当前位置:文档之家› 三电平逆变器缓冲电路内外电压不平衡分析及改进

三电平逆变器缓冲电路内外电压不平衡分析及改进

三电平逆变器缓冲电路内外电压不平衡分析及改进
三电平逆变器缓冲电路内外电压不平衡分析及改进

第10卷 第2期2006年3月

 

电 机 与 控 制 学 报

EL EC TR IC MACH I N ES AND CON TROL

 

Vol 110No 12March 2006

三电平逆变器缓冲电路内外电压不平衡分析及改进

陈扬飞, 何礼高

(南京航空航天大学自动化学院,江苏南京210016)

摘 要:针对三电平逆变器RCD 缓冲电路在相邻开关状态之间转换时所发生的两种电压不平衡

现象,进行了深入详细地分析,研究了产生电压不平衡的机理,并依据电路基本定律,推导了两种不平衡电压的计算公式。在此基础上,提出了一种简单的能使电压平衡的办法,并进行了仿真验证。结果表明性能良好。

关键词:三电平逆变器;缓冲电路;分布电感

中图分类号:T M133

文献标识码:A

文章编号:1007-449X (2006)02-0182-05

Analysis on unbal ance volt ages between i n ner and outer s nubber ci rcuits

and i m prove ment of three 2level i n verter

CHEN Yang 2fei, HE L i 2gao

(College of Aut omati on Engineering,Nanjing University of Aer onautics and A str onautics,Nanjing 210016,China )

Abstract:This paper analyzes t w o unbalance voltages which happen bet w een the transf or mati on of nearby s witching states in RCD snubber circuits of three 2level inverter .The reas on f or the unbalance voltage is studied and the f or mulas t o calculate the t w o unbalance voltages are given in this paper .A way of s olving the unbalance is als o p resented .A t last the veracity of what have menti oned above is si m ulated by elec 2tr onic s oft w are .The result shows that the s oluti on is effective .Key words:three 2level inverter;snubber circuit;parasitic inductance

收稿日期:2005-04-10;修订日期:2005-07-23

作者简介:陈扬飞(1981-),男,硕士研究生,研究方向为大功率交流变频调速;

何礼高(1951-),男,高级工程师、硕士生导师,研究方向电机控制与电源变换技术。

1 引 言

三电平逆变器是为了适应高压大功率场合而于1981年由A Nabae 等人提出来的

[1]

。发展至今,三

电平逆变器主要有二极管箝位式、飞跨电容式和独

立电源式三种拓扑[2,3]

,而应用最广的是第一种。与传统的两电平逆变器相比,三电平逆变器的优点主要有以下两点:由于波形多了一个台阶,输出的电压和电流中所含的谐波减少;每个开关器件所承受的最大电压为母线直流电压的一半,而传统为母线电压。本文在对三电平逆变器中的电压不平衡现象分析基础上,提出了一种简单的能使电压平衡的方

法,并进行了仿真验证。

2 三电平逆变器的一般缓冲电路

三电平逆变器如图1所示,图中只给出了一相桥臂,其余两相与该相相同。一般负载是感性的(如电机),相对于器件开关周期电流的变化不大,所以用恒流源代替。

三电平的开关状态如表1所示。相邻状态之间的转换有一定时间间隔,称为死区时间(Dead ti m e )。从S 1到S 0的过程是先关断T 1,T 1截止时,

再开通T 3;从S 0到S -1的过程是先关断T 2,当T 2截止时,再开通T 4。其他转换与上述类似。如果在T 1

没有完全被关断时就开通T 3,则T 1、T 2、T 3串联直通,从而直流母线高压直接加在T 4上,导致T 4毁坏。在开关器件的触发控制上,一定的死区时间是必要的(在这里不考虑从S 1到S -1的转换,因为实际应用中不允许出现这种情况)

实际电路都存在着分布电感。分布电感和回路有关,包括电路中元器件的寄生电感和线路结构中的杂散电感等。一般回路面积越大,电感越大,但在电路分析时,用分布电感比较繁琐。回路越多,分布电感越多,各电感之间的电气关系也较复杂,所以用集中电感能更方便地分析问题。本文分析时在桥臂两端加入两个集中电感代替分布电感。这里的两个电感是可变的,工作状态不同时,电感也会相应的变化。分布电感的存在,使得器件的开关过程变得复杂,引起了内外器件上的电压不平衡问题。

三电平逆变器在工作时,需要缓冲电路来保障它的正常运行。近年,对逆变器无源无损缓冲电路的研究较热

[4]

,但因其增加了拓扑的复杂程度,降

低了系统可靠性,所以一般在应用时,仍采用简单RCD 缓冲电路。而RCD 的形式,会导致三电平逆

变器内外器件上电压的不平衡,即内管(T 2或T 3)上承受的电压高于1/2母线电压。若该过压超过功率管的耐压值,则使逆变器输出电压产生畸变,甚至导致器件损坏,所以,限制过电压从而保护开关器件对于三电平逆变器是重要的

[5]

。文[6~8]虽然提

出了三电平逆变器中的电压不平衡现象,但并没有

具体分析其产生的过程。

3 逆变器工作过程分析

由图1知,V Cp =V Cn =E D /2,并设C S 1=C S 2=

C S 3=C S ,R S 1=R S 2=R S 3=R S 。

3.1 S 0到S 1的转换

初始状态为:V CS 1=V Cp =E D /2,V CS 2=0,V CS 3

=V Cn =E D /2。

1)关断T 3 因为电流从D B1、T 2上流过,所以T 3的关断时终端电位仍为中点电位,则C S 1两端电

压保持不变。而C S 2因为T 3的关断电压会略有上升,C S 3上电压略有下降。

2)开通T 1 当T 3已经处于关断状态时,开通T 1,则流过T 1的电流线性增加,为i T 1=I S t/t ri

[9]

(t ri

为T 1中电流从0上升到I S 所经过的时间),同时C S 1放电。流过D B1的电流逐渐减小,但同时因为D B1导通,终端电位保持在E D /2,所以对C S 2的充电通路不会形成。整个过程如图2所示,由此可列写方程为

i L 1+i CS 1=i T 1=I S

t

t ri

(1)L 1

d i L 1d t +V CS 1+(-i CS 1)R S 1=E D

2

(2

)

因为i CS 1=-C S 1

d V CS 1

d t

,可得d i L 1d t =I S t ri -d i CS 1d t =I S t ri +C S 1d 2

V CS 1

d t

2

综合得到L 1C S 1d 2

V CS 1d t

2

+R S 1C S 1d V CS 1d t +v CS 1=E D 2-L 1I S

t ri (3)

实际电路中C S 1是放电的,两端的电压将减少,作微

分运算时是负值,而图中所标的放电电流i CS 1和实际电流方向一致,所以上述i CS 1表达式前要加负号,

3

81第2期三电平逆变器缓冲电路内外电压不平衡分析及改进

后文类似,不再赘述。

RCD 缓冲电路的电阻都不是很大,所以为计算方便,可以作0处理,即令R S 1≈0,所以可得到

L 1C S 1

d 2

V CS 1d t

2

+V CS 1=

E D

2

-

L 1I S t ri

(4)

令ω=

1

L 1C S 1

,式(4)的解为V CS 1=

L 1I S t ri

co s

ωt +E D

2

-

L 1I S t ri

(5)i CS 1=

I S

ωt ri

sin

ωt (6)

当t =t ri 时,T 1中电流上升到I S ,即T 1完全导通。

设计缓冲电路时,若使开关管完全导通,其并联的缓冲电路中电容上的电流i CS 1=0,电容上的电压也降为0,在本文中称之为临界缓冲。由式(6),令

i CS 1=

I S

ωt ri

sin ωt =0,得t =π/ω=t ri 。再将t ri =π/ω代入V CS 1=

L 1I S t ri cos ωt +E D 2

-L 1I S

t ri

=0,可得L 1

C S 1

=πE D

4I S

,。当t =t ri 时,i D B 1=0,则D B1截止,电流I S 从T 1、T 2中流过,分布电感L 1上的电流已达到I S 。之后由

于电感的续流作用,L 1、L 2上储存的能量开始释放出来,给C S 2充电,同时C S 3放电,如图3。

由图3可列方程为

E D

2

=L 1

d i L 1

d t

+V CS 2(7)

i L 1=I S +i CS 2=i L 2+i D B 2=i L 2+i CS 2+i CS 3

(8)

I S =i L 2+i CS 3(9)i CS 2=C S 2

d V CS 2

d t

(10)

综合得:

L 1C S 2

d 2

V CS 2d t

2

+V CS 2=

E D

2

(11)

解该方程得:

V CS 2=

E D

2

-E D

2

cos ω(t -t ri )(12)i CS 2=

E D

2

ωL 1sin

ω(t -t ri )(13)

其中ω=

1

L 1C S 2

。当t >

32t ri =3π2

ω时,C S 2上的电压

V CS 2将大于E D /2,而这个电压直接加在T 3上。到L 1、

L 2上的能量全部释时,C S 2上的电压高于E D /2,C S 3

上的电压低于E D /2,并保持这个不平衡状态。这个过电压的产生是不可避免的。一方面过电压的产生和电路中的分布电感有关,电感有储能特性,只要存在回路,它就会把其中的能量传递给电容,使其电压变大。另一方面由于三电平电路的特殊结构,就是箝位二极管D B2的存在,只能使电流单方向流动,造成电容上的高电压得不到有效泄放。最终内管T 3所承受的电压将高于外管T 4所承受的电压。3.2 S 1到S 0的转换

1)关断T 1 电流线性下降,电压增高;C S 1充

电,电压上升。同时C S 2和C S 3在同一回路中放电,放电回路为C S 2、T 2、I S 、R S 3、C S 3、R S 2,电压降低。C S 1上电压上升至E D /2时,D B1因承受正向电压而导通,将T 1上电压锁定在E D /2。最终T 1承受的电压为E D /2,T 2上的电压为0,T 3和T 4一起承受的电压为E D /2,没有过限。

2)开通T 3 关断T 1后,经过死区时间,开通T 3。T 3的开通使C S 2能够沿C S 2、T 2、T 3、R S 2形成放电

回路,最终使C S 2上电压降到0,C S 3上电压上升到

E D /2。达稳态时,T 1上电压保持V Cp =E D /2不变,T 2

上电压为0,T 3上电压为V Cn =E D /2,都没有超过

E D /2。

3.3 S 0到S -1的转换

1)关断T 2 t =0时,关断T 2,其中电流线性下

降,电压上升。D F3因承受正压而导通,通过其中的电

流上升。因为这时D B1还导通着,所以图中所示Np

点电位仍为E D /2,C S 1不会放电。C S 2充电,C S 3放电,两者的充、放电电流形成D F3中的电流,如图4。与从S 0到S 1的分析类似,最终可求得

i L 2=I S -I S

2t fi

t +

I S

2

ωt fi sin

ωt (14)V CS 2=

L 2I S

4t f i

(1-cos ωt )+

I S

4C S 2t fi

t

2

(15)

481电 机 与 控 制 学 报 第10卷 

V CS 3=

E D

2-I S

4C S 2t fi t 2

+

L 2I S

4t f i

(1-cos ωt )(16)

其中ω=

2

L 2C S 3

,0

≤t ≤t f i 。

根据缓冲电路的设计原则,到t =t f i 时,C S 3上的电压将下降到0,C S 2上的电压将上升到E D /2。D F4因承受正压而导通,I S 从D F3、D F4流过。L 2中的能量因续流作用开始向C S 2传送,即给C S 2充电,如图5。这时可列方程为

i D B 1=i CS 1+i CS 2=i L 1+i CS 2=i L 1+i L 2

(17)i L 2+i D F 4=I S =i CS 2+i D F 4

(18)E D

2

=V CS 2+L 2

d i L 2

d t

(19)

综合得

L 2C S 2

d 2

V CS 2d t

2

+V CS 2=

E D

2

(20)

解得

V CS 2=

E D

2

+

I S

2

ωC S 2sin ω(t -t f i )(21)

其中ω=

1

L 2C S 2

。当t >t f i 时,C S 2上的电压V CS 2开

始大于E D /2,而这个电压将直接加在T 2上。到L 2上

的能量全部释放出来时,C S 1上的电压低于E D /2,C S 2上的电压高于E D /2,并保持这个不平衡状态。

2)当T 2处于截止时开通T 4 因为电流I S 从D F 3、D F 4流过,所以开通T 4对电路中各物理量没有任何影响。

3.4 S -1到S 0的转换

1)关断T 4 当T 4关断后,由于D B1的存在,导致C S 2上电压比E D /2略有增加,C S 1将比E D /2略有减小。

2)经过死区时间后开通T 2 D B1因承受正压而

导通,C S 2开始放电,如图6。从稳态看,因为T 2、T 3导通,所以C S 2被短路

,C S 2上电压为0,C S 1、C S 3上电压为E D /2,所以没有内外器件上电压不平衡的现象。

4 改进方案

由上述分析可知,发生电压不平衡时,均为内管

(T 2或T 3)承受的电压过高

。提出一种办法,使得在发生电压不平衡时,能量不再流向C S 2,而是流向旁路,如图7。大电容C 的存在相当于一个E D /2直流电

5

81第2期

三电平逆变器缓冲电路内外电压不平衡分析及改进

压源,并且二极管D 使得电流只能从C S 2流向C 。当

逆变器从S 0转换至S 1或S -1的过程中,开始因为C 上电压比C S 2两端高,所以电流流过C S 2而不流过C,而一旦C S 2上电压超过E D /2,电流将从C 上流过而不流经C S 2。这样,将多余的能量传送到C,从而起到限制过压的作用。而其他转换时C 不起作用,逆变器正常工作。

5 仿真研究

运用电子仿真软件S ABER 对所论述的不平衡原理进行仿真,条件为:E D /2=500V ,I S =50A ,得波形如图8~11。图8中当t =413m s 触发T 1使转换到S 1,图9中当t =2195m s 关断T 2时,最终C S 2上电压高于E D /2。改进后可以看到,在同样的触发条件下,最终缓冲电容C S 2上的电压稳定在E D /2

6 结 语

研究了三电平逆变器一般RCD 缓冲电路在各

开关状态之间转换时所产生的电压不平衡现象,阐述了不平衡现象的产生的机理,同时提出了一种改进的办法,最后运用仿真的手段进行了验证。

缓冲电路为三电平逆变器的正常安全运行提供了有效的保证,特别是当功率等级很高时尤为重要,

而对缓冲电路的研究和改善使其能更可靠地工作

参考文献:

[1]NABLE A,T AK AHASH I I,AK AGIH.A ne w neutral 2point 2cla med

P WM inverter[J ].IEEE Trans .Ind .A ppl .,1981,17(5):518-523.

[2]RODR I G UEZ Jose,LA I JihSheng,Peng FangZheng .Multilevel in 2

verters:a survey of t opol ogies,contr ol and App licati ons[J ].IEEE

Trans .Ind .A pplicat .,2002,49(4):724-738.

[3]费万民,姚文熙,吕征宇,吴兆麟.中高压变频调速技术综述

[J ].电力电子技术,2002,36(2):74-78.

[4]吴洪洋,邓焰,何湘宁.一种新颖的多电平逆变器无源无损吸收

电路[J ].中国电机工程学报,2002,22(10):71-76.

[5]HY UN D S .A novel structure of multi 2level high voltage s ource in 2

verter[C ].5th European Conf .on Po w er E lectronics and Applica 2

tions .B righoon,1993:132-137.

[6]S UH B S,HY UN D S,CHO IH K .A circuit design f or cla mp ing an

overvoltage in three 2level GT O inverters [C ].

P roc .

IECON ’94

Conf .Bol ogna:Italy,1994:651-656.

[7]S UH J H,S UH B S,X HY UN B S .A ne w snubber circuit for high

efficiency and overvoltage li m itati on in three 2Level GT O inverters [J ].IEEE Trans .Ind .Applicat .,1997,44(2):145-156.[8]S UNG J H,NAM K .A si m p le snubber configurati on for three 2Level

GT O inverters[J ].IEEE Trans .

Ind .Applicat .,1999,14(2):

246-257.

[9]陈坚.电力电子学[M ].北京:高等教育出版社,2002.

681电 机 与 控 制 学 报 第10卷 

逆变器自己制作过程大全

通用纯正弦波逆变器制作 概述 本逆变器的PCB设计成12V、24V、36V、48V这几种输入电压通用。制作样机是12V输入,输出功率达到1000W功率时,可以连续长时间工作。 该逆变器可应用于光伏等新能源,也可应用于车载供电,作为野外应急电源,还可以作为家用,即停电时使用蓄电池给家用电器供电。使用方便,并且本逆变器空载小,效率高,节能环保。 设计目标 1、PCB板对12V、24V、36V、48V低压直流输入通用; 2、制作样机在12V输入时可长时间带载1000W; 3、12V输入时最高效率大于90%; 4、短路保护灵敏,可长时间短路输出而不损坏机器。 逆变器主要分为设计、制作、调试、总结四部分。下面一部分一部分的展现。 第一部分设计 1.1 前级DC-DC驱动原理图 DC-DC驱动芯片使用SG3525,关于该芯片的具体情况就不多介绍了。其外围电路按照pdf里面的典型应用搭起来就OK。震荡元件Rt=15k,Ct=222时,震荡频率在21.5KHz左右。用20KHz左右的频率较好,开关损耗小,整流管的压力也小些,有利于效率的提高。不过频率低,不利于器件的小型化,高压直流纹波稍大些。 电池欠压保护,过压保护以及过流保护在DC-DC驱动上实现。用比较器搭成自锁电路,比较器输出作用于SG3525的shut_down引脚即可。保护电路均是比较器搭建的常规电路。DC-DC驱动部分使用了准闭环,轻载时,准闭环将高压直流限制在380V左右,一旦负载加重前级立即进入开环模式,以最高效率运行。并且使用了光耦隔离,前级输入和输出在电气上是隔离开的,这样设计也是为了安全。如图1.1所示,是DC-DC驱动电路原理图。

纯正弦波逆变器哪个好_纯正弦波逆变器排行榜

纯正弦波逆变器哪个好_纯正弦波逆变器排行榜 纯正弦波逆变器哪个好纯正弦波的逆变器好,困为谐波分量少,功率因数更高。 纯正弦波的逆变器 连续输出功率:1000W 峰值输出功率:2000W 直流输入:12V 交流输入电压:100-120V/60Hzor220V-240V/60Hz 主要优点:其输出波形为纯正弦波,较修正正弦波而言,这种波形稳定,不失真,不易变形,带载能力强,接近于市电的供电能力。 带感性负载如微波炉和电机,具有使负载工作更快,并有效减少设备产生的噪音。提供持续稳定的交流电,保证设备持续正常工作。 纯正弦波和修正弦波逆变器有什么区别纯正弦波的才能称为正弦波,所谓修正正弦波更接近于方波。纯正弦波逆变器可以驱动常见的任何可以接入市电的设备,而修正正弦波对负载有很多限制,比如带电阻类负载(白炽灯、电炉(电磁炉除外)等负载)是没问题的,但电容类负载(比如充电的LED手电筒)在脉冲的边沿会出现冲击电流,导致电容类负载在修正正弦波供电时极易损坏,电感类负载(使用电动机的电器)工作也会出现异常。这个我以前做过专门的测试,下面照片中示波器的图像就是逆变器的输出波形,由于输出电压较高,已经在示波器探头上使用电阻进行100:1的分压。 下面图片中这个就是纯正弦波逆变器的输出波形: 下面这个图片中的示波器图像是修正正弦波逆变器输出的所谓“修正正弦波”: 1、西门子:世界上最大的机电类/电气工程与电子公司之一,世界500强企业; 2、西蒙Simon:高新技术企业,,拥有国内产品专利近百项,其产品畅销国内外; 3、罗格朗-TCL:电气行业的领导品牌,十大品牌,TCL-罗格朗国际电工; 4、奇胜Clipsal:全球著名品牌,亚洲最大的电工产品品牌之一;

芯片IO缓冲及ESD设计

芯片I/O缓冲及ESD电路设计 摘要:文章详细介绍了基于C MOS的芯片I/O缓冲电路分类,功能,电路及版图设计的一些考虑以及芯片引脚的静电保护问题。 关键词:I/O;缓冲电路;静电保护;CMOS 针对引脚的输入输出缓冲(I/O buffer)电路设计,也可以称为输入输出接口(I/O interface)电路设计,是一颗完整芯片设计中不可或缺的组成部分,但是详细论述其设计规则的文章或者著作在国内却比较鲜见,这对初学者或者没有这方面经验的工程师无疑会造成困惑。本文以CMOS工艺为例,较全面的论述I/O缓冲电路设计中各种考虑,可以作为芯片引脚输入输出电路设计的一个参考。 根据I/O缓冲电路应用目标的不同,可将其分为输入、输出等几类,详见表1。 表1 I/O缓冲电路的分类 输出缓冲(是个大驱动器,他将信号输出芯片) 输出缓冲电路的功能要求能够驱动大的片外负载,通常为2~50pF,并且提供适当的上升/下降时间。一组连续的大尺寸的缓冲器(buffer)对驱动能力的提高是有益的。大尺寸的管子容易受闩锁效应(latch-up)的影响,在版图设计时建议采用保护环(Guardrings)保护以避免闩锁效应,如图1-1所示。在图中,用P+作为内保护环,而N+作为外保护环(In n-well)。

图1-1缓冲器 一种常见的输出电路如图1-2所示,En是输出电路的使能信号,Dout是输出数据,MOS管组合的功能如图中所示。当En为低而Dout有效时,A、B均为高电平,输出Y为低,且由外向里看为高阻抗状态,如果Dout未定,则Y为高阻。需要注意的是,最后输出级的管子尺寸要大到能够提供足够的电流源或电流沉并且减少延迟时间。其负面影响是电流变化率(di/dt)变大而使穿过输出点到封装的压焊线上的L(di/dt)噪声增大,从而导致较大的片上噪声。 图1-2常用的输出缓冲电路 在高性能的芯片中,如32位的微处理器,如果多个I/O输出驱动电路工作状态相似时,L(di/dt)噪声可能逐步增强,会影响芯片速度。图1-3通过加入一个闸控制信号(ST),并结合时序的控制,可以减小L(di/dt)噪声。

RC缓冲电路snubber设计原理

RC 缓冲 snubber 设计 Snubber 用在开关之间,图 4 显示了 RC snubber 的结构图,用 RC 电路可以降低管子的峰值电压及关断损耗和降低电流振铃现象。我们可以轻松选择一个snubber Rs , Cs 网络,但是我们需要优化设计以达到更好的缓冲效果 快速 snubber 设计,为了达到 Cs 〉 Cp ,一个比较好的选择是 Cs 选择两倍大小的 Cp ,也就是两倍大小的开关管寄生电容及估算出来的 LAYOUT 布板电容,对于 Rs ,我们选择的标准是 Rs=Eo/Io ,这表示通过电流流向 Rs 的所产生的电压不能比输出电压还大。消耗在 Rs 上的电压大小我们可以通过储存在Cs 上的能量来估计。下式表示了储存在电容上的能量。 当电容 Cs 充放电的过程中,能量在电阻 Rs 上消耗,而这个过程中在一个给定的开关频率下平均的功率损耗如下所得: 因为振铃的发生,实际的功耗比上式要稍微大一些。 如下将用实例来演示一遍以上的简化设计步骤,现在用 IRF740 ,额定工作电流时 Io=5A , Eo=160V , IRF740 的 Coss=170pF ,布板寄生电容大概 40pF ,两倍 Cp 值大概 420pF 左右,我们选择一个 500V 的 mike snubber 电容,标准的容值有 390 和 470pF ,我们选择比价接近的 390pF , Rs=Eo/Io=32W ,开关频率 fs 设为 100kHz 的话, Pdiss 大概为 1W 左右,选择一个寄生电感非常小的 2 W 的碳膜电阻作为 Rs 。 如果这种简化而实际有效的设计方法还不能有效减小峰值电压,那么我们可以增加 Cs ,或则使用如下的优化设计方法。 优化的 RC 滤波器设计 在一些情况下必须降低峰值电压及功率损耗很严重,我们可以借鉴以下的优化snubber 设计方法,以下是博士在一篇文章提出的经典的 Rcsnubber 优化设计方法,如下讨论其精粹的设计步骤。 在以下讨论中我们需要如下表的定义:

1000W正弦波逆变器制作过程详解

1000W正弦波逆变器制作过程详解 1000W正弦波逆变器制作过程详解 作者:老寿 这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器.具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图 也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。 因为电流较大,所以用了三对6平方的软线直接焊在功率板上: 吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。所以这次画PCB 时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。

如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。 上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。 上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4 个大功率管,那个白色的东西是0.1R电流取样电阻。二个 直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。 上图是DC-DC升压电路的驱动板,用的是KA3525。这次 共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。 H桥部分的大功率管,我有二种选择,一种是常用的IRFP460,还有一种是IGBT管40N60,显然这二种管子不是同一个档次的,40N60要贵得多,但我的感觉,40N60的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。 这是TO220封装的快恢复二极管,15A 1200V,也是张工

正弦波逆变器驱动芯片介绍

光伏逆变器600W正弦波逆变器制作详解 自从公布了1KW正弦波逆变器的制作过程后,有不少朋友来信息,提这样那样的问题,很多都是象我这样的初学者。为此,我又花了近一个月的时间,制作了这台600W的正弦波逆变器,该机有如下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB 厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基

础,我老寿包你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形:

一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”;“SPWM驱动板”;“DC-DC驱动板”;“保护板”。 1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。 该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到

RC缓冲电路snubber设计原理

RC缓冲电路snubber设计原理 RC 缓冲snubber 设计 Snubber 用在开关之间,图4 显示了RC snubber 的结构图,用RC 电路可以降低管子的峰值电压及关断损耗和降低电流振铃现象。我们可以轻松选择一个snubber Rs ,Cs 网络,但是我们需要优化设计以达到更好的缓冲效果 快速snubber 设计,为了达到Cs 〉Cp ,一个比较好的选择是Cs 选择两倍大小的Cp ,也就是两倍大小的开关管寄生电容及估算出来的LAYOUT 布板电容,对于Rs ,我们选择的标准是Rs=Eo/Io ,这表示通过电流流向Rs 的所产生的电压不能比输出电压还大。消耗在Rs 上的电压大小我们可以通过储存在Cs 上的能量来估计。下式表示了储存在电容上的能量。 当电容Cs 充放电的过程中,能量在电阻Rs 上消耗,而这个过程中在一个给定的开关频率下平均的功率损耗如下所得: 因为振铃的发生,实际的功耗比上式要稍微大一些。 如下将用实例来演示一遍以上的简化设计步骤,现在用IRF740 ,额定工作电流时Io=5A ,Eo=160V ,IRF740 的Coss=170pF ,布板寄生电容大概40pF ,两倍Cp 值大概420pF 左右,我们选择一个500V 的mike snubber 电容,标准的容值有390 和470pF ,我们选择比价接近的390pF , Rs=Eo/Io=32W ,开关频率fs 设为100kHz 的话,Pdiss 大概为1W 左右,选择一个寄生电感非常小的 2 W 的碳膜电阻作为Rs 。

如果这种简化而实际有效的设计方法还不能有效减小峰值电压,那么我们可以增加Cs ,或则使用如下的优化设计方法。 优化的RC 滤波器设计 在一些情况下必须降低峰值电压及功率损耗很严重,我们可以借鉴以下的优化snubber 设计方法,以下是W.McMurray 博士在一篇文章提出的经典的Rcsnubber 优化设计方法,如下讨论其精粹的设计步骤。 在以下讨论中我们需要如下表的定义:

逆变器制作全过程(新手必看)

制作600W的正弦波逆变器 该机具有以下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。如果PCB 没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形:

一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”;“SPWM驱动板”;“DC-DC驱动板”;“保护板”。 1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方便,加上EE55是现存有的,就用了EE55。关于主变压器的绕制,下面再详细介绍。前级推挽部分的供电采用对称平衡方式,这样做有二个好处,一是可以保证大电流时的二个功率管工作状态的对称性,保证不会出现单边发热现象;二是可以减少PCB反面堆锡层的电流密度,当然,也可以大大减小因为电流不平衡引起的干扰。高压整流快速二极管,用的是TO220封装的RHRP8120,这种管子可靠性很好,我用的是二手管,才1元钱一个。高压滤波电容是470uf/450V的,在可能的情况下,尽可能用的容量大一些,对改善高压部分的负载特性和减少干扰都有好处。H桥部分用的是4个IRFP460,耐压500V,最大电流20A,也可以用性能差不多的管子代替,用内阻小的管子可以提高整机的逆变效率。H桥部分的电路采用的常规电路。 下面是功率主板的PCB截图,长宽为200X150MM,因为,这部分的电路比较简单,所以,我没有画原理图,是直接画了PCB图的。该板布板时,曾得到好友的提示帮助,特在此表示感谢。

纯正弦波单相逆变电源主控芯片 U3988剖析

U3988是数字化的、功能完善的正弦波单相逆变电源 / UPS 主控 芯片,它不仅可以输出高精度的SPWM正弦波脉冲序列,还可以实现稳压、保护、市电/逆变自动切换、充电控制等功能,并且具备LED指示灯驱动、蜂鸣器控制、逆变桥控制引脚,从而可以利用该芯片组成一个完整的逆变电源/UPS系统,用该芯片控制的逆变桥输出,既可以是传统的工频变压器结构,也可以是高频升压后的直接逆变结构。为方便生产过程中的调试,该芯片还具备测试模式,在该模式下,所有的保护功能、市电切换、充电控制均不起作用,仅工作在可以稳压的逆变状态,为最基本的调试和测试提供了方便。 U3988 的内部构成主要有:正弦波发生器、双极性调制脉冲产生逻辑、50Hz(或 60Hz)时基、电压反馈/短路检测、正弦波峰值调压稳压单元、外部扩展的保护响应逻辑、市电过零脉冲过滤、市电电压测量、电池电压测量、逆变控制、充电控制、指示灯控制、蜂鸣器控制、抗干扰自恢复单元构成。整个电路封装成一个18引脚IC(DIP18),其内部结构框图如图一所示: 图二是U3988的引脚图。 VDD是芯片的电源引脚,接单一+5V;GND是地; OSC1、OSC2是时钟引脚,接20MHz晶振; OUTA、OUTB是正弦波SPWM脉冲序列的输出引脚,这两个引脚输出的信号一般要通过死

区控制电路才能送到逆变桥; OUTG是逆变桥使能控制输出,该引脚输出低电平时允许逆变桥工作,输出高电平时则禁止逆变桥工作; AV_CK是逆变输出电压反馈引脚,该引脚接受的是模拟量输入,逆变桥最终输出的正弦波交流电压通过反馈电路送到该引脚,由芯片对逆变输出电压实现稳压、调压和短路检测; BT_CK是电池电压测量引脚,是模拟量输入引脚,电池电压经过电阻降压送到该引脚,由芯片对电池实现欠压保护、充电检测,若不需要使用该引脚,可以直接接+5V; AC_CK是市电电压测量引脚,这也是模拟量输入引脚,市电电压经过降压、整流、滤波、电阻分压后,送到该引脚,芯片会根据该引脚电压的变化,判断市电是否异常,并决定是否进行市电/逆变切换;若不需要使用该引脚,也可以直接接+5V; ACPLUS引脚是市电检测输入,芯片由此引脚的高低电平判断市电的有无;有市电时要将该引脚拉成低电平,对于检测市电的电路,如果为了提高响应速度而不采用滤波电容,也是允许的,虽然在该引脚的低电平信号中含有过零脉冲,但并不会使U3988频繁地进入逆变状态,因为在芯片的内部有过零脉过滤逻辑; AC/DC引脚是市电/逆变控制输出,输出高电平时为市电,输出低电平时为逆变; CHARG引脚是充电控制输出,高电平有效; LED_L引脚是逆变/欠压指示输出,低电平时表示逆变状态,闪烁时表示欠压; LED_P引脚是保护指示输出,当检测到短路或者外部的扩展保护时,芯片停止逆变,进入保护状态,此时指示灯闪烁; PROT引脚是扩展保护输入引脚,高电平有效,用户可以通过外部的或门逻辑实现过流、过温等保护输入,该引脚在逆变和市电状态都可以响应外部的保护请求; BEEP/TEST是双向引脚,正常工作时是蜂鸣器控制输出引脚,通过三极管驱动电磁式蜂鸣器,当在芯片加电的瞬间,该引脚是输入引脚,用来检测外部TEST跳线的状态;关于该引脚的详

正弦波逆变器设计

正弦波逆变器逆变主电路介绍 主电路及其仿真波形 图1主电路的仿真原理图 图1.1是输出电压的波形和输出电感电流的波形。上部分为输出电压波形,下面为电感电流波形。 图1.1输出电压和输出电感电流的波形 图1.2为通过三角载波与正弦基波比较输出的驱动信号,从上到下分别为S1、S3、S2、S4的驱动信号,从图中可以看出和理论分析的HPWM调制方式的开关管的工作波形向一致。

图1.2 开关管波形 从图1.3的放大的图形可以看出,四个开关管工作在正半周期,S1和S3工作在互补的调制状态,S4工作在常导通状态,S2截止;在负半周期,S2和S4工作在互补的调制状态,S3工作在常导通状态,S1截止。 图1.3放大的开关管波形 图1.4为主电路工作模态的仿真波形,图中从上到下分别为C3的电压波形、C1的电压波形、S3开关管的驱动波形,S1的驱动波形。从图中可以看出在S1关断的瞬间,辅助电容的电压开始上升,完成充电过程,同时S3上的辅助电容完成放电过程,S3开通。 图1.4工作模态仿真波形 图1.5为开关管的驱动电压波形和电感电流波形图,图中从上到下分别为电

感电流波形、S3驱动波形、S1驱动波形。从图中可以看出当S1关断瞬间到S3开通的瞬间,电感电流为一恒值,S3开通后,电感电流不断下降到S3关断时的最小值,然后到S1开通之前仍然为一恒值,直到S1开通,重复以上过程。根据以上结论可以看出仿真分析状态和前面的理论分析完全符合。 图1.5开关管的驱动电压波形和电感电流波形 2 滤波环节参数设计与仿真分析 2.1 输出滤波电感和电容的选取 对逆变电源而言,由于逆变电路输出电压波形谐波含量较高,为获得良好的正弦波形,必须设计良好的LC 滤波器来消除开关频率附近的高次谐波。 滤波电容C f 是滤除高次谐波,保证输出电压的THD 满足要求。C f 越大,则THD 小,但是C f 不断的增大,意味着无功电流也随之增加,从而增加了逆变电源的 电容容量,同时会导致逆变电源系统体积重量增加,同时电容太大,充放电时间也延长,对输出波形也会产生一定的影响。 逆变桥输出调制波形中的高次谐波主要降在滤波电感的两端,所以L 的大小关系到输出波形的质量。要保证输出的谐波含量较低,滤波电感的感值不能太小。增加滤波器电感量可以更好地抑制低次谐波,但是电感量的增加带来体积重量的加大。不仅如此,滤波电感的大小还影响逆变器的动态特性。滤波电感越大,电感电流变化越慢,动态时间越长,波形畸变越严重。而减小滤波电感,可以改善电路的动态性能,则使得输出电流的开关纹波加大,必然增大磁滞损耗,波形也会变差。综合以上的分析,在LC 滤波器的参数设计时应综合考虑。 本文设计的LC 滤波器如图 3.12中所示,电感的电抗2L X L fL ωπ==,L X 随频率的升高而增大。电容的电抗为 112C X C fC ωπ==,C X 随频率的升高而减小。1L C ωω=所对应

模电温控电路设计与仿真

水温测量与控制电路的设计与仿真 1设计任务与要求 温度测量,测量范围0~100 ℃; 控制温度±1 ℃; 控制通道输出为双向晶闸管或继电器,一组转换触点为市电(220V,10A)。 学习并运用proteus仿真软件,绘制电路图,进行基本的仿真实验对所设计的电路进行分析与调试。 2方案设计与论证 温度控制器是实现可测温度和控制温度的电路,通过对温度控制电路的设计、调试了解温度传感器的性能,学会在实际电路中的应用。进一步熟悉集成运算放大器的线性和非线性应用。 Proteus介绍: Proteus 软件是由英国 Labcenter Electronics 公司开发的EDA工具软件,已有近20年的历史,在全球得到了广泛应用。Proteus 软件的功能强大,它集电路设计、制版及仿真等多种功能于一身,不仅能够对电工、电子技术学科涉及的电路进行设计与分析,还能够对微处理器进行设计和仿真,并且功能齐全,界面多彩,是近年来备受电子设计爱好者青睐的一款新型电子线路设计与仿真软件。 Proteus软件和我们手头的其他电路设计仿真软件最大的不同即它的功能不是单一的。它的强大的元件库可以和任何电路设计软件相媲美;它的电路仿真功能可以和Multisim相媲美,且独特的单片机仿真功能是Multisim 及其他任何仿真软件都不具备的;它的PCB电路制版功能可以和Protel相媲美。它的功能不但强大,而且每种功能都毫不逊于Protel,是广大电子设计爱好者难得的一个工具软件。

Proteus具有和其他EDA工具一样的原理图编辑、印刷电路板(PCB)设计及电路仿真功能,最大的特色是其电路仿真的交互化和可视化。通过Proteus 软件的VSM(虚拟仿真模式),用户可以对模拟电路、数字电路、模数混合电路、单片机及外围元器件等电子线路进行系统仿真 Proteus软件由ISIS和ARES两部分构成,其中ISIS是一款便捷的电子系统原理设计和仿真平台软件,ARES是一款高级的PCB布线编辑软件。 Proteus ISIS的特点有: 实现了单片机仿真和SPICE电路仿真的结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真等功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 具有强大的原理图绘制功能。 支持主流单片机系统的仿真。目前支持的单片机类型有68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。 2.1温度控制系统的基本原理: 温度测量与控制原理框图如图下所示。本电路有温度传感器,K-OC变换、控制温度设置、数字电压表(显示)和放大器等部件组成。温度传感器的作用是把温度信号转换成电流信号或电压信号,K-OC变换将热力学温度K 转换成摄氏温度OC。信号经放大器放大和刻度定标后由数字电压表直接显示温度值,并同时送入比较器与预先设定的固定温度值进行比较,由比较器输出电平的高低变化来控制执行机构(如继电器)工作,实现温度的自动控制。 2.2AD590温度传感器简介: AD590是单片集成感温电流源,具有良好的互换性和线性性质,能够消

全硬件纯正弦逆变器制作教程

全硬件纯正弦逆变器制作教程 作者:科创论坛尤小翠 注:此文章参考了部分电源网老寿老师和老矿石老师的研究成果 做一个纯正弦逆变器,这个想法9个月之前就有了.做个逆变器,高频的,效率高,体积 小.前级肯定用SG3525或者TL494做的推挽升压,这没啥选择,关键是后级,它决定输 出波形是方波还是正弦波.输出正弦波的后级需要SPWM技术,肯定很多人的第一想法是使用单片机.的确,使用单片机的好处不少:SPWM波精度高,输出正弦波波形好,稳压精度高,方便加入电压指示功能等,单片机确实非常适合工业量产.但是对于咱们玩家,可不是这样了.单片机不是人人可以掌握的,即便掌握,像我这种只会做电子钟红外遥控之类的初级玩家也很难写出好的SPWM程序.因此,我考虑了全硬件方案. 一、高频前级(原理分析) 在HIFI界,有一句话说前级出声后级出力,同样在逆变界,有前级出功率后级出波形之说。一个好的前级是多么的重要,是确保足够功率输出的保证。 这就是前级电路图啦~ 电路采用了光藕隔离反馈,工作在准闭环模式.轻载或者空载时,由于变压器漏感,输出可能超压,容易穿后级和电容.此时占空比减小输出降低,实测在空载时占空比很小很小,这大概是空载电流小的原因吧(空载电流神一般的~60mA~).

当负载变大后,电路逐渐进入开环模式,以确保足够的电压和功率输出. 注:本图根据老矿石的作品修改 二、全硬件纯正弦后级(原理分析) 老寿老师很久之前就弄过全硬件了,他的方案有SG3525和lm393两种,前者简单,但是最大占空比低(母线电压利用率低),后者最大占空比理论上可以弄到100% (实际也很高)但是电路有点复杂,而且需要双电源供电。我把它们融合了一下,得到了自己的电路。 这是后级的框图 本电路优点: 1.电路极简单,可能为世界上最简单的分立SPWM电路 2.单电源宽电压供电(10V-30V) 3.输出最大占空比高,仿真时最大占空比已经接近100%.这将导致母线电压利用率高,母线电压340V就足够产生230V的工频正弦交流电. 4.隔离输出,受外围电路干扰少 本电路没有使用稳压反馈,故稳压功能全靠前级完成.前级一般由SG3525或者TL494组成,稳压功能不用可惜了. 看本图,由于使用了虚拟双电源,因此单电源供电即可,省略一个辅助电源变压器. 再看驱动板电路图(红圈里的内容是修改过的部分):

正弦波逆变器和修正波逆变器的区别

1.1逆变器功率器件的选择 目前,国内的光伏发电系统(PhotoVoltaic Sys-tem,简称PVS)主要是以直流系统为主,但最普遍的用电负载是交流负载,这使直流供电的光伏电源很难作为商品普及推广。同时,由于太阳能光伏并网发电可以不要蓄电池,且维护简单,而节省投资是光伏发电的发展趋势。这些都必须采用交流供电方式,因此逆变器在PVS中的应用也就越来越重要了。逆变器是将直流电变换为交流电的电力变换装置,逆变技术在电力电子技术中已较为成熟。例如:UPS电源中的逆变器,变频技术中的逆变技术、特种电源中的逆变技术和功率调节器中的逆变技术等,这些都已经以产品的形式推向市场,并受到社会的广泛认可。 在小容量、低压PVS中,功率器件多使用金属-氧化物-半导体场效应管(MOSFET)。因其在低压时,具有较低的通态压降和较高的开关频率,但随MOSFET电压的升高,其通态电阻增大。因此,在大容量、高压PVS 中,一般使用绝缘栅晶体管(IGBT)作为功率器件;在100kVA以上特大容量的PVS中,一般采用门极可关断晶闸管(GTO)作为功率器件。PVS中的逆变驱动电路主要针对功率开关管的门极驱动。要得到好的PWM脉冲波形,驱动电路的设计很重要。近年来,随着微电子及集成电路技术的发展,陆续推出了许多多功能专用集成芯片,如: HIP4801,TLP520,IR2130,EXB841等,它们给应用电路的设计带来了极大的方便[1,2]。逆变电源中常用的控制电路主要是为驱动电路提供要求的逻辑和波形,如PWM,SPWM控制信号等。目前,较常用的芯片有国外生产的8XC196,MP16,PIC16C73 和国内生产的TMS320F206,TMS320F240 ,SG3525 等。 1.2 PVS 中逆变器的拓扑结构图 在使用蓄电池储能的太阳能PVS 中,蓄电池组的公称电压一般是12V,24V 或48V,因此,逆变电路一般都需进行升压来满足220V 常用交流负载的用电需求。逆变器可按升压原理的不同分为工频和高频两种逆变器,应用中它们的性能差别很大。 (1)工频逆变器 图1示出采用工频变压器升压的逆变电路。它首先把直流电逆变成工频低压交流电;再通过工频变压器升压成220V,50Hz的交流电供负载使用。它的优点是结构简单,各种保护功能均可在较低电压下实现。因其逆变电源与负载之间存有工频变压器,故逆变器运行稳定、可靠、过负荷能力和抗冲击能力强,且能够抑制波形中的高次谐波成分。然而,工频变压器也存在笨重和价格高的问题,而且其效率也比较低。按目前水平制作的小型工频逆变器,其额定负荷效率一般不超过90%,同时因工频变压器在满负荷和轻负荷下运行时铁损基本不变,因而使其在轻负荷下运行的空载损耗较大,效率也较低。 (2)高频逆变器 图2示出采用高频变压器升压的逆变电路。它首先通过高频DC/DC 变换技术,将低压直流电逆变为高频低压交流电;然后经过高频变压器升压后,再经过高频整流滤波电路整流成通常均在300V以上的高压直流电;最后通过工频逆变电路得到220V工频交流电供负载使用。由于高频逆变器采用的是体积小,重量轻的高频磁芯材料,因而大大提高了电路的功率密度,从而使逆变电源的空载损耗很小,逆变效率得到提高。通常,用于中小型PVS 中的高频逆变器,其峰值转换效率能达90% 以上。 比较两种逆变器可知,高频逆变器的体积小,重量轻,效率高,空载负荷低,但不能接满负荷的感性负载,且过载能力差。 1.3 PVS 中逆变器输出波形 (1)方波逆变器 图3a 示出方波逆变器的输出电压波形。虽然方波逆变器具有结构简单,成本低等优点,但也存在效率较低,损耗多,谐波成分大,使用负载受限制等缺点。当负载为大功率电机负载或带有变压器的用电器负载时,因其负载的饱和磁通都是按正弦波的上升速率设计的,而方波的上升速度过快,因而造成其铁心饱和,负载会出现起动困难、铁心过热及发出噪声等问题。而且方波逆变器的效率远低于修正波和正弦波逆变器的效率,一般不到60% 。由于太阳能PVS的发电成本较高,因此在太阳能PVS 电系统的优点是结中,方波逆变器已经很少应用了。 (2)修正波逆变器

600W正弦波逆变器制作详解.

600W正弦波逆变器制作详解 ---献给象我一样的逆变器初学者 自从公布了1KW正弦波逆变器的制作过程后,有不少朋友来信息,提这样那样的问题,很多都是象我这样的初学者。为此,我又花了近一个月的时间,制作了这台600W的正弦波逆变器,该机有如下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我老寿包你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形:

一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB 板。分别是“功率主板”;“SPWM 驱动板”;“DC -DC 驱动板”;

“保护板”。 1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。 该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方便,加上EE55是现存有的,就用了EE55。关于主变压器的绕制,下面再详细介绍。前级推挽部分的供电采用对称平衡方式,这样做有二个好处,一是可以保证大电流时的二个功率管工作状态的对称性,保证不会出现单边发热现象;二是可以减少PCB反面堆锡层的电流密度,当然,也可以大大减小因为电流不平衡引起的干扰。高压整流快速二极管,用的是TO220封装的RHRP8120,这种管子可靠性很好,我用的是二手管,才1元钱一个。高压滤波电容是470uf/450V的,在可能的情况下,尽可能用的容量大一些,对改善高压部分的负载特性和减少干扰都有好处。 H桥部分用的是4个IRFP460,耐压500V,最大电流20A,也可以用性能差不多的管子代替,用内阻小的管子可以提高整机的逆变效率。H桥部分的电路采用的常规电路。 下面是功率主板的PCB截图,长宽为200X150MM,因为,这部分的电路比较简单,所以,我没有画原理图,是直接画了PCB图的。该板布板时,曾得到钟工的提示帮助,特在此表示感谢。 2. SPWM驱动板 和我的1KW机器一样,SPWM的核心部分采用了张工的TDS2285单片机芯片。关于该芯片的详细介绍,可以看我以前的贴子:https://www.doczj.com/doc/332564307.html,/topic/563779,这里不详说了。U3,U4组成时序和死区电路,末级输出用了4 个250光藕,H桥的二个上管用了自举式供电方式,这样做的目的是简化电路,可以不用隔离电源。 因为BT电压会在10-15V之间变化,为了可靠驱动H桥,光藕250的图腾输出级工作电压一定要在12-15之间,

纯正弦波逆变器 规格书

3000W 纯 正 弦 波DC-AC 逆 变 器 ■ 特性: ● 纯正弦波输出(THD <3%) ● 瞬间功率高达6000W ● 效率高达90% ● 保护各类:电池高低压保护/输出短路保护/过负载保护/ 过温度保护/输入反接保护/电池低压警报 ● 应用:家电,电动工具,办公和便携式设备,车辆和游艇等。 ● 1年保修 电气规格 型号 BEP3000S 输出 额定功率(Typ.) 3000W 3000W 交流电压 220V 220V 频率 50HZ±0.5HZ 50HZ±0.5HZ 波形 额定电压下, 纯正弦波(THD<3%) 额定电压下, 纯正弦波(THD<3%) 输入 电池电压 12V 24V 电压范围(Typ.) 10V-15V 20V-30V 直流电流(Typ.) 276A 138A 空载损耗 ≤3.8A ≤2A 关机模式电流 ≤10mA ≤10mA 效率(Typ.) ≥90% ≥90% 电池类型 铅酸电池 铅酸电池 电池 输入 保护 保险片 40A*8 20A*8 电池低压警报 10.5V±0.5V 20V±1V 电池低压保护 9.5V±0.5V 19V±1V 电池高压保护 15.5V±0.5V 30V±1V 电池反接保护 通过内部保险片 通过内部保险片 输出 保护 过温度 75℃±5℃ 75℃±5℃ 亮红色指示灯,有报警声,无输出 亮红色指示灯,有报警声,无输出 输出短路 亮红色指示灯,取消短路后自动恢复正常 亮红色指示灯,取消短路后自动恢复正常 过负载(Typ.) ≥ 3000W ≥3000W 亮红色指示灯,自锁, 降低负载重启恢复正常输出 亮红色指示灯,自锁, 降低负载重启恢复正常输出 USB 输出电压 5V 输出电流 500mA 环境 工作温度 0-40℃@100%负载 工作湿度 20-90%RH ,无冷藏 储存温度、湿度 -30℃-+70℃,10-95%RH 其它 重量 净重:6.02Kg 毛重:7.41Kg 尺寸 529**180*142 mm(L*W*H) 包装 558*246*209 mm(L*W*H) 备注 如未特别说明,所有规格参数25℃环境温度下进行量测。

RC缓冲电路snubber设计原理教学内容

R C缓冲电路s n u b b e r 设计原理

RC缓冲电路snubber设计原理 RC 缓冲 snubber 设计 Snubber 用在开关之间,图 4 显示了 RC snubber 的结构图,用 RC 电路可以降低管子的峰值电压及关断损耗和降低电流振铃现象。我们可以轻松选择一个snubber Rs , Cs 网络,但是我们需要优化设计以达到更好的缓冲效果 快速 snubber 设计,为了达到 Cs 〉 Cp ,一个比较好的选择是 Cs 选择两倍大小的 Cp ,也就是两倍大小的开关管寄生电容及估算出来的 LAYOUT 布板电容,对于 Rs ,我们选择的标准是 Rs=Eo/Io ,这表示通过电流流向 Rs 的所产生的电压不能比输出电压还大。消耗在 Rs 上的电压大小我们可以通过储存在Cs 上的能量来估计。下式表示了储存在电容上的能量。 当电容 Cs 充放电的过程中,能量在电阻 Rs 上消耗,而这个过程中在一个给定的开关频率下平均的功率损耗如下所得:

因为振铃的发生,实际的功耗比上式要稍微大一些。 如下将用实例来演示一遍以上的简化设计步骤,现在用 IRF740 ,额定工作电流时 Io=5A , Eo=160V , IRF740 的 Coss=170pF ,布板寄生电容大概 40pF ,两倍 Cp 值大概 420pF 左右,我们选择一个 500V 的 mike snubber 电容,标准的容值有 390 和 470pF ,我们选择比价接近的 390pF , Rs=Eo/Io=32W ,开关频率 fs 设为 100kHz 的话, Pdiss 大概为 1W 左右,选择一个寄生电感非常小的 2 W 的碳膜电阻作为 Rs 。

1000W正弦波逆变器制作过程详解

1000W 正弦波逆变器制作过程详解 1000W 正弦波逆变器制作过程详解 作者:老寿 这个机器,输入电压是直流是12V, 也可以是24V ,12V 时我的目标是800W ,力争1000W ,整体结构是学习了钟工的3000W 机器.具体电路图请参考:1000W 正弦波逆变器(直流12V 转交流220V)电路图也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM ,宽 140MM 。升压部分的4 个功率管,H 桥的4 个功率管及4 个TO220 封装的快速二极管直接拧在散热板;DC-DC 升压电路的驱动板和SPWM 的驱动板直插在功率主板上。 因为电流较大,所以用了三对6 平方的软线直接焊在功率板上: 吸取了以前的教训:以前因为PCB 设计得不好,打了很多样,花了很多冤枉钱,常常是PCB 打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。所以这次画PCB 时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。 如上图:在板子上预留了一个储能电感的位置,一般情况用准

开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35 的电感。上图红色的东西,是一个0.6W 的取样变压器,如果用差分取样,这个位置可以装二个200K 的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB 下面直接搭通。 上面是SPWM 驱动板的接口,4 个圆孔下面是装H 桥的4 个大功率管,那个白色的东西是0.1R 电流取样电阻。二个直径40 的铁硅铝磁绕的滤波电感,是用1.18 的线每个绕90 圈,电感量约1MH ,磁环初始导磁率为90。 上图是DC-DC 升压电路的驱动板,用的是KA3525 。这次共装了二板这样的板,一块频率是27K ,用于普通变压器驱动,还有一块是16K ,想试试非晶磁环做变压器效果。 H 桥部分的大功率管,我有二种选择,一种是常用的 IRFP460 ,还有一种是IGBT 管40N60 ,显然这二种管子不是同一个档次的,40N60 要贵得多,但我的感觉,40N60 的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。 这是TO220 封装的快恢复二极管,15A 1200V ,也是张工 提供的,价格不贵。我觉得它安装在散热板上,散热效果肯定比普通塑封管要强。 这次的变压器用的是二个EC49 磁芯绕制的,每个功率

缓冲电路设计及仿真

1缓冲电路作用 缓冲电路一般并联在开关器件两端,主要有抑制过电压、降低器件损耗、消除电磁干扰的作用。 1)抑制过电压 逆变器高频工作时,开关器件快速开通、关断。由于主电路存在杂散电感,器件在开关过程中,急剧变化的主电路电流会在杂散电感上感应出很高的电压,使器件在关断时承受很 高的关断电压。在器件关断时, , 若无缓冲电路,则该电压会加在器件两端形成过电压,当该电压超过器件额定电压时,器件损坏。此外,反并联二极管在反向恢复时产生的di/dt也会导致较高的过电压。 2)降低器件损耗 已知器件的功耗由下式决定: (1.1) 在电路中增加缓冲电路,可以改变器件的电压、电流波形,进而降低损耗。从下图可知,在没有缓冲电路时,电压快速升至最大值,而此时电流依然是最大值,此时的损耗最大。加入缓冲电路后,避免了电压、电流出现同时最大值的情况,损耗得以降低。 3)消除电磁干扰 电路运行时,在没有缓冲电路的情况下,器件两端电压会发生高频振荡,产生电磁干扰。采用缓冲电路,可抑制器件两端电压的高频振荡,起到减小电磁干扰的作用。 因此,降低或消除器件电压、电流尖峰,限制dI/dt或dV/dt,降低开关过程中的振荡以及损耗,我们在逆变器中设计缓冲电路,以保证器件安全可靠工作。 2杂散电感的测量与计算 设计缓冲回路之前,首先需要确定杂散参数的量。杂散电感是特定电路布局的结果,不容易计算出来,我们一般采用测量的方法来确定杂散电感的大小。在没有任何缓冲回路时,用示波器观察器件关断时的振荡周期

T1 ,重新测量器件关 断时的振荡周期T2。则杂散电感可由下式得出: (2.1) 杂散电容为: (2.2) 为无缓冲电路时的振荡频率。 3缓冲电路分类 缓冲电路主要分为如下三类,分为C型缓冲电路、RC型缓冲电路、RCD型缓冲电路。 图C缓冲电路适用于小功率等级的IGBT,对瞬变电压非常有效且成本较低。但这种缓冲电路随着功率等级的增大,会与直流母线寄生电感产生振荡。RCD型缓冲电路则可以避免这种情况,由于快恢复二极管可以箝位瞬变电压,从而抑制谐振产生。在功率等级进一步增大时,此种缓冲电路的回路寄生电感会变得很大,导致不能有效控制瞬变电压。因此在大功 的设计。

相关主题
文本预览
相关文档 最新文档