针对不同的生物应采用不同的育种方式,要对各种育种方式进行比较,选择简易、可操作的方式。同一种育种方式应用于不同的生物也会有不尽相同的育种过程,所以我们无论在生产实践中还是有关习题训练中都应灵活应用。 一、几种育种的方法的比较 在高中阶段所介绍的育种方法主要有:诱变育种、杂交育种、多倍体育种、单倍体育种、细胞工程育种(组织培养育种)、基因工程育种(转基因育种)、植物激素育种等。 1、杂交育种 (1)原理:基因重组。 (2)方法:连续自交,不断选种。(不同个体间杂交产生后代,然后连续自交,筛选所需纯合子) (3)发生时期:有性生殖的减数分裂第一次分裂后期或四分体时期, (4)优点:使同种生物的不同优良性状集中于同一个个体,具有预见性。’ (5)缺点:育种年限长,需连续自交才能选育出需要的优良性状。 (6)举例:矮茎抗锈病小麦等。 2、诱变育种 (1)原理:基因突变。 (2)方法:用物理因素(如x射线、1射线等)、化学因素(如亚硝酸、秋水仙素等各种化学药剂)、生物因素或空间诱变育种(用宇宙强辐射、微重力等条件)来处理生物。 (3)发生时期:有丝分裂间期或减数分裂第一次分裂间期(DNA分子复制的时候)。 (4)优点:能提高变异频率,加速育种进程,可大幅度改良某些性状,创造人类需要的变异类型,从中选择培育出优良的生物品种;变异范围广。 (5)缺点:有利变异少,须大量处理材料;诱变的方向和性质不能控制;改良数量性状效果较差,具有盲目性。 (6)举例:青霉素高产菌株、太空椒、高产小麦、“彩色小麦”等。 3、多倍体育种 (1)原理:染色体变异。 (2)方法:秋水仙素处理萌发的种子或幼苗(秋水仙素能抑制细胞有丝分裂过程中纺锤体的形成)。 (3)优点:可培育出自然界中没有的新品种,且培育出的植物器官大,产量高,营养丰富。 (4)缺点:结实率低,发育延迟。 (5)举例:三倍体无子西瓜、八倍体小黑麦。 4、单倍体育种 (1)原理:染色体变异。 (2)方法:花药离体培养获得单倍体植株,再用秋水仙素等诱导剂人工诱导染色体数目加倍。 (3)优点:自交后代不发生性状分离,能明显缩短育种年限,加速育种进程。 (4)缺点:技术相当复杂,需与杂交育种结合,其中的花药离体培养过程需要组织培养技术手段的支持,多限于植物。 (5)举例:“京花一号”小麦。 5、细胞工程育种 (1)方式:植物组织培养植物体细胞杂交细胞核移植 (2)原理:植物细胞的全能性植物细胞膜的流动性动物细胞核的全能性 (3)方法:离体的植物器官、组织或细胞→愈伤组织→根、芽→植物体去掉细胞壁

几种天线的比较

天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。

几种数学计算方法的比较

有限元法,有限差分法和有限体积法的区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 对于有限元方法,其基本思路和解题步骤可归纳为 (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值

三种大屏技术对比

液晶拼接与背投(DLP)、等离子(PDP)的技术对比 背投原理简析 背投的实现原理很简单,在设备内部设置一部投影机,发出的图像经透镜放大后投射到屏幕背面,就是背投。正是基于这种原理诞生的背投,由于采用不同的投影机种类,主要可分为CRT(阴极射线管)、LCD(液晶)、DLP(数字光处理)等几种。CRT背投属于背投阵营中的低端产品,而其它几种背投则对应地为高端产品,其中以DLP背投最为出色,其图像清晰度、亮度、色彩、可视角度以及体积来看,均比传统CRT背投有了很大提高。以下文中所述背投均指DLP背投。

优点:廉价的低端显示方案。 缺点:体积与重量过大,长时间不间断工作,加快背光灯老化。 等离子原理简析 PDP是一种利用气体放电的显示技术,其工作原理与日光灯很相似。它采用了等离子管作为发光元件,屏幕上每一个等离子管对应一个像素,屏幕以玻璃作为基板,基板间隔一定距离,形成一个个放电空间。放电空间内充入氖、氙等混合惰性气体作为工作媒质,在两块玻璃基板的内侧面上涂有金属氧化物导电薄膜作激励电极。当向电极上加入电压,放电空间内的混合气体便发生等离子体放电现象,也称电浆效应。等离子体放电产生紫外线,紫外线激发涂有红绿蓝荧光粉的荧光屏,荧光屏发射出可见光,显现出图像。优点:颜色鲜艳、高亮度、高对比度缺点:耗电与发热量很大,严重灼伤现象,画质随时间递减。 液晶原理简析 液晶是利用液状晶体在电压的作用下发生偏转的原理。由于组成屏幕的液状晶体在同一点上可以显示红、绿、蓝三基色,或者说液晶的一个点是由三个点叠加起来的,它们按照一定的顺序排列,通过电压来刺激这些液状晶体,就可以呈现出不同的颜色,不同比例的搭配可以呈现千变万化的色彩。液晶本身是不发光的,它靠背光管来发光,因此液晶屏的取决于背光管。由于液晶采用点成像的原因,因此屏幕里面构成的点越多,成像效果越精细,纵横的点数就构成了液晶电视的分辨率,分辨率越高,效果越好。 优点:高分辨率、厚度薄、重量轻、低能耗、长寿命、无辐射。 缺点:拼接缝稍大。 液晶和等离子显示技术PK 目前主流的平板显示技术主要有液晶显示技术和PDP等离子显示技术。下面,我们就从几个方面比较一下这两种显示技术。 1.使用寿命 大屏幕显示器由于其不菲的造价,所以使用寿命成为其首要问题,理论上讲液晶和等离子显示屏的寿命都可以达到6万小时,不过由于这两种显示技术的发光原理不同,使得实际应用中差异很大。等离子显示器中的每个像素单元实际上是一个微型灯泡,由于使用白炽灯泡,图像质量会随着使用时间增长而变差,虽然目前的技术能够目前的技术能够使等离子显示器工作时间达到60,000个小时,但可能使用到20,000小时的时候背光就会出故障,导致显示质量下降一半。并且等离子如果长期播放一个固定的图像,会在屏幕上留下一个浅浅的痕迹(残影)也就是“烧屏”,例如,如果观看一信号太久,屏幕一角的台标就可能烙印在屏幕上,在观赏其它信号时仍看得到其残影。通常情况下,连续观看10~20小时就能造成看得见的残影,截至目前这个问题还没有完美的解决方法。由于液晶电视工作原理不同(利用液状晶体在电压的作用下发光成像的原理。组成屏幕的液状晶体有三种:红、绿、蓝三基色,

现代几种简单的制冷技术

目录 第一章制冷的热力学基础 (2) 第1节热力学第一定律 (2) 第2节热力学第二定律 (6) 第二章传统的制冷物质与制冷技术 (7) 第1节制冷剂的历史[4] (7) 第2节传统制冷技术的简单介绍 (7) 第三章半导体制冷 (10) 第1节半导体[4] (10) 第2节半导体制冷器 (11) 参考文献 (12) 致谢 (13)

第一章 制冷的热力学基础 第1节 热力学第一定律 1、热力学第一定律 自然界中的所有物质都有能量,能量不能被创造也不能被消灭,它只能进行能量之间的转换,从一种形态变成另一种形态,但是能量的总和不会改变,这就是能量守恒与转换定律,是自然界的基础规律之一,也是热力学第一定律的理论基础[2]。热力学第一定律就是能量守恒与转换在一个热力学系统中的应用。 热力学第一定律的解析式为: W U Q +?= (1.1.1) 式中Q 为系统中的热量,U ?表示热力学能的变化量,W 为与环境交换的功。式中热力学能变化量U ?、热量Q 、和功W 都是代数值,可正可负,系统吸热Q 值为正,放热Q 值为负;同理,系统对外做功W 为正,反之为负。系统的热力学能增大时,U ?为正。可以理解为在一个热力学系统内,热力学变化量U ?与对环境做的功的总和为系统中的总热量。这也说明了一个道理热力学第一定律是一个准静态过程,即在这个过程中的每一时刻,系统都处于平衡态。 说简单些,就是在一个系统中,热和功是可以相互转换的,消耗一定量的热即可产生一定量的功,同时,消耗一定量的功会产生一定量的热,但其二者之和是保持不变的一个固定值。 热力学的第一定律解析式的微分形式为 W dU Q δδ+= (1.1.2) 2、热力学第一定律对理想气体的应用[1] 下面我们来看看热力学第一定律在理想气体下的一些简单的能量转换。 (1)等体过程 等体过程即使在系统体积保持不变,外界做功为零,故此根据热力学第一定律的解析式可得出

三种中波天线的使用与性能比较

三种中波天线的使用与性能比较 庄涛卢光辉冀晓鸽 摘要:中波发射天线作为广播信号发射的重要载体,给我国广播事业的发展做出了巨大的贡献,随着新型数字固态中波广播发射机的全面普及,与之配套的新型天线也在逐步问世,中波天线的小型化解决了土地资源紧张、建设费用巨大、日常维护费用高、电磁波污染、高架塔体易遭雷击及塔体自身安全等诸多问题。本文结合我台实际情况,对三种中波天线的结构特点、电气性能、使用条件进行了详细的介绍与论证。 关键词:中波天线结构特点电气性能优劣论证 近几年,我台在原有一座120米桅杆式拉线天线的基础上,新增120米自立天线、33米锥面顶负荷小天线各一座,两座天线投入使用都超过一年以上,发射效果良好,性能稳定,现就三种天线(参看三种天线实物照片)的使用情况和性能、特点作一比较。 (桅杆式天线)(自立塔天线)(锥面顶负荷小天线) 一、天线的结构特点与使用条件 1、桅杆式中波天线 这种天线为传统的中波天线,根据使用频率其高度一般在60 ~ 150m 左右。边宽为 0.5~1.5 m,主体由若干节的正三角椎体组成,120米桅杆式天线上下共有9根拉线,每三根与另外三根的夹角为120°,底部是桶形高频瓷质绝缘体,在保证能承受上百吨的压力外,绝缘体每厘米还要能承受1KV以上的电压,为保证辐射效果、提高辐射效率,必须以天线塔体为中心铺设直径约0.3~0.5 λ的辐射状地网,如果要达到理想的天线效率,这种天线需占地70~150亩,由于这种天线受传统设计理念所限,再加上宽松的土地政策,结构相对简单,线性好,容易与输入网络匹配等优点,自上世纪六七十年代至今,大部分中波台站都在使用这种天线,但是,随着时代的发展,这种天线与土地资源的紧缺矛盾日益凸显。在摈弃传统天线占地面积大,打破传统天线设计理论束缚的基础上,人们采用新的设计理念,在不断实践的基础上,相继研制并开发了几种新型中波天线。 2、自立式中波天线 120米自立天线,底部为边宽十米的的等边三角形,天线主体仿电视发射塔结构,底部采用钢筋混凝土做基础,三个塔基分别安装三个高绝缘承重瓷质底座,与镀锌钢件有机结合。

java web 分页技术详解及代码

java web 分页技术详解及代码 关于在java web上实现分页技术,方式实际上有很多,也各有个的特点,此处我只写些我的认识。java web分页无外乎两种,一种是直接取出来,放到一个集合里,通过传begin 和end 参数控制分页,还有一种就是把分页工作交给数据库,让数据库读取需要的begin~end 之间的数据。 我们这里,先看从数据库中读取的情况 操作数据库就需要tsql语句,mssqlserver2005新推出了一个row_number()很好用,还有就是mysql的limit也非常好使。 mssqlserver2005的如下: select * from (select row_number() over (order by ename) as rn, f.* from emp f) b where b.rn between 6 and 10; mysql的: select * from emp limit 5,5 mysql的应注意,使用limit时,表中必须用主键,还有limit后的两个参数分别代表(标识位,长度),标识位从0开始 现在开始一步步完成,首先完成model模块,建立pagebean import java.util.*; public class PageBean { private Collection objs;//从数据库中读的集合 private int totalCount;//总的条数 private int pageNo;//当前的页数 private int pageCount;//每页的条数 public int getPageCount() { return pageCount; } public void setPageCount(int pageCount) { this.pageCount = pageCount; }

几种拼接技术的对比表

在大型监控或高端会议项目中,如果需要大视野的屏幕,拼接技术的应用就势在必然。这里就大屏拼接系统最核心的屏幕显示单元做个简单的概述: 目前大屏拼接使用的显示单元主要有DLP 背投、PDP等离子显示器、LCD液晶显示器三种。 DLP 是Digital Lighting Progress的缩写。它的意思为数字光处理,也就是说这种技术要先把影像讯号经过数字处理,然后再把光投影出来。它是基于德仪公司开发的数字微反射镜器件—DMD 来完成显示数字可视信息的最终环节,而DMD 则是Digital Micromirror Device 的缩写,字面意思为数字微镜元件,这是指在 DLP 技术系统中的核心——光学引擎心脏采用的数字微镜晶片,它是在 CMOS 的标准半导体制程上,加上一个可以调变反射面的旋转机构形成的器件。 说得更具体些,就是 DLP 投影技术是应用了数字微镜晶片(DMD)来做主要关键元件以实现数字光学处理过程。其原理是将光源藉由一个积分器(Integrator),将光均匀化,通过一个有色彩三原色的色环(Color Wheel),将光分成R、G、B三色,再将色彩由透镜成像在 DMD 上。以同步讯号的方法,把数字旋转镜片的电讯号,将连续光转为灰阶,配合R、G、B三种颜色而将色彩表现出来,最后在经过镜头投影成像。DLP背投拼接目前国内主要以威创为代表,还有中达电通、中电视讯、安比、九鼎等一些公司也是专业的DLP拼接供应商。 DLP相对于其他两种拼接的优点在于其拼缝小,屏体尺寸规格多样化。但是其缺点也是显而易见的:譬如体积与重量过大,各项关键技术指标均远不及液晶和等离子,其最大的缺陷就是运行成本高:且长时间不间断工作更会加快DLP背投灯泡老化速度,背投灯泡只有几千小时寿命,如果一天二十四小时运行,几个月便需要更换背投灯泡,给用户带来不小的运营开支。 PDP即是Plasma Display Panel,也就是等离子显示屏,是一种利用气体放电的显示技术,其工作原理与日光灯很相似。它采用了等离子管作为发光元件,屏幕上每一个等离子管对应一个像素,屏幕以玻璃作为基板,基板间隔一定距离,四周经气密性封接形成一个个放电空间,放电空间内充入氖、氙等混合惰性气体作为工作媒质在两块玻璃基板的内侧面上涂有金属氧化物导电薄膜作激励电极。当向电极上加入电压,放电空间内的混合气体便发生等离子体放电现象,也称电浆效应。气体等离子体放电产生紫外线,紫外线激发涂有红绿蓝荧光粉的荧光屏,荧光屏发射出可见光,显现出图像。当每一颜色单元实现 256 级灰度后再进行混色,便实现彩色显示。 其技术原理为,由于 PDP 中发光的等离子管在平面中均匀分布,这样显示图像的中心

制冷技术试卷及答案汇编

一.填空题每题 3 分,共 30 分 1?制冷是指用(人工)的方法将(被冷却对象)的热量移向周围环境介质,使其达到低于环境介质的温度,并 在所需时间内维持一定的低温。 2?最简单的制冷机由(压缩机)、(冷凝器)、(节流阀)和(蒸发器)四个部件并依次用管道连成封闭的 系统所组成。 3?蒸气压缩式制冷以消耗(机械能)为补偿条件,借助制冷剂的(相变)将热量从低温物体传给高温环境介 质。 4?节流前液体制冷剂的过冷会使循环的单位质量制冷量(变大);单位理论压缩功(不变)。 5?制冷机的工作参数,即(蒸发温度)、(过热温度)、(冷凝温度)、(过冷温度),常称为制冷机的运行工况。 6?在溴化锂吸收式制冷装置中,制冷剂为(水),吸收剂为(溴化锂)。 7?活塞式压缩机按密封方式可分为(开启式)、(半封闭式)和(全封闭式)三类。 8?活塞式压缩机的输气系数受(余隙容积)、(吸、排气阀阻力)、(气缸壁与制冷剂热交换)、(压缩机内部泄漏)影响。 9?壳管式冷凝器管束内流动(水),管间流动(制冷剂)。 10?空调用制冷系统中,水管系统包括(冷却水)系统和(冷冻水)系统。 二.单项选择题每小题 2 分,共 20 分 1?空调用制冷技术属于 (A ) A .普通制冷 B .深度制冷 C .低温制冷 D .超低温制冷 2?下列制冷方法中不属于液体汽化法的是( B) A .蒸气压缩式制冷 B .气体膨胀制冷 C .蒸汽喷射制冷 D .吸收式制冷 3?下列属于速度型压缩机的是( D ) A .活塞式压缩机 B .螺杆式压缩机 C .回转式压缩机 D .离心式压缩机 4?将制冷系统中不能在冷凝器中液化的气体分离掉的设备是( C )

几种短波天线的比较

几种短波天线的比较(ZT) 这里我们是常见的几款短波天线,如国产的10米波段1/2波长垂直天线,曰本钻石公司的HV-4,自制的加感天线,自制的DP天线。当然,还很多的其他的天线类型。这次只是对这几款用过的做一个比较,讲一讲个人的一些体会,希望能大家有所帮助。还是会再继续寻找,试图找出更符合个人需要,容易制作和携带的野营天线。 1. 国产的10米波段1/2波长垂直天线: 这种天线好处很多,增益高,发射仰角低,受环境影响小,无须调整,架设高度低,可以直接放在地上。缺点是单波段天线,一个波段得要一根。另外每节1米左右,携带不算很麻烦也不算容易。 2. 曰本钻石公司的HV-4: 这是一款车天线,是适合放在车顶使用的,曾经用吸盘吸在普桑顶上,在行驶的汽车上用15米波段联络曰本电台效果非常好。但是不把它安装在车上,它就无法正常工作,即使加上了模拟地线,谐振点也全部偏低,21MHz波段的谐振点到了18MHz。所以其实是不适合野营使用的。 3. 自制的加感天线: 振子是1.5米长的拉杆天线,收起来的时候很短。加感线圈在底部,另外还需要地线配合。由于当年调试的时候是把天线斜挑出阳台,地线自然下垂的形态。所以今天曾经试图把天线振子竖起来,地线拉水平,或斜向下45度,就都无法谐振。只有摆成当年调试的样子,才能谐振。回想以前玩野外操作的时候,这类天线的加感线圈都是做很多抽头出来,到地方再重新找抽头位置。看来这天线也必须这样做才成,它太受环境的影响。这种天线携带还算容易,不过振子短,有效辐射长度短,效率不会很高。但是也不算太差。 阻抗匹配概念 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。 重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。 阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生

几种显示技术的比较

几种常见显示技术的比较 平板显示器件包括液晶显示器件(LCD)、等离子体显示器件(PDP)、发光二极管显示器件(LED),场发射显示器件(FED )、表面传导发射显示器件(SED )、无机电致发光器件(IOEL)、有机电致发光器件(OLED ) 等。下面就其中的几种做简要的介绍。 1、液晶显示器件(LCD ) 液晶显示器件是液晶应用的主体,发展很快。液晶显示器的优缺点: (1)结构和产品体积。传统显示器由十使用CRT,必须通过电子枪发射电子束到屏幕,因而显像管的管颈不能做得很短,当屏幕增加时也必然增大整个显示器的体积。液晶显示器通过显示屏上的电极控制液晶分子状态来达到显示目的,即使屏幕加大,它的体积也不会成正比的增加(只增加尺寸不增加厚度所以不少产品提供了壁挂功能,可以让使用者更节省空间),而且重量上比相同显示面积的传统CRT显示器要轻得多。同时液晶显示器由十功耗只在十电极和驱动IC上,因而耗电量比传统CRT显示器也要小得多。 (2)辐射和电磁波干扰。传统CRT显示器由十采用电子枪发射电子束,在打到屏幕上后会产生辐射,尽管现有产品在技术上有很大的提高,把辐射损害降到最小,但不可能根除。在这一点上,液晶显示器具有先天的优势,它根本没有辐射可言。至十电磁波的干扰,液晶显示器只有来自驱动电路的少量电磁波,只要将外壳严格密封即可排除电磁波外泄,而传统CRT显示器为了散热,不得不将外壳钻上散热孔,所以电磁波干扰就不可避免了。所以液晶显示器也被称为冷显示器或环保显示器。 (3)平面直角和分辨率。液晶显示器一开始就使用纯平面的玻璃板,其平面直角的显示效果比传统显示器看起来好得多。不过在分辨率上,液晶显示器理论上可提供更高的分辨率,但实际显示效果却差得多。而传统显示器在较好显卡的支持下达到完美的显示效果。 (4)显示品质。传统显示器的显示屏幕采用荧光粉,通过电子束打击荧光粉显示,因而显示的明亮度比液晶的透光式显示(以口光灯为光源)更为明亮,在可视角度上也比液晶显示器要好得多。LCD理论上只能显时18位色,但CRT的

制冷技术作业(有答案的)

Chap I 1、有传热温差的卡诺循环被冷却物温度恒为5℃,冷却物温度恒为40℃两个传热温差分别为1℃,3℃,5℃,试分别求该几个有传热温差的制冷循环的制冷系数并加以讨论。 解:据题意: 当10=?=?T T k ℃时 48.7) 11()540(15273)()(0'0'1'01=++--+=?+?+-?-=T T T T T T K K ε 当 30=?=?T T k ℃ 时 71.6)33()540(352732=++--+=ε 当 50=?=?T T k ℃ 时 067.6) 55()540(552732=++--+=ε 讨论:当0,T T k ??↑,则ε↓。且当0,T T k ??↑↑,ε↓↓ 2、R 717和R 12在T K =30℃,T 0=-15℃的条件下进行基本理论循环及回热循环时,COM 吸气温度T Sh =15℃,试分别计算各个循环的制冷系数,热力完善度,并分析。 解:一、先计算基本理论循环: 对于R 717 ∵ T 0=15℃ ∴h 1=1743.51 kj /kg 且在R 717的lgPH 图上查得h 2=1990kj/kg 且T 2=102℃ 又因 T k =30℃ ∴ h 3=639.01 kj/kg

故 481.451 .1743199001.63951.17431 231000 =--=--==??==h h h h q M q M P c c R R th th ωωφε 782.0)15(30) 15(273481.400'=---+=-ε=εε=η-T T T K th c th 对于R 12查表和图得: T 0=–15℃时,h 1=345.78 kj /kg 排气温度:T 2=39℃时,h 2=371 kj /kg T k =30℃时,h 3=228.62 kj /kg 故 811.0153015 15.27365.465.478 .34537162.22878.345'23 10=+-=εε=η=--=ε--=ω=εc th th c th h h h h q 二、当有回热循环时,当R 717时 T sh =15℃时,h 1=1815 kj /kg T k =30℃时,h 2=2078 kj /kg h 3′=639.01 kj /kg 则制冷系数

几种常用的育种方法比较

几种常用的育种方法比较(总结整理) 一、诱变育种: 诱变育种是指利用人工诱变的方法获得生物新品种的育种方法 原理:基因突变 方法:辐射诱变,激光、化学物质诱变,太空(辐射、失重)诱发变异→选择育成新品种 优点:能提高变异频率,加速育种过程,可大幅度改良某些性状;变异范围广。 缺点:有利变异少,须大量处理材料;诱变的方向和性质不能控制。改良数量性状效果较差。 二、杂交育种: 杂交育种是指利用具有不同基因组成的同种(或不同种)生物个体进行杂交,获得所需要的表现型类型的育种方法。其原理是基因重组。 方法:杂交→自交→选优 优点:能根据人的预见把位于两个生物体上的优良性状集于一身。 缺点:时间长,需及时发现优良性状。 三、单倍体育种: 单倍体育种是利用花药离体培养技术获得单倍体植株,再诱导其染色体加倍,从而获得所需要的纯系植株的育种方法。(主要是考虑到结合中学课本,经查阅相关资料无误。)其原理是染色体变异。优点是可大大缩短育种时间。 原理:染色体变异,组织培养 方法:选择亲本→有性杂交→F1产生的花粉离体培养获得单倍体植株→诱导染色体加倍获得可育纯合子→选择所需要的类型。 优点:明显缩短育种年限,加速育种进程。 缺点:技术较复杂,需与杂交育种结合,多限于植物。 四、多倍体育种: 原理:染色体变异(染色体加倍) 方法:秋水仙素处理萌发的种子或幼苗。 优点:可培育出自然界中没有的新品种,且培育出的植物器官大,产量高,营养丰富。缺点:只适于植物,结实率低。 五、细胞工程育种: 细胞工程育种是指用细胞融合的方法获得杂种细胞,利用细胞的全能性,用组织培养的方法培育杂种植株的方法。 原理:细胞的全能性 方法:(1)植物:去细胞壁→细胞融合→组织培养 (2)动物克隆:核移植→胚胎移植 优点:能克服远缘杂交的不亲和性,有目的地培育优良品种。动物体细胞克隆,可用于保存濒危物种、保持优良品种、挽救濒危动物、利用克隆动物相同的基因背景进行生物医学研究等。

天线的几个重要参数介绍

一、天线的几个重要参数介绍 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。 xx: 它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于 1.5。回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于 14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能

(完整版)操作系统复习题简答题总结

1操作系统的基本特征有哪些? 答:操作系统的基本特征: (1)并发。并发是指两个或多个活动在同一给定的时间间隔中进行。(2)共享。共享是指计算机系统中的资源被多个任务所共用。 (3)异步性。在多道程序环境下,各个程序的执行过程有“走走停停”的性质。每一道程序既要完成自己的事情,又要与其他程序共享系统中 的资源。这样,它什么时候得以执行、在执行过程中是否被其他事情 打断(如I/O中断)、向前推进的速度是快还是慢等,都是不可预知的, 由程序执行时的现场所决定。另外,同一程序在相同的初始数据下, 无论何时运行,都应获得同样的结果。这是操作系统所具有的异步性。2操作系统的主要功能有哪些? 答:操作系统的主要功能包括:存储管理,进程和处理机管理,文件管理,设备管理以及用户接口管理。 3、操作系统一般为用户提供了哪三种界面?它们各有什么特点? 答: 4、操作系统主要有哪三种基本类型?它们各有什么特点? 5、操作系统主要有哪些类型的体系结构?UNIX系统和Linux系统各采用哪些结构? 答:一般说来,操作系统有四种结构:整体结构、层次结构、虚拟机结构、客户机-服务器结构。Linux系统采用的是整体结构。UNIX系统采用的是层次结构。

6、Linux系统有什么特点? 7、使用虚拟机有哪些优势和不足? 8、现代计算机系统由什么组成的? 9、在操作系统中,为什么要引入进程的概念?它与程序的区别和联系分别是什么?

10、操作系统在计算机系统中处于什么位置? 11、进程的基本状态有哪几种? 答:进程的基本状态有三种,分别为运行态、就绪态、阻塞态。 12、你熟悉哪些操作系统?想一想你在使用计算机过程中,操作系统如何提供服务? 答:我们最熟悉的一般为Windows操作系统,它是由微软(Microsoft)公司推出的一个功能强大的图形界面操作系统。常用的操作系统还有Linux,UNIX 操作系统。 我们在使用计算机时,首先接触的是用户界面,我们可以通过键盘上输入命令,在桌面上点击鼠标完成操作,这时系统就知道执行相应的功能。 13、PCB的作用是什么?它是怎样描述进程的动态性质的? 答:进程控制块PCB是进程组成中最关键的部分。每个进程有唯一的进程控制块;操作系统根据PCB对进程实施控制和管理,进程的动态、并发等特征是利用PCB表现出来的;PCB是进程存在的唯一标志。 PCB中有表明进程状态的信息:该进程的状态是运行态、就绪态还是阻塞态,利用状态信息来描述进程的动态性质。 14、PCB表的组织方式主要有哪几种?分别简要说明。 答:PCB表的组织方式主要有:线性方式、链接方式和索引方式。 线性方式是把所有进程的PCB都放在一个表中。 链接方式按照进程的不同状态把它们分别放在不同的队列中。 索引方式是利用索引表记载相应状态进程的PCB地址。 15、进程和线程的区别是什么? 答:(1)动态性。程序是静态、被动的概念,本身可以作为一种软件资源长期保存;而进程是程序的一次执行过程,是动态、主动的概念,有一定的生命周期,会动态地产生和消亡。 (2)并发性。传统的进程是一个独立运行的单位,能与其他进程并发执行。进程是作为资源申请和调度单位存在的;而通常的程序是不能作为一个独立运行的单位并发执行的。 (3)非对应性。程序和进程无一一对应关系。一个程序可被多个进程共用;一个进程在其活动中又可以顺序地执行若干个程序。 (4)异步性。各个进程在并发执行过程中会产生相互制约关系,造成各自前进速度的不可预测性。而程序本身是静态的,不存在这种异步特征。

制冷技术复习题图文稿

制冷技术复习题 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第一章课后习题 1-1 正卡诺循环和逆卡诺循环有何不同理想制冷循环属于其中哪一种卡诺循环它有那几个过程组成? 1-2 实现逆卡诺循环有哪几个必要条件试分析逆卡诺循环的制冷系数含义及表示方法,并说明其制冷系数与哪些因素有关,与哪些因素无关。1-3 在分析逆卡诺循环制冷系数时,蒸发温度与冷凝温度变化有什么影响,那个影响作用更大 1-4 在分析具有传热温差的逆卡诺循环中得出了什么重要结论 1-5 蒸汽压缩式制冷是否可以采用逆卡诺循环为什么。 1-6 制冷循环的制冷系数和热力完善度概念,使用方面有什么区别 P-H 1-7 理论制冷循环与逆卡诺循环有哪些区别对比两种循环的T-S,L g 图组成的不同 1-8 蒸汽压缩式制冷理论循环为什么要采用干压缩 1-9 试述液体的过冷温度、过冷度;吸气的过热温度、过热度不同含义。 1-10 如何实现制冷循环中的液体过冷 1-11 什么叫无效过热什么叫有效过热制冷循环中吸气过热对制冷系数(效率)都不利吗什么情况下,即使对制冷系数不利,也要采取吸气过热技术手段(参考双级与复叠循环) 1-12 在进行制冷理论循环热力计算时,首先应确定哪些工作参数制冷循环热力计算应包括哪些内容

1-13 实际制冷循环与理论循环有什么区别对比两种循环在,L P-H图上表 g 示,思考造成变化的原因。 1-14 有一逆卡诺循环,其被冷却物体的温度恒定为5℃,冷却剂的温度为40℃,求其制冷系数xx。 1-15 今有一理想制冷循环,被冷却物体的温度恒定为5℃,冷却剂(即环境介质)的温度为25℃,两个传热过程的传热温差均为5℃,试问: a) 逆卡诺循环的制冷系数为多少 b) 当考虑传热温差时,制冷系数如何变化 1-16某一R717压缩制冷装置,蒸发器的出口温度为-20℃的干饱和蒸汽,被压缩机吸入绝热压缩后,进入冷凝器,冷凝温度为30℃,冷凝器出口为25℃的氨液,试将该制冷装置与没有过冷时的单位制冷制冷量、单位耗功量和制冷系数加以比较。 1-17某厂设有氨压缩制冷装置,已知蒸发温度t0=-10℃(相应的 p0=0.2908MPa)冷凝温度tk=40℃(相应的pk=1.5549MPa),过冷温度 trc=35℃,,压缩机吸入干饱和蒸汽,系统制冷量Φ0=174.45kW,时进行制冷理论的热力计算。 1-18某空调系统需要制冷量为35kW,采用R22制冷剂,采用回热循环,其工作条件是;蒸发温度t0=0℃(p0=0.198MPa),冷凝温度tk=40℃(pk=1.5769MPa),吸气温度t1=15℃,试进行理论循环的热力计算。1-19 如何实现回热循环,画出循环压焓图,写出单位制冷量与冷凝热表示公式,说明其表示意义。 第二.三章课后习题

相关主题
文本预览
相关文档 最新文档