当前位置:文档之家› 高数第六章答案

高数第六章答案

高数第六章答案
高数第六章答案

习题6-2

1. 求图6-21 中各画斜线部分的面积: (1)

解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为

6

1]2132[)(1022310

=-=-=?x x dx x x A . (2)

解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 1|)()(101

0=-=-=?x x e ex dx e e A ,

解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为

1)1(|ln ln 1

11=--=-==??e e dy y y ydy A e

e e

. (3)

解 画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为

3

32

]2)3[(1

32=--=?-dx x x A .

(4)

解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为

3

32

|)313()32(3132312=-+=-+=--?x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:

(1) 22

1

x y =与x 2+y 2=8(两部分都要计算);

解:

3

8

8282)218(220220*********--=--=--=????dx x dx x dx x dx x x A

34238cos 16402+=-=?ππ

tdt .

3

4

6)22(122-=-=ππS A .

(2)x

y 1

=与直线y =x 及x =2;

解:

所求的面积为 ?-=-=

2

12ln 2

3)1(dx x x A . (3) y =e x

, y =e -x

与直线x =1;

解:

所求的面积为

?-+=-=-1021

)(e

e dx e e A x x .

(4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解

所求的面积为

a b e dy e A b

a y b

a y -===?ln ln ln ln

3. 求抛物线y =-x 2

+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:

y '=-2 x +4.

过点(0, -3)处的切线的斜率为4, 切线方程为y =4(x -3). 过点(3, 0)处的切线的斜率为-2, 切线方程为y =-2x +6. 两切线的交点为)3 ,2

3

(, 所求的面积为

49]34(62[)]34(34[23

023

2

32=-+--+-+-+---=??dx x x x x x x A .

4. 求抛物线y 2

=2px 及其在点),2

(p p 处的法线所围成的图形的面积.

2y ?y '=2p .

在点),2(p p

处, 1),2(=='p p y p y , 法线的斜率k =-1,

法线的方程为)2(p x p y --=-, 即y p

x -=23.

求得法线与抛物线的两个交点为),2(p p 和)3,2

9

(p p -.

法线与抛物线所围成的图形的面积为

2332323

16)612123()223(p y p y y p dy p y y p A p

p p

p =--=--=--?.

5. 求由下列各曲线所围成的图形的面积

(1)ρ=2a cos θ ; 解:

所求的面积为

??==-202222

2cos 4)cos 2(21π

ππθθθθd a d a A =πa 2.

(2)x =a cos 3t , y =a sin 3

t ; 解

所求的面积为

???===204220

2

330sin cos 34)cos ()sin (44π

πtdt t a t a d t a ydx A a

220620428

3]sin sin [12a tdt tdt a ππ

π=-=??.

(3)ρ=2a (2+cos θ ) 解

所求的面积为 2

20

2220

218)cos cos 44(2)]cos 2(2[2

1a d a d a A πθθθθθππ

=++=+=??. 6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴所围成的图形的面

积.

解:

所求的面积为 ???-=--==a

a a dt t a dt t a t a ydx A 20222020

)cos 1()cos 1()cos 1(π

π22023)2

cos 1cos 21(a dt t t a a

=++-=?. 7. 求对数螺线ρ=ae θ(-π≤θ≤π)及射线θ=π所围成的图形面积. 解

所求的面积为 )

(4

21)(21222222ππππθππθθθ----===

??e e a d e a d ae A .

8. 求下列各曲线所围成图形的公共部分的面积.

(1)ρ=3cos θ 及ρ=1+cos θ 解

曲线ρ=3cos θ 与ρ=1+cos θ交点的极坐标为)3,23(πA , )3

,23(π-B . 由对称性, 所求的面

积为 πθθθθπ

ππ45])cos 3(21)cos 1(21[

223

2302=++=??d d A . (2)θρsin 2=及θρ2cos 2=. 解

曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M )6

,22(π. 所求的面积为

2

316]2cos 21)sin 2(21[246602-+=+=??πθθθθπππd d A .

9. 求位于曲线y =e x 下方该曲线过原点的切线的左方以及x

轴上方之间的图形的面积.

解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有 ???

??=='==k

e x y e y kx y x x 00)(0000,

求得x 0=1, y 0=e , k =e . 所求面积为

2

1ln 21)ln 1(00020e dy y y y y y e dy y y e e e e

e

=?+-=-??.

10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值. 解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为 10A A A +=.

显然当2πα=时, A 1=0; 当2πα<时, A 1>0.

因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 203

03

83822a x a dx ax A a a

===?

.

11. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算所得旋转体的体积. 解 所得旋转体的体积为

2

0020

222400

x a x a axdx dx y V x

x x ππππ====??.

12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及

y 轴旋转, 计算所得两个旋转体的体积.

解 绕x 轴旋转所得旋转体的体积为 ππππ7

128712

072

062

02

====??x dx x dx y V x .

绕y 轴旋转所得旋转体的体积为 ??-=-??=8

3

2

8

22

3282dy y dy x V y ππππ

πππ5

6453328035=-=y .

13. 把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.

解 由对称性, 所求旋转体的体积为 dx x a dx y V a

a

??-==0

3

323

20

2)(22ππ

3023

43

23

23

4

2

105

32)33(2a dx x x a x a a a

ππ=-+-=?.

14. 用积分方法证明图中球缺的体积为)3(2H R H V -=π.

证明 ?

?

---==R

H

R R H

R dy y R dy y x V )()(222

ππ

)3()31(232H R H y y R R

H R -=-=-ππ.

15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积:

(1)2x y =, 2y x =, 绕y 轴;

解 ππππ10

3)5121()(1

0521

0221

0=-=-=??y y dy y ydy V .

(2)a

x a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ???===102302202ch ch )(udu a au x dx a

x a dx x y V a a πππ令 10

22310

223)2

1221(4)2(4

u u u

u e u e a du e e a ---+=++=?ππ )2sh 2(4

3

+=

a π. (3)16)5(22=-+y x , 绕x 轴.

解 ??------+=4

4

224

4

2

2)165()165(dx x dx x V ππ

24

21601640π?=-=dx x .

(4)摆线x =a (t -sin t ), y =a (1-cos t )的一拱,

y =0, 绕直线y =2a .

解 ??--=π

πππa a dx y a dx a V 202202)2()2( ?----=π

ππ20223)sin ()]cos 1(2[8t t da t a a a 232023237sin )cos 1(8ππππa tdt t a a =+-=?. 16. 求圆盘222a y x ≤+绕x =-b (b >a >0)旋转所成旋转体的体积.

解 ??------+=a

a

a

a dy y a

b dy y a b V 2222

22

)()(ππ

220

2228ππb a dy y a b a

=-=?

.

17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴长分别为2a 、2b 和2A 、2B , 求这截锥体的体积.

解 建立坐标系如图. 过y 轴上y 点作垂直于

y 轴的平面, 则平面与截锥体的截面为椭圆, 易得

其长短半轴分别为

y h a A A --, y h b B B --.

截面的面积为π)()(y h b B B y h a A A --?--.

于是截锥体的体积为

])(2[6

1)()(0bA aB AB ab h dy y h b B B y h a A A V h

+++=--?--=?ππ. 18. 计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积.

解 设过点x 且垂直于x 轴的截面面积为A (x ),

由已知条件知, 它是边长为x R -2的等边三角形的面积, 其值为 )(3)(22x R x A -=, 所以 3223

34)(3R dx x R V R

R

=-=?

-.

19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为

?=b

a dx x xf V )(2π.

证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2πx ?f (x )dx , 这就是体积元素, 即 dV =2πx ?f (x )dx ,

于是平面图形绕y 轴旋转所成的旋转体的体积为

??==b

a

b

a

dx x xf dx x xf V )(2)(2ππ.

20. 利用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积.

解 200

2)sin cos (2cos 2sin 2πππππ

π

π=+-=-==??x x x x xd xdx x V .

21. 计算曲线y =ln x 上相应于83≤≤x 的一段弧的长度. 解 ??

?

+=+='+=83283

2

83

2

1)1(1)(1dx x

x dx x dx x y s ,

令t x =+21, 即12-=t x , 则 23ln 2111111

1322323

222232

2+=-+=-=-?-=????

dt t dt dt t t dt t t

t t s .

22. 计算曲线)3(3x x y -=上相应于

1≤x ≤3的一段弧的长度.

解 x x x y 31-=, x x y 2121-=',

x x y 4121412+-=', )1(2112x x y +='+,

所求弧长为

3432)232(21)1(213

131-=+=+=?x x x dx x

x s .

23. 计算半立方抛物线32)1(32-=x y 被抛物线32x y =截得的一段弧

的长度.

解 由?????=-=3)1(3223

2x y x y 得两曲线的交点的坐标为)36 ,2(, )36 ,2(-.

所求弧长为?'+=2

1212dx y s .

因为

2

)1(22-='x y y , y

x y 2

)1(-=', )1(23)1(3

2)1()1(34242

-=--=-=

'x x x y x y . 所以 ]1)25[(98)13(13232)1(23122321

2

1

-=--=-+=??

x d x dx x s . 24. 计算抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长.

解 ???+=+='+=y y y dy y p p dy p y dy y x s 0

2202021)(1)(1

y y p y p y p y p 022222])ln(2

2[1++++=

p

y p y p y p p y 222

2ln

22++++=. 25. 计算星形线t a x 3cos =, t a y 3sin =的全长. 解 用参数方程的弧长公式. dt t y t x s ?'+'=20

22)()(4π

??+-?=20

2222]cos sin 3[)]sin (cos 3[4π

dt t t a t t a

a tdt t 6cos sin 1220

==?π

.

26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y -=. 计算这曲线上相应于t 从0变到π的一段弧的长度.

解 由参数方程弧长公式

?

?+='+'=π

π0

220

2

2

)sin ()cos ()]([)]([dt t at t at dt t y t x s

202

ππ

a tdt a ==?. 27. 在摆线x =a (t -sin t ), y =a (1-cos t )上求分摆线第一拱成1: 3的点的坐标.

解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则 ?

?

+-='+'=0

00

220

2

2

0]sin [)]cos 1([)]([)]([)(t t dt t a t a dt t y t x t s

)2

cos 1(42sin 2000t a dt t a t -==?. 当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令

a t

a 2)2

cos 1(40=-,

解得3

20π=t , 因而分点的坐标为:

横坐标a a x )2332()32sin 32(-=-=πππ,

纵坐标a a y 23)32cos 1(=-=π,

故所求分点的坐标为)2

3 ,)2332((a a -π.

28. 求对数螺线θρa e =相应于自=0到=的一段弧长. 解 用极坐标的弧长公式. θθθρθρ?

θθ?

d a

e e d s a a ?

?+='+=0

220

22

)()()()(

)1(112

2-+=+=?

θ?

θ

θa a e a

a d e a . 29. 求曲线ρθ=1相应于自43=θ至34=θ的一段弧长.

解 按极坐标公式可得所求的弧长 ?

?

-+='+=344

322234

4

32

2

)1()1()()(θθ

θθθρθρd d s

23ln 12511344

322+=+=?θθθd .

30. 求心形线ρ=a (1+cos 的全长.

解 用极坐标的弧长公式. θθθθθρθρπ

π

d a a d s ??

-++='+=0

2220

2

2

)sin ()cos 1(2)()(2

a d a 82

cos 40==?π

θθ.

习题6-3

1. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.

解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为 182

16

026

0===?s k ksds W k(牛?厘米). 2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功? 解 由玻-马定律知:

ππ80000)8010(102=??==k PV .

设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则

ππ80000)]80)(10[()(2=-?x x P , π-=80800)(x P .

功元素为dx x P dW )()10(2?=π,

所求功为 2ln 8008018000080800)10(40040

2

ππππ

π=-=-??=??

dx dx W (J). 3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是

h

R mgRh

W +=

, 其中g 是地面上的重力加速度, R 是地球的半径;

(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .

证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为 dy

y kMm dW 2

=, 所求的功为 )

(2h R R mMh

k dy y kMm W h R R

+?==?

+.

(2)5333

2411

1075.910

)6306370(106370106301098.51731067.6?=?+???????=-W (kJ). 4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以

23)(cx t x v ='=, 阻力4

229t kc kv f -=-=. 而32)(c

x t =, 所以

3432342

9)(9)(x kc c

x kc x f -=-=. 功元素dW =-f (x )dx , 所求之功为 37

320

3

4320

3

43

20

7

2799)]([a kc dx x kc

dx x kc dx x f W a a

a

===-=?

??. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少? 解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为

k kxdx W 2

11

01==?,

击第二次作功为

)2(2

12112h h k kxdx W h

+==?+. 因为21W W =, 所以有 )2(21212h h k k +=, 解得12-=h (cm).

6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?

解 在水深x 处, 水平截面半径为x r 3

210-=, 功元素为

dx x x dx r x dW 22)3210(-=?=ππ,

所求功为

?-=15

02)3

210(dx x x W π

?+-=15

032)9

440100(dx x x x π =1875(吨米)=57785.7(kJ).

7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力.

解 建立x 轴, 方向向下, 原点在水面. 水压力元素为

xdx dx x dP 221=??=, 闸门上所受的水压力为

2125

225

2===?x xdx P (吨)=205. 8(kN).

8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.

解 建立坐标系如图, 则椭圆的方程为

11)43()43(22

22=+-y x . 压力元素为

dx

x x dx x y x dP 22)4

3()43(38)(21--?=??=,

所求压力为 ??

-??+=--?=222

30

22cos 4

3cos 43)sin 1(4338)43()43(38π

πtdx t t dx x x P

ππ

169

cos 49202==?tdx (吨)=17.3(kN).

(提示: 积分中所作的变换为t x sin 4

343=-)

9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力. 解 建立坐标系如图. 直线AB 的方程为 x y 1015-=,

压力元素为

dx x x dx x y x dP )5110()(21-?=??=,

所求压力为

1467)5

110(20

0=-?=?dx x x P (吨)=14388(千牛).

10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力.

解 建立坐标系如图.

腰AC 的方程为x y 3

2=, 压力元素为

dx x x dx x x dP )3(34322)3(+=???+=,

所求压力为

168)2

331(34)3(346

0236

0=+=+=?x x dx x x P (克)

.(牛).

11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.

解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为 dy y

a Gm y a dy m G dF 222

2+=+?

μ, dF 在x 轴方向和y 轴方向上的分力分别为

dF r

a dF x -=, dF r y

dF y =.

2202222022)(1)(l

a a l Gm dy y a y a aGm dy y a Gm r a F l l

x +-=++-=+?-=??μμμ, )11()(12

2

02222022l a a Gm dy y a y a Gm dy y a Gm r y F l l

y +-=++=+?=??μμμ. 12. 设有一半径为R 、中心角为 的圆弧形细棒, 其线密度为

常数μ. 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力.

解 根据对称性, F y =0. θμcos 2

???=

R ds

m G dF x

高数习题集(附答案)

第一章 函数与极限 §1 函数 必作习题 P16-18 4 (5) (6) (8),6,8,9,11,16,17 必交习题 一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从 出站经过T 时间后,又以等减速度a 2进站,直至停止。 (1) 写出火车速度v 与时间t 的函数关系式; (2) 作出函数)(t v v =的图形。 二、 证明函数1 2+= x x y 在),(+∞-∞内是有界的。

三、判断下列函数的奇偶性: (1)x x x f 1sin )(2= ; (2)1 212)(+-=x x x f ; (3))1ln()(2++=x x x f 。 四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

§2 初等函数 必作习题 P31-33 1,8,9,10,16,17 必交习题 一、 设)(x f 的定义域是]1,0[,求下列函数的定义域: (1))(x e f ; (2))(ln x f ; (3))(arcsin x f ; (4))(cos x f 。 二、(1)设)1ln()(2x x x f +=,求)(x e f -; (2)设23)1(2+-=+x x x f ,求)(x f ; (3)设x x f -= 11)(,求)]([x f f ,})(1{x f f 。)1,0(≠≠x x

三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。 四、设???>+≤-=0, 20, 2)(x x x x x f ,???>-≤=0, 0,)(2x x x x x g ,求)]([x g f 。

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

高等数学1(理工类)第1章答案

高等数学第一章习题 一、填空 1.设)(x f y =的定义域是]1,0(,x x ln 1)(-=?,则复合函数)]([x f y ?=的定义域为),1[e 2. 设)(x f y =的定义域是[1,2],则)1 1 ( +x f 的定义域 [-1/2,0] 。 3.设?? ?≤<-≤≤=2 11 101 )(x x x f , 则)2(x f 的定义域 [0,1] 。 5.设)(x f 的定义域为)1,0(,则)(tan x f 的定义域 Z k k k x ∈+ ∈,)4 ,(π ππ 6. 已知2 1)]([,sin )(x x f x x f -==φ,则)(x φ的定义域为 22≤≤-x 。 7. 设()f x 的定义域是[]0,1,则()x f e 的定义域(,0]-∞ 8.设()f x 的定义域是[]0,1,则(cos )f x 的定义域2,22 2k k π πππ?? -+ ??? ? 9. x x sin lim x ∞→= 0 10.()()()=+-+∞→17 6 1125632lim x x x x 176 5 3。 11.x x x )2 1(lim -∞ →= 2 e - 12.当∞→x 时, x 1 是比3-+x 13.当0→x 时,1132-+ax 与1cos -x 为等价无穷小,则=a 2 3- 14.若数列}{n x 收敛,则数列}{n x 是否有界 有界 。 15.若A x f x x =→)(lim 0 (A 为有限数),而)(lim 0 x g x x →不存在, 则)]()([lim 0 x g x f x x +→ 不存在 。 16.设函数)(x f 在点0x x =处连续,则)(x f 在点0x x =处是否连续。( 不一定 ) 17.函数2 31 22 ++-= x x x y 的间断点是-1、-2 18. 函数)(x f 在0x 处连续是)(x f 在该点处有定义的充分条件;函数)(x f 在0x 处有定义是)(x f 在该点处有极限的无关条件。(填:充要,必要,充分,既不充分也不必要,无关)。 19.函数左右极限都存在且相等是函数极限存在的 充要 条件,是函数连续的 必要 条件。(填:充分、必要、充要、既不充分也不必要)

专升本高等数学测试及答案(第二章)

高等数学测试(第二章) 一.选择题(每小题2分,共20分) 1 .设函数0()10 2 x f x x ≠=??=?? 在0x =处( ) A .不连续B .连续但不可导C .可导D .可微 2.设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( )A .1 B .2 e C .2e D .e 3.设函数()f x 在点x a =处可导,则0()()lim x f a x f a x x →+--等于( ) A .0 B .()f a ' C .2()f a ' D .(2)f a ' 4.设x x x f += ??? ??11,x x g ln )(=,则[()]f g x '= ( ) A . 2) 1(1x + B .2)1(1x +- C .1x x + D .22 )1(x x +- 5.设函数 )(x f 在),(+∞-∞内可导,则下列结论中正确的是 ( ) A .若)(x f 为周期函数,则)(x f '也是周期函数 B .若)(x f 为单调增加函数,则)(x f '也是单调增加函数 C .若)(x f 为偶函数,则)(x f '也是偶函数 D .若 )(x f 为奇函数,则)(x f '也是奇函数 6.设)(x f 可导,则下列不成立的是 ( ) A .)0()0()(lim 0 f x f x f x '=-→ B .)()()2(lim 0 a f h a f h a f h '=-+→ C .)()()(lim 0 000 x f x x x f x f x '=??--→? D .)(2)()(lim 0000 x f x x x f x x f x '=??--?+→?

高数第六章总习题答案

复习题A 、判断正误 1、若a b b c 且b 0 ,则a c ; ( ) 解析 a b b c = b (a c) =0 时, 不能判定b 0或a c . 例如a i , b j , k ,有 a b b c 0 , 但a c . c M * 2、 右a b b c 且 b 0 ,则 a c ; ( ) 解析 此结论不一定成立.例如 a i ,b j , c (i j), 则 b i j k ,b c j [ (i j)] k , a b b c , 但a c . 3、若 a c 0 ,则a 0或c 0 ; ( ) 两个相互垂直的非零向量点积也为零. 解析 二、选择题: 当a 与b 满足(D )时,有a b 解析只有当a 与b 方向相同时,才有 a + b=a+b . 解析 对于曲面z 1 x 2 2 y 2,垂直于z 轴的平面截曲面是椭圆, 垂直于x 轴或y 轴 的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面. 4、 a 解析 b b a . 这是叉积运算规律中的反交换律. (A) a b ; (B ) a b (为常数); (C) // b ; (D) a||b . (A)中a , b 夹角不为0, (B), (C )中a , b 方向可以相同,也可以相反. 2、下列平面方程中,方程(C ) 过y 轴; (A) x y z 1 ; (B) x (C) x z 0; (D) 解析平面方程Ax By Cz 0若过 y 轴,则B D 0,故选C. 3、在空间直角坐标系中,方程 1 x 2 2y 2所表示的曲面是(B ); (A )椭球面; (B ) 椭圆抛物面; (C) 椭圆柱面; (D ) 单叶双曲面.

高数课后习题及答案 第二章 2.3

2.2)1 ()3,0 x f x x ==; 解: 11 lim 11 lim lim ()lim 3330 lim ()lim 333 x x x x x x x x x x f x f x - →--+ →++-∞ →→+∞ →→========+∞ 因为0 lim ()lim ()x x f x f x - + →→≠,所以3 lim ()x f x →-不存在。 3)2 11(),02x f x x - ?? == ? ?? ; 解: 2 10000 11lim ()lim ()lim ()lim 22x x x x x f x f x f x -+- -∞ →→→→?? ??=====+∞ ? ??? ?? 所以3 lim ()x f x →-不存在。 4)3,3 9)(2 -=+-= x x x x f ; 解:63 ) 3)(3(lim )(lim )(lim 3 3 3 -=+-+==+ + - -→-→-→x x x x f x f x x x 故极限6)(lim 3 -=-→x f x 2 2 2 2 2 5).lim ()224,lim ()3215, lim ()lim (),lim ()x x x x x f x f x f x f x f x -+-+→→→→→=?==?-=≠解:因为所以不存在。 ()0 6.lim ()lim 21,lim ()lim cos 12,lim ()lim (),lim ()x x x x x x x x f x f x x f x f x f x --++-+→→→→→→→===+=≠)解:因为所以不存在。 7)1()arctan ,0f x x x ==;

高等数学第一章练习题答案

第一章 练习题 一、 设()0112>++=?? ? ??x x x x f ,求)(x f 。 二、 求极限: 思路与方法: 1、利用极限的运算法则求极限; 2、利用有界变量与无穷小的乘积仍是无穷小这一性质; 3、利用两个重要极限:1sin lim 0=→x x x ,e x x x =??? ??+∞→11lim ; 4、利用极限存在准则; 5、用等价无穷小替换。注意:用等价无穷小代替时被代替的应是分子、分母或其无穷小因子。如果分子或分母是无穷小的和差,必须将和差化为积后方可用等价无穷小代替积中的因子部分。 6、利用函数的连续性求极限,在求极限时如出现∞-∞∞ ∞,,00等类型的未定式时,总是先对函数进行各种恒等变形,消去不定因素后再求极限。 7、利用洛比达法则求极限。 1、()()()35321lim n n n n n +++∞ → 2、???? ? ?---→311311lim x x x 3、122lim +∞ →x x x 4、x x x arctan lim ∞ →

5、x x x x sin 2cos 1lim 0-→ 6、x x x x 30 sin sin tan lim -→ 7、()x x 3cos 2ln lim 9 π → 8、11232lim +∞→??? ??++x x x x 三、 已知(),0112lim =??? ?????+-++∞→b ax x x x 求常数b a ,。 四、 讨论()nx nx n e e x x x f ++=∞→12lim 的连续性。 五、 设()12212lim +++=-∞→n n n x bx ax x x f 为连续函数,试确定a 和b 的值。 六、 求()x x e x f --=111 的连续区间、间断点并判别其类型。 七、 设函数()x f 在闭区间[]a 2,0上连续,且()()a f f 20=,则在[]a ,0上 至少有一点,使()()a x f x f +=。 八、 设()x f 在[]b a ,上连续,b d c a <<<,试证明:对任意正数p 和q , 至少有一点[]b a ,∈ξ,使 ()()()()ξf q p d qf c pf +=+

高等数学练习答案1-10

习题1-10 1. 证明方程x 5-3x =1至少有一个根介于1和2之间. 证明 设f (x )=x 5-3x -1, 则f (x )是闭区间[1, 2]上的连续函数. 因为f (1)=-3, f (2)=25, f (1)f (2)<0, 所以由零点定理, 在(1, 2)内至少有一点ξ (1<ξ<2), 使f (ξ)=0, 即x =ξ 是方程x 5-3x =1的介于1和2之间的根. 因此方程x 5-3x =1至少有一个根介于1和2之间. 2. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b . 证明 设f (x )=a sin x +b -x , 则f (x )是[0, a +b ]上的连续函数. f (0)=b , f (a +b )=a sin (a +b )+b -(a +b )=a [sin(a +b )-1]≤0. 若f (a +b )=0, 则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根; 若f (a +b )<0, 则f (0)f (a +b )<0, 由零点定理, 至少存在一点ξ∈(0, a +b ), 使f (ξ)=0, 这说明x =ξ 也是方程x =a sin x +b 的一个不超过a +b 的根. 总之, 方程x =a sin x +b 至少有一个正根, 并且它不超过a +b . 3. 设函数f (x )对于闭区间[a , b ]上的任意两点x 、y , 恒有|f (x )-f (y )|≤L |x -y |, 其中L 为正常数, 且f (a )?f (b )<0. 证明: 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 证明 设x 0为(a , b )内任意一点. 因为 0||l i m |)()(|l i m 0000 0=-≤-≤→→x x L x f x f x x x x , 所以 0|)()(|lim 00 =-→x f x f x x , 即 )()(l i m 00 x f x f x x =→. 因此f (x )在(a , b )内连续. 同理可证f (x )在点a 处左连续, 在点b 处右连续, 所以f (x )在[a , b ]上连续. 因为f (x )在[a , b ]上连续, 且f (a )?f (b )<0, 由零点定理, 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 4. 若f (x )在[a , b ]上连续, a

高等数学课后习题答案第六章

习题六 1. 指出下列各微分方程的阶数: (1)一阶 (2)二阶 (3)三阶 (4)一阶 2. 指出下列各题中的函数是否为所给微分方程的解: 2(1)2,5xy y y x '==; 解:由2 5y x =得10y x '=代入方程得 22102510x x x x ?=?= 故是方程的解. (2)0,3sin 4cos y y y x x ''+==-; 解:3cos 4sin ;3sin 4cos y x x y x x '''=+=-+ 代入方程得 3sin 4cos 3sin 4cos 0x x x x -++-=. 故是方程的解. 2(3)20,e x y y y y x '''-+== ; 解:2222e e (2)e ,(24)e x x x x y x x x x y x x '''=+=+=++ 代入方程得 2e 0x ≠. 故不是方程的解. 12121212(4)()0,e e .x x y y y y C C λλλλλλ'''-++==+ 解:12122211221122e e ,e e x x x x y C C y C C λλλλλλλλ'''=+=+ 代入方程得 1212122211221211221212e e ()(e e )(e e )0.x x x x x x C C C C C C λλλλλλλλλλλλλλ+-++++= 故是方程的解. 3. 在下列各题中,验证所给二元方程为所给微分方程的解: 22(1)(2)2,;x y y x y x xy y C '-=--+= 证:方程 22x xy y C -+=两端对x 求导: 220x y xy yy ''--+= 得 22x y y x y -'= - 代入微分方程,等式恒成立.故是微分方程的解. 2(2)()20,ln().xy x y xy yy y y xy '''''-++-== 证:方程ln()y xy =两端对x 求导: 11y y x y '' = + (*) 得 (1)y y x y '= -. (*)式两端对x 再求导得

高等数学第二章练习及答案

x) 1 3. 函数f (x) lnx 在x 1处的切线方程是 _______________________ 1 4. 设 f(—) x ,则 f (x) ___ ________ x 3 5. 函数 f (x) sin(cosx ),贝y f (x) ___________________ 6.设函数f(x) ln cosx ,则二阶导数f (x) 、选择题. 1.函数y A 、无定义 不连续 第二章 C 、可导 D 、连续但不可导 2.设函数f (X ) 2x 2 x , 1,x 0 ,则 f (x)在点x 0处 A 、没有极限 B 、有极限但不连续 C 、连续但不可导 D 、可导 3?设函数y f (x)可微, 则当 y dy 与x 相比,是 x 的等价无穷小 x 的同阶无穷小 C . x 的高阶无穷小 x 的低阶无穷小 4.函数 x 3的单调增区间是 中B 、(严,T 3 3 3 C 、(于 5?函数f (x) 1 (e x e x )的极小值点是 ) ) ) ) (0,+ ) ) 不存在 、填空题. 1. 已知(sin x) cosx , 利用导数定义求极限 2、 如果f (x °) 4,则 lim f(x 0 3x) x 0 f (X o )

7. d(arctan2x) ,d In (sin 2x) 四、计算题. 六、应用题. 产品的市场需求量为 q 1000 10 p ( q 为需求量,p 为价格)?试求:(1 )成本函数,收入 函数;(2)产量为多少吨时利润最大? 8.函数f(x) x 3 ax 2 3x 9,已知f (x)在x 3时取得极值,则 a = p 9 ?设需求量q 对价格p 的函数为q(p) 100e ? ,则需求弹性E p 三、判 断题. 1. 若f(x)在点X o 处可导,则f (x)在点X o 处连续. 2. dy 是曲线y f (x)在点(x 0, f (怡))处的切线纵坐标对应于 x 的改变量. 3. 函数y f (x)在x 0点处可微的充要条件是函数在 X 。点可导. 4. 极值点一定是驻点. 5. 函数y x 在点x 0处连续且可导. 1.求函数 y arctan-. 1 x 2的导数. 2.求由方程x y e 2x e y 0所确定的隐函数 y f(x)的导数y . e 3.设 y x ,求 y . 4.求由方程y cos(x y)所确定的隐函数 y f (x)的二阶导数y . 五、求下列极限. (1) lim x x sin x x sin x (2) 4 c 2 lim X x 0 3x 2x si nx 4 , (3) 01 x x 1 ln x (4) 1 lim( a' X 1)x (a 0), (5) (6) lim (x x 1 X \ X e)x . 1.求函数f (x) x 3 3x 2 9x 1的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品, 其固定成本为2000元,每生产一吨产品的成本为 60元, 对这种

高等数学第六章答案

第六章 定积分的应用 第二节 定积分在几何上的应用 1. 求图中各阴影部分的面积: (1) 16 . (2) 1 (3) 323. (4)32 3 . 2. 求由下列各曲线所围成的图形的面积: (1) 463 π-. (2) 3 ln 22-. (3)1 2e e +-. (4)b a - 3. 94 . 4. (1).1 213 (2).4 5. (1) πa 2. (2) 238 a π. (3)2 18a π. 6. (1)423π? ? (2) 54 π (3)2cos2ρθρθ==及 16 2 π + 7.求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积: (1)2 x x y y x =和轴、向所围图形,绕轴及轴。

(2)22y x y 8x,x y ==和绕及轴。 (3)()2 2 x y 516,x +-=绕轴。 (4)xy=1和y=4x 、x=2、y=0,绕。 (5)摆线()()x=a t-sint ,1cos ,y 0x y a t =-=的一拱,绕轴。 2234824131,;(2),;(3)160;(4);(5)5a .52556 πππππππ() 8.由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得两个旋转体的体积. 128 7x V π= . y V =645 π 9.把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.332 105 a π 10.(1)证明 由平面图形0≤a ≤x ≤ b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为 ?=b a dx x xf V )(2π . 证明略。 (2)利用题(1)结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转 体的体积. 2 2π 11.计算底面是半径为R 的圆, 而垂直于底面上一条固定 直径的所有截面都是等边三角形的立体体积. 3 R . 12.计算曲线3 223 y x =上相应于38x ≤≤的一段弧的弧长。2123 13.计算曲线2 ln(1)y x =-上相应于102x ≤≤ 的一段弧的弧长。1ln 32 - 14.求星型线33 cos sin x a t y a t ?=?=? 的全长。6a

高数作业本答案(上册)

第一章 答案 习题1.1 1.判断题:1)× 2)× 3)√ 4)× 5)× 6)× 7)× 8)× 2.1)不同;2)不同;3)相同;4)不同;5)不同; 3.1)],0[],4(ππ?--;2)? ?????±±=-π+π≠+∞-∞∈ 2,1,0,12),,(|k k x x x 且; 3)当]1,[21a a a -≤ 时,为,当φ时,为2 1 >a 。 4.1)13-=x y ;2)]2,2[,3arcsin 31-∈=x x y ;3))1,0(,1log 2 ∈-=x x x y ; 4)? ??≤<-≤≤-+=10,1 1,1x x x x y . 5.? ??≠==1,01,1))((x x x g f ;1,21 ,1))((>≤???=x x x f g . 习题1.2~1.3 1. 1)(lim 0 =- →x f x ,1)(lim 0 =+ →x f x ,1)(lim 0 =→x f x ; 1)(lim 0 -=?- →x x ,1)(lim 0 =?- →x x ,)(lim 0 x x ?-→不存在. 2. 1)极限不存在;2)2 )1cot 1(arctan lim 0 π=+→x arc x x . 3. 略 习题1.4 1.判断题:1)× 2)× 3)√ 4)× 2.C ;D. 习题1.5 1.1)1;2) 21;3)21;4)21. 2. 1)41;2))(21m n mn -;3)2 1 ;4)6. 3.1)0;2)1;3)0;4)1;5)不存在;6)1;7)0 习题1.6 1.1)1;2) 2 5 1+; 2.1)2 e ;2)4 -e 3.1)2;2) 32;3)2 2-;4)e ;5)e 1;6)6π.

高等数学习题及解答 (1)

普通班高数作业(上) 第一章 函数 1、试判断下列每对函数是否是相同的函数,并说明理由:(第二版P22:4;第三版P8:1)(注:“第二版P22:4”指第二版教材第22页的第4题) (2))sin(arcsin x y =与x y =; (4)x y = 与2x y =; (6))arctan(tan x y =与x y =; (8))(x f y =与)(y f x =。 2、求下列函数的定义域,并用区间表示:(第二版P22:5;第三版P8:2) (2)x x x y -+=2; (3)x y x -+=1ln arcsin 21; (7)x e y x ln 111 -+ =。 3、设?????<-≥-=0 ,10 ,1)(2 2x x x x x f ,求)()(x f x f -+。(第二版P23:10;第三版无) 4、讨论下列函数的单调性(指出其单增区间和单减区间):(第二版P23:11;第 三版P12:1) (2)24x x y -= ; (4)x x y -=。 5、讨论下列函数的奇偶性:(第二版P23:12;第三版P12:2) (2)x x x x f tan 1)(2+-=; (3))1ln()(2x x x f -+=; (6)x x f ln cos )(=; (7)? ??≥+<-=0,10,1)(x x x x x f 。 6、求下列函数的反函数及反函数的定义域:(第二版P23:16;第三版P14:1) (1))0,(),21ln(-∞=-=f D x y ; (6)???≤<--≤<-=21,)2(210, 12)(2 x x x x x f 。 7、(1)已知421)1(x x x x f +=-,求)(x f ; (2)已知2 ln )1(222 -=-x x x f ,且x x f ln )]([=?求)(x ?。(第二版P23:19;第三版P16:3) 8、以下各对函数)(u f 与)(x g u =中,哪些可以复合构成复合函数)]([x g f ?哪些不可复合?为什么?(第二版P24:23;第三版P16:7)

高数第六章答案

习题6-2 1. 求图6-21 中各画斜线部分的面积: (1) 解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 6 1]2132[)(1022310 =-=-=?x x dx x x A . (2) 解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 1|)()(101 0=-=-=?x x e ex dx e e A , 解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为 1)1(|ln ln 1 11=--=-==??e e dy y y ydy A e e e . (3) 解 画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为

3 32 ]2)3[(1 32=--=?-dx x x A . (4) 解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为 3 32 |)313()32(3132312=-+=-+=--?x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积: (1) 22 1 x y =与x 2+y 2=8(两部分都要计算); 解: 3 8 8282)218(220220*********--=--=--=????dx x dx x dx x dx x x A 34238cos 16402+=-=?ππ tdt . 3 4 6)22(122-=-=ππS A . (2)x y 1 =与直线y =x 及x =2;

解: 所求的面积为 ?-=-= 2 12ln 2 3)1(dx x x A . (3) y =e x , y =e -x 与直线x =1; 解: 所求的面积为 ?-+=-=-1021 )(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解 所求的面积为 a b e dy e A b a y b a y -===?ln ln ln ln 3. 求抛物线y =-x 2 +4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:

高数第一章深刻复习资料

第一章 预备知识 一、定义域 1. 已知()f x 的定义域为(,0)-∞ ,求(ln )f x 的定义域。答案:(0,1) 2. 求32233 ()6 x x x f x x x +--=+- 的连续区间。提示:任何初等函数在定义域范围内都是连续的。 答案:()()(),33,22,-∞--+∞ 二、判断两个函数是否相同? 1. 2 ()lg f x x = ,()2lg g x x = 是否表示同一函数?答案:否 2. 下列各题中,()f x 和()g x 是否相同?答案:都不相同 ()2ln 1 (1) (),()1 1 (2) (),()sin arcsin (3) (),()x x f x g x x x f x x g x x f x x g x e -==-+==== 三、奇偶性 1. 判断()2 x x e e f x --= 的奇偶性。答案:奇函数 四、有界性 , 0?∈?>x D K ,使()≤f x K ,则()f x 在D 上有界。 有界函数既有上界,又有下界。 1. ()ln(1)f x x =- 在(1,2) 内是否有界?答案:无界 2. 221x y x =+ 是否有界?答案:有界,因为2 2 11<+x x 五、周期性 1. 下列哪个不是周期函数(C )。 A .sin , 0y x λλ=> B .2y = C .tan y x x = D .sin cos y x x =+ 注意:=y C 是周期函数,但它没有最小正周期。 六、复合函数 1. 已知[]()f x ? ,求()f x 例:已知10)f x x x ??=> ??? ,求()f x 解1:

高等数学第二章练习及答案

第二章 一、选择题. 1. 函数1y x =+在0x =处 ( ) A 、无定义 B 、不连续 C 、可导 D 、连续但不可导 2. 设函数221,0(), 0x x f x x x +

6. 设函数()ln cos f x x =,则二阶导数()f x ''=______________. 7. (arctan 2)d x =________,[]ln(sin 2)d x =__________. 8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______. 9.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性E p =__________. 三、判断题. 1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( ) 2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ?的改变量. ( ) 3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( ) 4. 极值点一定是驻点. ( ) 5. 函数y x =在点0x =处连续且可导. ( ) 四、计算题. 1.求函数y =. 2. 求由方程0e e 2=+-+y x y x 所确定的隐函数()y f x =的导数y '. 3. 设e x y x =,求y '. 4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y '' 五、求下列极限. (1)sin lim sin x x x x x →∞-+, (2)x x x x x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →??- ?-? ?, (4)1lim(1)(0)x x a x a →∞->, (5)()10lim 1x x x →+, (6)1lim ()x x x x e →+∞+. 六、应用题. 1. 求函数32 ()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点.

高等数学-第一章-1-5-作业答案

第49页 习题1-5 1 计算下列极限 (1)225 lim 3 x x x →+- 将2x =代入到25 3x x +-中,由于解析式有意义,因此 222525 lim 9323x x x →++==--- (2 )2231 x x x -+ 将x =223 1 x x -+中,解析式有意义,因此 ()22 2 233 01 1 x x x --= =++ (3)22121 lim 1 x x x x →-+- 将1x =代入到解析式中,分子为0,分母为0,因此该极限为 型,因式分解,可得 ()()()()()2 221111121 0lim lim lim 011112 x x x x x x x x x x x →→→---+====-+-+ (4)322042lim 32x x x x x x →-++ 将0x =代入到解析式中,分子为0,分母为0. 因此该极限为 型,因式分解,可得 ()()()() 22322000421421421lim lim lim 3232322x x x x x x x x x x x x x x x x →→→-+-+-+===+++ (5)()2 2 lim h x h x h →+- 将0h =代入到解析式中,分子为0,分母为0. 因此该极限为 型,因式分解,可得 ()()()2 2 2lim lim lim 22h h h x h x x h h x h x h h →→→+-+==+=

(6)211lim 2x x x →∞ ??- + ??? 由于lim 22x →∞ =,1lim 0x x →∞??- = ???,22lim 0x x →∞?? = ??? 因此由极限四则运算法则可知 221112lim 2lim 2lim lim 2002x x x x x x x x →∞ →∞→∞→∞?????? - +=+-+=++= ? ? ??????? (7)221 lim 21 x x x x →∞--- 当x →∞时,分子→∞,分母→∞,因此该极限为∞ ∞ 型,分子分母同时除以x 的最高次项,也就是2 x ,再利用极限四则运算法则,可知: 2 2 2 2221 1 1lim1lim 1101lim lim 1111 212002 2lim 2lim lim x x x x x x x x x x x x x x x x →∞→∞→∞→∞→∞→∞→∞- ---====-------- (8)242lim 31 x x x x x →∞+-+ 当x →∞时,分子→∞,分母→∞,因此该极限为∞ ∞ 型,分子分母同时除以x 的最高次项,也就是4 x ,再利用极限四则运算法则,可知: 2 2323422424 1111lim lim 00lim lim 0113131100 13lim1lim lim x x x x x x x x x x x x x x x x x x x →∞→∞→∞→∞→∞→∞→∞++++====-+-+-+-+ (9)22468 lim 54 x x x x x →-+-+ 4x =代入到解析式中,分子为0,分母为0. 因此该极限为 型,因式分解,可得 ()()()()2244424682422 lim lim lim 54141413 x x x x x x x x x x x x x →→→---+--====-+---- (10)211lim 12x x x →∞ ???? + - ???????

高数第一章答案

第一章 函数,极限与连续 第一节 函数 一、集合与区间 1.集合 一般地说,所谓集合(或简称集)是指具有特定性质的一些事物的总体,组成这个集合的事物称为该集合的元素。 由有限个元素组成的集合称为有限集。 由无穷多个元素组成的集合称为无限集。 不含任何元素的集合称为空集。 数集合也可以称为(数轴上的)点集。区间是用得较多的一类数集。 设a,b 为实数,且a0。开区间),(δδδ+-a a 称为点a 的δ邻域,记作),(δa U ,即}|{),(δδδ+<<-=a x a x a U 。其中a 叫作这个邻域的中心,δ称为这个邻域的半径。 在点a 的领域中去掉中心后,称为点a 的去心邻域,记作),(),(}||0|{),(),,(0 0δδδδδ+?-=<-<=a a a a a x x a U a U 即 二、函数概念 定义:设x 和y 是两个变量,若对于x 的每一个可能的取值,按照某个法则f 都有一个确定的y 的值与之对应,我们称变量y 是变量x 的函数,记为y =)(x f .这里称x 为自变量,y 为因变量。自变量x 的所以可能取值的集合称为定义域,记为D(f);因变量y 的相

《高等数学一》第一章-函数--课后习题(含答案解析)

第一章函数 历年试题模拟试题课后习题(含答案解析)[单选题] 1、 设函数,则f(x)=() A、x(x+1) B、x(x-1) C、(x+1)(x-2) D、(x-1)(x+2) 【正确答案】B 【答案解析】 本题考察函数解析式求解. ,故 [单选题] 2、 已知函数f(x)的定义域为[0,4],函数g(x)=f(x+1)+f(x-1)的定义域是(). A、[1,3] B、[-1,5] C、[-1,3] D、[1,5] 【正确答案】A 【答案解析】x是函数g(x)中的定义域中的点,当且仅当x满足0≤x+1≤4且0≤x-1≤4 即-1≤x≤3且1≤x≤5也即1≤x≤3,由此可知函数g(x)的定义域D(g)={x|1≤x≤3}=[1,3]. [单选题] 3、 设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为(). A、[0,2] B、[0,16] C、[-16,16] D、[-2,2] 【正确答案】D 【答案解析】根据f(x)的定义域,可知中应该满足: [单选题] 4、 函数的定义域为(). A、[-1,1] B、[-1,3] C、(-1,1) D、(-1,3) 【正确答案】B 【答案解析】 根据根号函数的性质,应该满足: 即 [单选题]

写出函数的定义域及函数值(). A、 B、 C、 D、 【正确答案】C 【答案解析】 分段函数的定义域为各个分段区间定义域的并集, 故D=(-∞,-1]∪(-1,+∞). [单选题] 6、 设函数,则对所有的x,则f(-x)=(). A、 B、 C、 D、 【正确答案】A 【答案解析】本题考察三角函数公式。 . [单选题] 7、 设则=(). A、 B、

相关主题
文本预览
相关文档 最新文档