当前位置:文档之家› 高三二轮复习(理数) 第四讲 不等式(作业)(Word版,含答案)

高三二轮复习(理数) 第四讲 不等式(作业)(Word版,含答案)

高三二轮复习(理数) 第四讲 不等式(作业)(Word版,含答案)
高三二轮复习(理数) 第四讲 不等式(作业)(Word版,含答案)

限时规范训练

A 组——高考热点强化练

一、选择题

1.设0<a <b <1,则下列不等式成立的是( )

A .a 3>b 3

B.1a <1b C .a b >1 D .lg(b -a )<a

解析:∵0<a <b <1,∴0<b -a <1-a ,

∴lg(b -a )<0<a ,故选D.

答案:D

2.已知a ,b 是正数,且a +b =1,则1a +4b ( )

A .有最小值8

B .有最小值9

C .有最大值8

D .有最大值9

解析:因为1a +4b =? ??

??1a +4b (a +b )=5+b a +4a b ≥5+2b a ·4a b =9,当且仅当b a =4a b 且a +b =1,即a =13,b =23时取“=”,所以1a +4b 的最小值为9,故选B.

答案:B

3.若变量x ,y 满足约束条件??? x +y ≥-1,

2x -y ≤1,

y ≤1,

则z =3x -y 的最小值为( ) A .-7

B .-1

C .1

D .2

解析:画出可行域如图中阴影部分所示,平移直线3x -y =0,可知直线z =3x -y 在点A (-2,1)处取得最小值,故z min =3×(-2)-1=-7,选A.

答案:A

4.若对任意正数x ,不等式1x 2+1≤a x

恒成立,则实数a 的最小值为( )

A .1 B. 2 C.12 D.22

解析:依题意得当x >0时,a ≥x 1+x 2恒成立.又因为1+x 2x =x +1x ≥2x ×1x =2,当且仅当x

=1x >0,即x =1时取等号,1+x 2x 的最小值为2,x 1+x 2

的最大值是12,所以a ≥12,a 的最小值是12,故选C.

答案:C

5.若x ,y 满足??? x -y ≤0,

x +y ≤1,

x ≥0,

则z =x +2y 的最大值为( ) A .0

B .1 C.32 D .2

解析:由x ,y 满足??? x -y ≤0,

x +y ≤1,

x ≥0,可得所表示的可行域如图所示.

又∵z =x +2y ,∴y =-12x +12z ,

∴目标函数在x =0与x +y -1=0的交点处取得最大值.

∵??? x +y -1=0,x =0,∴???

x =0,y =1.

∴z max =0+2×1=2.

答案:D 6.不等式组??? 5x +3y ≤15,

y ≤x +1,

x -5y ≤3

表示的平面区域的面积为( ) A .7

B .5

C .3

D .14

解析:作出可行域如图所示.

可得A ? ??

??32,52,B (-2,-1),所以不等式组 ??? 5x +3y ≤15,

y ≤x +1,

x -5y ≤3

表示的平面区域的面积为12×4×52+12×4×1=7,故选A.

答案:A 7.若a ,b ,c 为实数,则下列命题为真命题的是( )

A .若a >b ,则ac 2>bc 2

B .若a <b <0,则a 2>ab >b 2

C .若a <b <0,则1a <1b

D .若a <b <0,则b a >a b

解析:选项A 错,因为c =0时不成立;选项B 正确,因为a 2-ab =a (a -b )>0,ab -b 2=b (a

-b )>0,故a 2>ab >b 2

;选项C 错,应为1a >1b ;选项D 错,因为b a -a b =b 2-a 2ab =(b +a )(b -a )ab <0,所以b a <a b .

答案:B

8.已知函数f (x )=???

x +2,x ≤0,-x +2,x >0,

则不等式f (x )≥x 2的解集为( ) A .[-1,1]

B .[-2,2]

C .[-2,1]

D .[-1,2] 解析:法一:当x ≤0时,x +2≥x 2,

∴-1≤x ≤0,①

当x >0时,-x +2≥x 2,∴0

由①②得原不等式的解集为{x |-1≤x ≤1}.

法二:作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].

答案:A

9.已知x ,y 满足条件??? x -y +5≥0,

x +y ≥0,

x ≤3,

则z =y -1x +3的最大值为( ) A .2

B .3

C .-23

D .-53

解析:不等式组对应的平面区域是以点(3,8),(3,-3)和? ????-52,52为顶点的三角形,在点? ??

??-52,52处z 取得最大值3,故选B.

答案:B

10.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )

A .80元

B .120元

C .160元

D .240元

解析:设底面矩形的一条边长是x m ,总造价是y 元,把y 与x 的函数关系式表示出来,再利用均值(基本)不等式求最小值.由题意知,体积V =4 m 3,高h =

1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是

4x m ,又设总造价是y 元,则y =20×4+10×? ??

??2x +8x ≥80+202x ·8x =160,当且仅当2x =8x ,即x =2时取得等号,故选C.

答案:C

11.若ax 2+bx +c <0的解集为{x |x <-2,或x >4},则对于函数f (x ) =ax 2+bx +c 应有( )

A .f (5)

B .f (5)

C .f (-1)

D .f (2)

解析:∵ax 2+bx +c <0的解集为{x |x <-2,或x >4},∴a <0,而且函数f (x )=ax 2+bx +c

的图象的对称轴方程为x =4-22=1,∴f (-1)=f (3).又∵函数f (x )在[1,+∞)上是减函数,

不等式选讲-2019年高考理科数学解读考纲

16 不等式选讲 选考内容 (二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1). (2). (3)会利用绝对值的几何意义求解以下类型的不等式: . 2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. (1)柯西不等式的向量形式: (2). (3). (此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形: 4.会用向量递归方法讨论排序不等式. 5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式: 了解当n为大于1的实数时伯努利不等式也成立. 7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等. 2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等. 3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注. 考向一 绝对值不等式的求解 样题1 (2018新课标全国Ⅱ理科)设函数 . (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围. 样题2 (2018新课标全国Ⅲ理科)设函数 . (1)画出()y f x =的图象;

(2)当[)0x +∞∈,,,求a b +的最小值. 【解析】(1)()y f x =的图象如图所示.

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高考数学《不等式选讲》专项复习

高考数学《不等式选讲》专项复习 一、考纲解读 1.了解绝对值的几何意义,会利用绝对值的定义解不等式,利用绝对值不等式证明不等式和求最值. 2.了解柯西不等式及其几何意义,会用它来证明不等式和求最位. 3.了解基本不等式,会用它来证明不等式和求最值. 4.会用综合法、分析法、反证法及数学归纳法证明不等式. 二、命题趋势探究 本节内容为新课标新增内容,是高考选考内容.题型以含绝对值的不等式的解法和证明为重要考点,不等式的应用为次重要考点,不等式证明放在一般位置,难度为中档. 三、知识点精讲 (一).不等式的性质 1.同向合成 (1), >>?>; a b b c a c (2),c >>?+>+; a b d a c b d (3)0,c0 >>>>?>. a b d ac bd (合成后为必要条件) 2.同解变形 >?+>+; (1)a b a c b c (2)0,0, >?>>?<<; a b c ac bc c ac bc

(3)11 000a b b a >>? >>?>>. (变形后为充要条件) 3.作差比较法 0,0a b a b a b a b >?>->-<<;0,||,a x a x a x a >>?>><-或 (2)22||||a b a b >?> (3)||||x a x b c +++<零点分段讨论 (三).基本不等式 (1)222a b ab +>(当且仅当等号成立条件为a b =) (2)0,0, 2 a b a b +>>≥a b =) ; 0,0,0, 3 a b c a b c ++>>>≥a b c ==时等号成立) (3)柯西不等式 22222()()()a b c d ac bd ++≥+(当且仅当ad bc =时取等号) ①几何意义:||ad bc ??+≤a b a b ||||||≤②推广:22222 2 212 121122()()()n n n n a a a b b b a b a b a b +++++ +≥++ +.当且仅当向量 12(,,,)n a a a a =与向量12(,,,)n b b b b =共线时等号成立.

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

高考数学复习+不等式选讲大题-(文)

专题十五不等式选讲大题 (一)命题特点和预测: 分析近8年全国新课标1不等式选讲大题,发现8年8考,主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题.2019年不等式选讲大题仍将主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题. (二)历年试题比较: . 时,求不等式 时不等式成立,求的取值范围. 已知函数, 的解集; 的解集包含

已知函数 ?并说明文由 ( )≤ 【解析与点睛】 (2018年)【解析】(1)当时,,即 故不等式的解集为. (2)当时成立等价于当时成立.若,则当时;

若,的解集为,所以,故. 综上,的取值范围为. (2017年)【解析】 x>时,①式化为,从而. 当1 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题. (2016年)【解析】(I) y=的图像如图所示. f ) (x

(II )由)(x f 的表达式及图像,当1)(=x f 时,可得1=x 或3=x ; 当1)(-=x f 时,可得3 1 = x 或5=x , 故1)(>x f 的解集为{} 31<x f 的解集为 . 【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式. 以△ABC 的面积为22 (1)3 a +. 由题设得 22 (1)3 a +>6,解得2a >.

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

2018年高考数学考试大纲解读专题16不等式选讲理版含答案

专题16 不等式选讲 选考内容 (二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1) a b a b . (2)a b a c c b . (3)会利用绝对值的几何意义求解以下类型的不等式: ; ;ax b c ax b c x a x b c . 2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明 . (1)柯西不等式的向量形式: ||||||.(2) 22222()(+)()a b c d ac bd . (3)222222121223231313()()()()()()x x y y x x y y x x y y . (此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形: 4.会用向量递归方法讨论排序不等式. 5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明 一些简单问题. 6.会用数学归纳法证明伯努利不等式: 了解当n 为大于1的实数时伯努利不等式也成立 . 7.会用上述不等式证明一些简单问题 .能够利用平均值不等式、 柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等. 2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等 . 3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注. 考向一 绝对值不等式的求解样题1 (2017新课标全国Ⅰ理科)已知函数 2–4()x ax f x ,11()x x g x ||||. (1)当a =1时,求不等式 ()()f x g x 的解集;(2)若不等式()()f x g x 的解集包含[–1,1],求a 的取值范围. 所以a 的取值范围为[1,1]. 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法, 也可以将绝对值函数转化为分段函数,借助图象解题.

【经典】高三数学基本不等式题型精讲精练

基本不等式 基本不等式知识 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2.(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2??? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 5.若,,,+∈R c b a a b c c b a 3333≥++, 33abc c b a ≥++(当且仅当c b a ==时取等) 应用一 直接求最值 例1 求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x (3)(理科)已知+∈R y x ,,且满足232x y =,则x y +的最小值为( ) A .1 B .2 C .6 D .4 (4)已知+∈R c b a ,,且满足132=++c b a ,则c b a 31211++的最小值为 (5)若b a ,是不相等的正数,b a y b a x +=+=,2 ,则y x ,的大小关系是 (6)若,0,0>>b a 且,72=++b a ab 则b a +的最小值是 技巧一 凑项 例1 已知54x <,求函数14245 y x x =-+-的最大值 1.函数y =log 2(x +1x -1 +5)(x >1)的最小值为( ) A .-3 B .3 C .4 D .-4 技巧二 凑系数 例2 当40<

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

高三数学第二轮复习 不等式选讲

第2讲 不等式选讲 [考情考向分析] 本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围、不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式、绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想. 热点一 含绝对值不等式的解法 含有绝对值的不等式的解法 (1)|f (x )|>a (a >0)?f (x )>a 或f (x )<-a . (2)|f (x )|0)?-a 1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集; (2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=|x -2|+|x -4|=????? -2x +6,x ≤2,2,2

高三数学 第40课时 均值不等式教案

课题:算术平均数与几何平均数 教学目标:1.掌握两个正数的算术平均数不小于它们的的定理,并会简单运用; 2.利用不等式求最值时要注意到“一正” “二定”“三相等”. 教学重点:均值不等式的灵活应用。 (一) 主要知识: 1.两个数的均值不等式:若,a b R +∈,则 2 a b +(等号仅当a b =时成立) 三个数的均值不等式:若,,a b c R +∈,则a b c ++≥a b c ==时成立) 2.几个重要的不等式: ① ab ≤22a b +?? ???≤222a b + ②abc ≤33a b c ++?? ???; ③如果,a b R ∈≥2a b +≥211a b + 3.最值定理:当两个正数的和一定时,其乘积有最大值;当两个正数的乘积一定时,其和 有最小值。 (二)主要方法: 1.常见构造条件的变换:加项变换,系数变换,平方变换,拆项变换,常量代换,三角代换等. 2.当使用均值定理时等号不能成立时,应考虑函数的单调性(例如“对号”函数,导数法). (三)典例分析: 问题1.求下列函数的最值: ()113y x x = +-()3x <;()2121y x x =+-()1x >;()3241y x x =+()0x >; ()323 y x x =+()0x >;()4 ()21y x x =-()01x <<;()5 ()21y x x =-()01x << ()6y =()7 已知,,,a b x y R +∈(,a b 为常数),1a b x y +=,求x y +的最小值

问题2.已知0x >,0y >,且1x y +=,求. 问题3.求最小值()1231()1x x f x x -+=+()1x >-;()2 223sin sin y x x =+ 问题4.()1设0x >,0y >,且()1xy x y -+=,则 .A 2x y +≤.B 2x y +≥ .C )21x y +≤ .D )2 1x y +≥ ()2已知x ≥0,y ≥0,且22 12y x +=,求证:≤4 ()3若0a b >>, 求216() a b a b + -的最小值 (四)课后作业: 1.已知1>a 那么1 1-+a a 的最小值是 .A 12-a a .B 15+ .C 3 .D 2

2020年全国高考数学第二轮复习 选修4—5 不等式选讲 理

选修4—5 不等式选讲 真题试做 1.(2020·天津高考,文9)集合A ={ x ∈R |}|x -2|≤5中的最小整数为__________. 2.(2020·上海高考,文2)若集合A ={x |2x -1>0},B ={x ||x |<1},则A ∩B =__________. 3.(2020·江西高考,理15(2))在实数范围内,不等式|2x -1|+|2x +1|≤6的解集为__________. 4.(2020·课标全国高考,理24)已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集; (2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围. 5.(2020·辽宁高考,文24)已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值; (2)若??? ??? f (x )-2f ? ????x 2≤k 恒成立,求k 的取值范围. 考向分析 该部分主要有三个考点,一是带有绝对值的不等式的求解;二是与绝对值不等式有关的参数范围问题;三是不等式的证明与运用.对于带有绝对值不等式,主要考查形如|x |<a 或|x |>a 及|x -a |±|x -b |<c 或|x -a |±|x -b |>c 的不等式的解法,考查绝对值的几何意义及零点分区间去绝对值符号后转化为不等式组的方法.试题多以填空题或解答题的形式出现.对于与绝对值不等式有关的参数范围问题,此类问题常与绝对值不等式的解法、函数的值域等问题结合,试题以解答题为主.对于不等式的证明问题,此类问题涉及的知识点多,综合性强,方法灵活,主要考查比较法、综合法等在证明不等式中的应用,试题多以解答题的形式出现. 预测在今后高考中,对该部分的考查如果是带有绝对值的不等式,往往在解不等式的同时考查参数的取值范围、函数与方程思想等;如果是不等式的证明与运用,往往就是平均值不等式.试题难度中等. 热点例析 热点一 绝对值不等式的解法 【例1】不等式|x +3|-|x -2|≥3的解集为__________. 规律方法 1.绝对值不等式的解法 (1)|x |<a ?-a <x <a ;|x |>a ?x >a 或x <-a ; (2)|ax +b |≤c ?-c ≤ax +b ≤c ; |ax +b |≥c ?ax +b ≤-c 或ax +b ≥c ; (3)|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 的解法有三种:一是根据绝对值的意义结合数轴直观求解;二是用零点分区间去绝对值,转化为三个不等式组求解;三是构造函数利用函数图象求解. 2.绝对值三角不等式 (1)|a |-|b |≤||a |-|b ||≤|a ±b |≤|a |+|b |; (2)|a -c |≤|a -b |+|b -c |. 变式训练1 不等式|2x -1|<3的解集为__________. 热点二 与绝对值不等式有关的参数范围问题 【例2】不等式|2x +1|+|x +a |+|3x -3|<5的解集非空,则a 的取值范围为__________. 规律方法 解决含参数的绝对值不等式问题,往往有以下两种方法: (1)对参数分类讨论,将其转化为分类函数来处理;

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

高一数学必修一均值不等式题型归纳

均值不等式题型归纳 一、拼凑求最值 1.函数y =x ·(3-2x ) (0≤x ≤1)的最大值为______________. 2.已知x ≥52,则f (x )=x 2-4x +52x -4 有( ) A .最大值54 B .最小值54 C .最大值1 D .最小值1 3.当x >1时,不等式x +1x -1 ≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 二、“1”的代换 1.若正数x 、y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A .245 B .285 C .5 D .6 三、实际应用 1.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓 储时间为x 8 天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A .60件 B .80件 C .100件 D .120件 2.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低总造价为__________元. 3.一批救灾物资随17列火车以v km/h 的速度匀速直达400km 以外的灾区,为了安全起见, 两列火车的间距不得小于(v 20 )2km ,则这批物资全部运送到灾区最少需__________h. 4.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元.试求: (1)仓库面积S 的取值范围是多少? (2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计多长?

高考数学专题不等式选讲高考真题

2019届高考数学专题-不等式选讲-高考真题 解答题 1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分) 已知()|1||1|f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集; (2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围. 2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分) 设函数()5|||2|=-+--f x x a x . (1)当1a =时,求不等式()0≥f x 的解集; (2)若()1≤f x ,求a 的取值范围.

3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分) 设函数()|21||1|f x x x =++-. (1)画出()y f x =的图像; (2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值. 4.(2017新课标Ⅰ)已知函数2 ()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集; (2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.

5.(2017新课标Ⅱ)已知0a >,0b >,33 2a b +=,证明: (1)55()()4a b a b ++≥; (2)2a b +≤. 6.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+--. (1)求不等式()1f x ≥的解集; (2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.

高中数学必修5 均值不等式

均值不等式复习(学案) 基础知识回顾 1.均值不等式:ab ≤ a +b 2 (1)均值不等式成立的条件:_______________. (2)等号成立的条件:当且仅当____________时取等号. 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ). (2)b a +a b ≥2(a ,b 同号). (3)ab ≤? ????a +b 22(a ,b ∈R ). (4) a 2+ b 22≥? ?? ??a +b 22 (a ,b ∈R ). 注意:使用均值不等式求最值,前提是“一正、二定、三相等” 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,均值不等式可叙述为两个正数的 算术平均数大于或等于它的几何平均数. 4.利用均值不等式求最值问题 已知x >0,y >0,则 (1) 如果积xy 是定值p ,那么当且仅当________时,__________有最_____值是_____(简记:积定和 最小) (2)如果和x +y 是定值s ,那么当且仅当_____时,____有最______值是_______.(简记:和定积最大) 双基自测 1.函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2 +1x 2+1≥1.其中正确的个数是( ). A .0 B .1 C .2 D .3 3.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2 +b 2 有最小值 22 4.若实数b a ,满足2=+b a ,则b a 33+的最小值是( ) A .18 B. 6 C. 32 D. 432 5.若正数b a ,满足3++=b a ab ,则ab 的取值范围是 . 6.若+ ∈R y x ,,且12=+y x ,则 y x 1 1+的最小值为 . 典型例题 类型一 利用均值不等式求最值 1.若函数f (x )=x +1 x -2 (x >2)的最小值为____________. 2.已知t >0,则函数y =t 2-4t +1 t 的最小值为________.

2019届高考数学专题-不等式选讲-高考真题

2019届高考数学专题-不等式选讲-高考真题 解答题 1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分) 已知()|1||1|f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集; (2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围. 2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分) 设函数()5|||2|=-+--f x x a x . (1)当1a =时,求不等式()0≥f x 的解集; (2)若()1≤f x ,求a 的取值范围.

3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分) 设函数()|21||1|f x x x =++-. (1)画出()y f x =的图像; (2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值. 4.(2017新课标Ⅰ)已知函数2 ()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集; (2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.

5.(2017新课标Ⅱ)已知0a >,0b >,332a b +=,证明: (1)55()()4a b a b ++≥; (2)2a b +≤. 6.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+--. (1)求不等式()1f x ≥的解集; (2)若不等式2 ()f x x x m -+≥的解集非空,求m 的取值范围.

《基本不等式》典型例题

高中数学必修五典题精讲 典题精讲 例1(1)已知0<x < 31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x < 3 1,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=6 1时,等号成立.∴x=61时,函数取得最大值12 1. 解法二:∵0<x <31,∴3 1-x >0. ∴y=x(1-3x)=3x(31-x)≤3[2 31x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1?=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x 1=-[(-x)+) (1x -]. ∵-x >0,∴(-x)+) (1x -≥2,当且仅当-x=x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+ x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与11+x 的积为常数.

相关主题
文本预览
相关文档 最新文档