当前位置:文档之家› 大数据中异常值地处理方法 - 总

大数据中异常值地处理方法 - 总

大数据中异常值地处理方法 - 总
大数据中异常值地处理方法 - 总

数据中异常值的检测与处理方法

一、数据中的异常值

各种类型的异常值:

?数据输入错误:数据收集,记录或输入过程中出现的人为错误可能导致数据异常。例如:一个客户的年收入是$ 100,000。数据输入运算符偶然会在图中增加一个零。现在收入是100万美元,是现在的10倍。显然,与其他人口相比,这将是异常值。

?测量误差:这是最常见的异常值来源。这是在使用的测量仪器出现故障时引起的。例如:有10台称重机。其中9个是正确的,1个是错误的。

有问题的机器上的人测量的重量将比组中其他人的更高/更低。在错误的机器上测量的重量可能导致异常值。

?实验错误:异常值的另一个原因是实验错误。举例来说:在七名跑步者的100米短跑中,一名跑步者错过了专注于“出发”的信号,导致他迟到。因此,这导致跑步者的跑步时间比其他跑步者多。他的总运行时间可能是一个离群值。

?故意的异常值:这在涉及敏感数据的自我报告的度量中通常被发现。例如:青少年通常会假报他们消耗的酒精量。只有一小部分会报告实际价值。

这里的实际值可能看起来像异常值,因为其余的青少年正在假报消费量。

?数据处理错误:当我们进行数据挖掘时,我们从多个来源提取数据。某些操作或提取错误可能会导致数据集中的异常值。

?抽样错误:例如,我们必须测量运动员的身高。错误地,我们在样本中包括一些篮球运动员。这个包含可能会导致数据集中的异常值。

?自然异常值:当异常值不是人为的(由于错误),这是一个自然的异常值。例如:保险公司的前50名理财顾问的表现远远高于其他人。令人惊讶的是,这不是由于任何错误。因此,进行任何数据挖掘时,我们会分别处理这个细分的数据。

在以上的异常值类型中,对于房地产数据,可能出现的异常值类型主要有:(1)数据输入错误,例如房产经纪人在发布房源信息时由于输入错误,而导致房价、面积等相关信息的异常;在数据的提取过程中也可能会出现异

常值,比如在提取出售二手房单价时,遇到“1室7800元/m 2”,提取其中的数字结果为“17800”,这样就造成了该条案例的单价远远异常于同一小区的其他房源价格,如果没有去掉这个异常值,将会导致整个小区的房屋单价均值偏高,与实际不符。(2)故意的异常值,可能会存在一些人,为了吸引别人来电询问房源,故意把价格压低,比如房屋单价为1元等等;(3)自然异常值。房价中也会有一些实际就是比普通住宅价格高很多的真实价格,这个就需要根据实际请况进行判断,或在有需求时单独分析。

二、数据中异常值的检测

各种类型的异常值检测:

1、四分位数展布法

方法[1]:大于下四分位数加1.5倍四分位距或小于上四分位数减1.5倍。 把数据按照从小到大排序,其中25%为下四分位用FL 表示,75%处为上四分位用FU 表示。

计算展布为:L U F F F d -=,展布(间距)为上四分位数减去下四分位数。 最小估计值(下截断点):F L d F 5.1-

最大估计值(上截断点):F U d F 5.1+

数据集中任意数用X 表示,F U F L d F X d F 5.15.1+<<-,

上面的参数1.5不是绝对的,而是根据经验,但是效果很好。计算的是中度异常,参数等于3时,计算的是极度异常。我们把异常值定义为小于下截断点,或者大于上截断点的数据称为异常值。

优点:与方差和极差相比,更加不容易受极端值的影响,且处理大规模数据效果很好。

缺点:小规模处理略显粗糙。而且只适合单个属相的检测。

2、识别不遵守分布或回归方程的值

方法:双变量和多变量离群值通常使用影响力或杠杆指数或距离来衡量,像Mahalanobis 的距离和Cook‘s D 这样的流行指数经常被用来检测异常值。在SAS 中,我们可以使用PROC Univariate, PROC SGPLOT ,为了识别异常值和有影响力的观测,我们还研究了STUDENT 、COOKD 、RSTUDENT 等统计指标。

马氏距离法[1]:假设两个变量Xi 和Xj 具有较高的正相关关系,某样本Xk 在这两个变量上的取值为(Xki ,Xkj ),若Xki 远远大于Xi 的平均值,而Xkj 却远小于Xj 的平均值,则这个样品就很可能是异常的。检验这种异常品可以采用马氏平方距离法。主要思想是:把n 个P 维样品看作p 维空间中的n 个点,则第i 个样品所对应的坐标为(Xi1,Xi2,…,Xip )。样品在空间中的相对位置可通过各样品与总体重心(以各变量均值(X1,X2,…,Xp )为坐标的点)之间的距离来求得。

设X(1),X(2),…,X(p)(其中(Xi1,Xi2,…,Xip )为来自Np 中的n 个样品,其中1212(,,...,),(,,...,)p k k k nk X X X X X mean x x x ==

则样品X(i)到重心12(,,...,)p X X X 的马氏平方距离定义为

1

211221122(,,...,)'(,,...,)i i i ip p i i ip p D x x x x x x x x x x x x -=------∑ 其中∑可由样本协方差阵来估计

'()()1

1(,()())1n i i i S S x x x x n ===---∑∑ 容易证明,当n 较大时,2i D 近似服从2

p x 其临界值true D 可由

2x 分布表来查出、当2i true D D >=时,将第i 个样品判为异常。

稳健马氏距离:

由于异常值的存在会显著影响中心值和协方差矩阵的估计,使一般马氏距离不能正确反映各个观测的偏离程度。对于这类数据,需要通过稳健统计的方法,构建稳定的均值和协方差矩阵统计量。

具体算法:

设数据集为一个n 行p 列的矩阵X n×p ,从中随机抽取h 个样本数据,并计算这个样本数据的样本均值T 1和协方差矩阵S 1。 然后通过)()()(d 111'11T x S T x i i i --=-计算这 n 个样本数据到中心T 1的马氏距离,选出这n 个距离中最小的h 个,再通过这个h 个样本计算样本均值T 2和协方差矩阵S 2。根据Rousseeuw,Van Driessen(1999)可以证明 det(S 2)≤ det(S 1),仅当T 1=T 2时候等号成立。这样子不断迭代下去,当 det(S m )≤ det(S m-1)停止迭代。这时再通过S m 进行加权计算就能求出稳健的协方差矩阵估计量。

(1)确定h 的值。h 值在0.5n 和n 之间,一般来说h 越小,它的抵抗异常值能力越强,但是最小不能少于50%,因为少于50%已经不能分辨哪些是正常值哪些是异常值,所以作为一种折中,h 默认是取h=0.75*n ,而当样本数量比较少时,h 一般取0.9n 。

(2)如果h=n ,这时计算的是整个样本数据的均值向量和协方差矩阵,返回计算结果并停止。

(3)从n 个样本中随机抽取p+1个样本构造协方差矩阵,并计算其行列式,如果行列式为0,再随机加入一个样本直到行列式不为0,这时这个协方差矩阵为初始协方差矩阵S 0,并利用随机选择出来的样本计算初始样本均值 T 0。

(4)当n 值较小(小于600)时,直接从T 0、S 0计算得到T 1、S 1并开始迭代,迭代两次得到S 3。重复 500 次这个过程,得到500个 S 3,从中选取最小的10个继续迭代直到收敛,返回最小行列式值的T 和S ,记为 T mcd 和S mcd 。.

(5)当n 值较大时,由于每次迭代都要把n 个样本的距离计算一次,非常耗时。所以把n 个样本分成几个部分,例如当n 等于900 时,可以把n 分成3个子样本,每个子样本包含300个 样本。每个子样本也是从各自 T 0、S 0计算得到 T 1、S 1并开始迭代,迭代两次得到S 3,每个子样本重复500/3=167次,各自

得到167个S 3。每个子样本从中选取最小的 10个S 3。然后把子样本合并重新合成一个整体样本,并也把子样本中的10个S 3合并,得到30个S 3。从这30个S 3迭代两次,保留最小的10个结果并继续迭代下去直到收敛,返回最小行列式值的T 和S ,记为 T mcd 和S mcd 。

(6)根据 T mcd 和S mcd 计算每个样本的稳定马氏距离d (i)。因为计算出来的距离值近似服从一个自由度为p 的卡方分布,假设置信度为97.5%时,当

2975.0,)(P i d γ>时,记 W i =0否则W i =1.然后根据 W i 再 重 新 计 算。这时< 就

是最后所求的稳定协方差矩阵。在此稳健协方差矩阵和稳健样本均值基础上,便能得出稳健的马氏距离。

3、Cook‘s D Cook‘s D :在你的数据资料中,如果某一条数据记录被排除在外,那么由此造成的回归系数变化有多大.显然,如果这个值过大,那么就表明这条数据对回归系数的计算产生了明显的影响,这条数据就是异常数据.

4、覆盖法

方法:将所有不在5%到95%范围的值当作异常值。

5、标准偏差

方法:偏离平均值三个或以上标准差的数据点。

6、因子

方法:单变量或多变量异常值通常是用影响因子、水平因子、距离因子其中的一个指标来判断是否是异常值。

回归系数的影响力。陈强,《高级计量经济学及Stata 应用》,高等教育出版社。

7、简单规则库

|-从正常的行为中学习规则,测试数据若是没有被任何规则包括则认为是异常

利用规则学习算法学习规则,例如重复增量修枝( RIPPER )、决策树( Decision Trees )

8、聚类

一种利用聚类检测离群点的方法是丢弃原理其他簇的小簇。这种方法可以与任何聚类技术一起使用,但是需要最小簇大小和小簇与其他簇之间距离的阈值,通常,该过程可以简化为丢弃小于某个最小尺寸的所有簇。

一种更系统的方法是,首先聚类所有对象,然后评估对象属于簇的程度。对于基于原型的簇类,可以用对象到它的簇中心的距离来度量对象属于簇的程度。更一般地,对于基于目标函数的聚类技术,可以使用该目标函数来评估对象属于任意簇的程度。特殊情况下,如果删除一个对象导致该目标的显著改进,则我们可以将该对象分类为离群点。

优点与缺点:有些聚类技术(如K均值)的时间和空间复杂度是线性或接近线性的,因而基于这种算法的离群点检测技术可能是高度有效的。此外,簇的定义通常是离群点的补,因此可能同时发现簇和离群点。缺点方面,产生的离群点集和它们的得分可能非常依赖所用的簇的个数和数据总离群点的存在性。例如,基于原型的算法产生的簇可能因数据中存在离群点而扭曲。聚类算法产生的簇的质量对该算法产生的离群点的质量影响非常大。每种聚类算法只适合特定的数据类型;因此,应当小心地选择聚类算法。

9、贝叶斯

依据已有的数据,然后建立模型,得到正常的模型的特征库,然后对新来的数据点进行判断。从而认定其是否与整体偏离,如果偏离,那么这个就是异常值。

10、降维:主成分分析法

基于矩阵分解的异常点检测方法的关键思想是利用主成分分析去寻找那些违背了数据之间相关性的异常点。为了发现这些异常点,基于主成分分析(PCA)的算法会把原始数据从原始的空间投影到主成分空间,然后再把投影拉回到原始的空间。如果只使用第一主成分来进行投影和重构,对于大多数的数据而言,重构之后的误差是小的;但是对于异常点而言,重构之后的误差依然相对大。这是

因为第一主成分反映了正常值的方差,最后一个主成分反映了异常点的方差。

网址:https://www.doczj.com/doc/3218010827.html,/19836.html

11、模型

许多异常检测技术首先建立一个数据模型。异常是那些同模型不能完美拟合的对象。

三、数据中异常值的处理

1、删除

输入错误,数据处理错误或异常值数目少,修剪两端删除异常值。

2、数据转换或聚类

转换数据取对数,减少极端值的变化。用决策树直接处理带有异常值的数据,(决策树不受异常和缺失的影响)或是对不同观测值分配权重。

3、替换

类似替换缺失值,我们可以替换异常值。我们可以使用均值,中位数,众数替换方法。但需分析它是人工造成的还是自然造成的,人工可以替换,也可以用统计模型预测异常值,然后替换它。

4、分离对待

如果异常值得数目比较多,在统计模型中我们应该对它们分别处理,一个处理方法是异常值一组,正常值一组,然后分别建立模型,最后对结果合并。四、缺失值

常用的处理方法:列表明智删除和配对明智删除、均值(估计、中值)、预测模型、KNN插补。

五、参考文献

1、程鹏,数据挖掘中孤立点的探测方法[J],福建电脑,2006年第8期。

Matlab笔记——数据预处理——剔除异常值及平滑处理

012. 数据预处理(1)——剔除异常值及平滑处理测量数据在其采集与传输过程中,由于环境干扰或人为因素有可能造成个别数据不切合实际或丢失,这种数据称为异常值。为了恢复数据的客观真实性以便将来得到更好的分析结果,有必要先对原始数据(1)剔除异常值; 另外,无论是人工观测的数据还是由数据采集系统获取的数据,都不可避免叠加上“噪声”干扰(反映在曲线图形上就是一些“毛刺和尖峰”)。为了提高数据的质量,必须对数据进行(2)平滑处理(去噪声干扰); (一)剔除异常值。 注:若是有空缺值,或导入Matlab数据显示为“NaN”(非数),需要①忽略整条空缺值数据,或者②填上空缺值。 填空缺值的方法,通常有两种:A. 使用样本平均值填充;B. 使用判定树或贝叶斯分类等方法推导最可能的值填充(略)。 一、基本思想: 规定一个置信水平,确定一个置信限度,凡是超过该限度的误差,就认为它是异常值,从而予以剔除。

二、常用方法:拉依达方法、肖维勒方法、一阶差分法。 注意:这些方法都是假设数据依正态分布为前提的。 1. 拉依达方法(非等置信概率) 如果某测量值与平均值之差大于标准偏差的三倍,则予以剔除。 3x i x x S -> 其中,11n i i x x n ==∑为样本均值,1 2 2 11()1n x i i S x x n =?? ??? =--∑为样本的标准偏差。 注:适合大样本数据,建议测量次数≥50次。 代码实例(略)。 2. 肖维勒方法(等置信概率) 在 n 次测量结果中,如果某误差可能出现的次数小于半次时,就予以剔除。 这实质上是规定了置信概率为1-1/2n ,根据这一置信概率,可计算出肖维勒系数,也可从表中查出,当要求不很严格时,还可按下列近似公式计算: 10.4ln()n n ω=+

数据中异常值的处理方法_总

数据中异常值的检测与处理方法 一、数据中的异常值 各种类型的异常值: 数据输入错误:数据收集,记录或输入过程中出现的人为错误可能导致数据异常。例如:一个客户的年收入是$ 100,000。数据输入运算符偶然会在图中增加一个零。现在收入是100万美元,是现在的10倍。显然,与其他人口相比,这将是异常值。 测量误差:这是最常见的异常值来源。这是在使用的测量仪器出现故障时引起的。例如:有10台称重机。其中9个是正确的,1个是错误的。 有问题的机器上的人测量的重量将比组中其他人的更高/更低。在错误的机器上测量的重量可能导致异常值。 实验错误:异常值的另一个原因是实验错误。举例来说:在七名跑步者的100米短跑中,一名跑步者错过了专注于“出发”的信号,导致他迟到。 因此,这导致跑步者的跑步时间比其他跑步者多。他的总运行时间可能是一个离群值。 故意的异常值:这在涉及敏感数据的自我报告的度量中通常被发现。例如:青少年通常会假报他们消耗的酒精量。只有一小部分会报告实际价值。 这里的实际值可能看起来像异常值,因为其余的青少年正在假报消费量。 数据处理错误:当我们进行数据挖掘时,我们从多个来源提取数据。某些操作或提取错误可能会导致数据集中的异常值。 抽样错误:例如,我们必须测量运动员的身高。错误地,我们在样本中包括一些篮球运动员。这个包含可能会导致数据集中的异常值。 自然异常值:当异常值不是人为的(由于错误),这是一个自然的异常值。例如:保险公司的前50名理财顾问的表现远远高于其他人。令人惊讶的是,这不是由于任何错误。因此,进行任何数据挖掘时,我们会分别处理这个细分的数据。

在以上的异常值类型中,对于房地产数据,可能出现的异常值类型主 要有:(1)数据输入错误,例如房产经纪人在发布房源信息时由于输入错误,而导致房价、面积等相关信息的异常;在数据的提取过程中也可能会出现异常值,比如在提取出售二手房单价时,遇到“1室7800元/m 2”,提取其中的数字结果为“17800”,这样就造成了该条案例的单价远远异常于同一小区的其他房源价格,如果没有去掉这个异常值,将会导致整个小区的房屋单价均值偏高,与实际不符。(2)故意的异常值,可能会存在一些人,为了吸引别人来电询问房源,故意把价格压低,比如房屋单价为1元等等;(3)自然异常值。房价中也会有一些实际就是比普通住宅价格高很多的真实价格,这个就需要根据实际请况进行判断,或在有需求时单独分析。 二、数据中异常值的检测 各种类型的异常值检测: 1、四分位数展布法 方法[1]:大于下四分位数加倍四分位距或小于上四分位数减倍。 把数据按照从小到大排序,其中25%为下四分位用FL 表示,75%处为上四分位用FU 表示。 计算展布为:L U F F F d -=,展布(间距)为上四分位数减去下四分位数。 最小估计值(下截断点):F L d F 5.1- 最大估计值(上截断点):F U d F 5.1+ 数据集中任意数用X 表示,F U F L d F X d F 5.15.1+<<-, 上面的参数不是绝对的,而是根据经验,但是效果很好。计算的是中度异常,参数等于3时,计算的是极度异常。我们把异常值定义为小于下截断点,或者大于上截断点的数据称为异常值。

数据库异常处理答案

. 一、 一、实验/实习过程 实验题1在程序中产生一个ArithmeticException类型被0除的异常,并用catch 语句捕获这个异常。最后通过ArithmeticException类的对象e 的方法getMessage给出异常的具体类型并显示出来。 package Package1; public class除数0 { public static void main(String args[]){ try{ int a=10; int b=0; System.out.println("输出结果为:"+a/b); } catch(ArithmeticException e){ System.out.println("除数不能为0"+e.getMessage()); } } } 实验题2在一个类的静态方法methodOne()方法内使用throw 产生

ArithmeticException异常,使用throws子句抛出methodOne()的异常,在main方法中捕获处理ArithmeticException异常。 package Package1; public class抛出异常 { static void methodOne() throws ArithmeticException{ System.out.println("在methodOne中"); throw new ArithmeticException("除数为0"); } public static void main(String args[]){ try{ int a=10; int b=0; int c=1; System.out.println("输出结果为:"+a/b); } catch(ArithmeticException e){ System.out.println("除数不能为0"+e.getMessage()); } } }

qc检验异常值处理标准操作规程.doc

QC检验异常值处理标准操作规程 1目的 本程序规定了QC所涉及的各检验项目出现检验结果异常情况的处理原则和管理办法。通过实施本程序,对产品检验结果异常情况进行规范管理。 2 管理程序 1) 检验结果异常的处理原则 凡出现下列情况均属异常,必须填写《检验异常值发生的初期调查报告书》见附表一异常值:指在药品生产的试验检验中,相当于下面a~e的任何一个的所有测定值。 a 超出《药品生产批准、公定书,以及公司内部标准书中所规定的标准》的检验结果 b 虽然符合2.1的标准,但超过管理范围的检验结果。 c 在重复测定次数n=2以上的计量试验中,偏离检验标准规格幅度的1/2以上的最 大,最小的各试验结果。 d 检测以及验证等中,超出“期待结果”的试验结果 e 在长期稳定性试验中,超出质量标准时,或者特别做出的试验实施方案中,超出上 面所规定的规格的试验结果。 2) 管理范围:仅在最终成品检验的定量检验中设定。指和检验标准规格不同,为根据 日常的检验结果成品质量的偏差如下所示,作为范围数据化的值。考虑规格值和分析的精确度,难以设定管理范围的计量仪器除外。 3) 检验分析责任者:具有质量管理方面丰富的知识,在品质总责任者的领导下进行总管分析实施人的人员。 4)对照品:指过去没有发现异常的批留样中,最新的批次。用于初期调查。 5)再分析:供试品溶液,标准溶液的第二次分析(包括从同样的试验用标准溶液中的 稀释) 6) 复验:从同样的容器中准备的样品,作为初次检验的追加检验。 3 产生异常值时的处理 分析实施人要充分理解试验操作中对测定值造成较大影响的点。用于检验的装置都要进行校验。作为检验方法规定了系统符合性试验时,必须实施。

实验数据误差分析和数据处理

第二章 实验数据误差分析和数据处理 第一节 实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=121 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑==+???++= 1 222221均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值

常用大数据量、海量数据处理方法 (算法)总结

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu goog le 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m 的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任

意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg 表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。 问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用6 4字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢? 根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个

数据处理与误差分析报告

物理实验课的基本程序 物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。 §1 实验前的预习 为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。 实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。预习报告包括下列栏目: 实验名称 写出本次实验的名称。 实验目的 应简单明确地写明本次实验的目的要求。 实验原理 扼要地叙述实验原理,写出主要公式及符号的意义,画上主要的示意图、电路图或光路图。若讲义与实际所用不符,应以实际采用的原理图为准。 实验内容 简明扼要地写出实验内容、操作步骤。为了使测量数据清晰明了,防止遗漏,应根据实验的要求,用一张A4白纸预先设计好数据表格,便于测量时直接填入测量的原始数据。注意要正确地表示出有效数字和单位。 §2 课堂操作 进入实验室,首先要了解实验规则及注意事项,其次就是熟悉仪器和安装调整仪器(例如,千分 尺调零、天平调水平和平衡、光路调同轴等高等)。 准备就绪后开始测量。测量的原始数据(一定不要加工、修改)应忠实地、整齐地记录在预 先设计好的实验数据表格里,数据的有效位数应由仪器的精度或分度值加以确定。数据之间要留有间隙,以便补充。发现是错误的数据用铅笔划掉,不要毁掉,因为常常在核对以后发现它并没有错,不要忘记记录有关的实验环境条件(如环境温度、湿度等),仪器的精度,规格及测量量的单位。实验原始数据的优劣,决定着实验的成败,读数时务必要认真仔细。运算的错误可以修改,原始数据则不能擅自改动。全部数据必须经老师检查、签名,否则本次实验无效。两人同作一个实验时,要既分工又协作,以便共同完成实验。实验完毕后,应切断电源,整理好仪器,并将桌面收拾整洁方能离开实验室。 §3 实验报告 实验报告是实验工作的总结。要用简明的形式将实验报告完整而又准确地表达出来。实验报告 要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。 完整的实验报告应包括下述几部分内容: 数据表格 在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签 名的原始数据记录纸要附在本次报告一起交)。 数据处理 根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。按照 实验要求计算待测的量值、绝对误差及相对误差。书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。 结果表达 按下面格式写出最后结果: )N ()(N )N (总绝对误差测量结果待测量?±=.. %100(??=N N )Er 相对误差

数据库异常处理答案

一、实验/实习过程 实验题1在程序中产生一个ArithmeticException类型被0除的异常,并用catch 语句捕获这个异常。最后通过ArithmeticException类的对象e 的方法getMessage给出异常的具体类型并显示出来。 package Package1; public class除数0 { public static void main(String args[]){ try{ int a=10; int b=0; System.out.println("输出结果为:"+a/b); } catch(ArithmeticException e){ System.out.println("除数不能为0"+e.getMessage()); } } } 实验题2在一个类的静态方法methodOne()方法内使用throw 产生ArithmeticException异常,使用throws子句抛出methodOne()的异常,

在main方法中捕获处理ArithmeticException异常。 package Package1; public class抛出异常 { static void methodOne() throws ArithmeticException{ System.out.println("在methodOne中"); throw new ArithmeticException("除数为0"); } public static void main(String args[]){ try{ int a=10; int b=0; int c=1; System.out.println("输出结果为:"+a/b); } catch(ArithmeticException e){ System.out.println("除数不能为0"+e.getMessage()); } } }

误差分析和数据处理

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多 少次测定,但是测定结果总不会是完全一样。这 说明在测定中有误差。为此我们必须了解误差产 生的原因及其表示方法,尽可能将误差减到最 小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求 测到的。严格来讲,由于测量仪器,测定方法、 环境、人的观察力、测量的程序等,都不可能是 完善无缺的,故真值是无法测得的,是一个理想 值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差 出现的机率相等,故将各观察值相加,加以平均, 在无系统误差情况下,可能获得极近于真值的数 值。故“真值”在现实中是指观察次数无限多时, 所求得的平均值(或是写入文献手册中所谓的 “公认值”)。

(二)平均值 然而对我们工程实验而言,观察的次数都是 有限的,故用有限观察次数求出的平均值,只能 是近似真值,或称为最佳值。一般我们称这一最 佳值为平均值。常用的平均值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正 态分布时,用最小二乘法原理可以证明:在一组 等精度的测量中,算术平均值为最佳值或最可信 赖值。 n x n x x x x n i i n ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察 的次数。 (2)均方根平均值 n x n x x x x n i i n ∑=++==12 22221 均 (3)加权平均值 设对同一物理量用不同方法去测定,或对同 一物理量由不同人去测定,计算平均值时,常对 比较可靠的数值予以加重平均,称为加权平均。

物理误差分析及数据处理

第一章 实验误差评定和数据处理 (课后参考答案) 制作:李加定 校对:陈明光 3.改正下列测量结果表达式的错误: (1)12.001±0.000 625 (cm ) 改:12.0010±0.0007(cm ) (2)0.576 361±0.000 5(mm ) 改: 0.576 4±0.000 5(mm ) (3)9.75±0.062 6 (mA ) 改: 9.75±0.07 (mA ) (4)96 500±500 (g ) 改: 96.5±0.5 (kg ) (5)22±0.5(℃) 改: 22.0±0.5(℃) 4.用级别为0.5,量程为10 mA 的电流表对某电路的电流作10次等精度测量,测量数据如下表所示。试计算测量结果及标准差,并以测量结果形式表示之。 解:①计算测量列算术平均值I : ②计算测量列的标准差I σ: ③根据格拉布斯准则判断异常数据: 取显着水平a =0.01,测量次数n =10,对照表1-3-1查得临界值0(10,0.01) 2.41g =。取max x ?计算i g 值,有 由此得6I =9.40为异常数据,应剔除。 ④用余下的数据重新计算测量结果 重列数据如表1-3-3。

计算得 9 1 1 9.564 ()9i i I I mA == =∑ ,0.0344 ()I mA σ== 再经过格拉布斯准则判别,所有测量数据符合要求。 算术平均值I 的标准偏差为I σ 0.01145I σ= = = (mA ) 按均匀分布计算系统误差分量的标准差σ仪 为 0.0289σ?=仪0.5%10 (mA ) 合成标准差σ为 0.031σ (mA ) 取0.04σ= (mA),测量结果表示为 9.560.04x x σ=±=± (mA ) 5.用公式24m d h ρπ= 测量某圆柱体铝的密度,测得直径d =2.042±0.003(cm ),高h =4.126±0.004(cm ),质量m =36.488±0.006(g )。计算铝的密度ρ和测量的标准差ρσ,并以测量结果表达式表示之。 解 (1)计算铝的密度ρ: (2)计算g 标准差相对误差: 对函数两边取自然对数得

大数据分析与处理方法解读

大数据分析与处理方法解读 【文章摘要】要知道,大数据已不再是数据大,最重要的现实就是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。 越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于此,大数据分析的方法理论有哪些呢? 大数据分析的五个基本方面 PredictiveAnalyticCapabilities(预测性分析能力) 数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。 DataQualityandMasterDataManagement(数据质量和数据管理) 数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。 AnalyticVisualizations(可视化分析) 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。 SemanticEngines(语义引擎) 我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。 DataMiningAlgorithms(数据挖掘算法) 可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。 假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。 大数据处理

试验数据异常值的检验及剔除方法

目录 摘要......................................................................... I 关键词...................................................................... I 1引言 (1) 2异常值的判别方法 (1) 检验(3S)准则 (1) 狄克松(Dixon)准则 (2) 格拉布斯(Grubbs)准则 (2) 指数分布时异常值检验 (3) 莱茵达准则(PanTa) (3) 肖维勒准则(Chauvenet) (4) 3 实验异常数据的处理 (4) 4 结束语 (5) 参考文献 (6)

试验数据异常值的检验及剔除方法 摘要:在实验中不可避免会存在一些异常数据,而异常数据的存在会掩盖研究对象的变化规律和对分析结果产生重要的影响,异常值的检验与正确处理是保证原始数据可靠性、平均值与标准差计算准确性的前提.本文简述判别测量值异常的几种统计学方法,并利用DPS软件检验及剔除实验数据中异常值,此方法简单、直观、快捷,适合实验者用于实验的数据处理和分析. 关键词:异常值检验;异常值剔除;DPS;测量数据

1 引言 在实验中,由于测量产生误差,从而导致个别数据出现异常,往往导致结果产生较大的误差,即出现数据的异常.而异常数据的出现会掩盖实验数据的变化规律,以致使研究对象变化规律异常,得出错误结论.因此,正确分析并剔除异常值有助于提高实验精度. 判别实验数据中异常值的步骤是先要检验和分析原始数据的记录、操作方法、实验条件等过程,找出异常值出现的原因并予以剔除. 利用计算机剔除异常值的方法许多专家做了详细的文献[1] 报告.如王鑫,吴先球,用Origin 剔除线形拟合中实验数据的异常值;严昌顺.用计算机快速剔除含粗大误差的“环值”;运用了统计学中各种判别异常值的准则,各种准则的优劣程度将体现在下文. 2 异常值的判别方法 判别异常值的准则很多,常用的有t 检验(3S )准则、狄克松(Dixon )准则、格拉布斯(Grubbs )准则等准则.下面将一一简要介绍. 2.1 检验(3S )准则 t 检验准则又称罗曼诺夫斯基准则,它是按t 分布的实际误差分布范围来判别异常值,对重复测量次数较少的情况比较合理. 基本思想:首先剔除一个可疑值,然后安t 分布来检验被剔除的值是否为异常值. 设样本数据为123,,n x x x x ,若认j x 为可疑值.计算余下1n -个数据平均值 1n x -及标准差1n s - ,即2 111,1,1n n i n i i j x x s n --=≠=-∑. 然后,按t 分布来判别被剔除的值j x 是否为异常值. 若1(,)n j x x kn a -->,则j x 为异常值,应予剔除,否则为正常值,应予以保留.其中:a 为显著水平;n 数据个数;(,)k n a 为检验系数,可通过查表得到.

大数据并行处理方法与举例

大数据并行处理方法与举例 1、介绍 1.1 背景 互联网行业中,日常运营中生成、累积的用户网络行为数据等大数据规模相当庞大,以 至于不能用G或T来衡量。大数据到底有多大?一组名为“互联网上一天”的数据告诉我 们,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之 多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万……而到 了2020年,全世界所产生的数据规模将达到今天的44倍。可以说,人类社会已经步入了大 数据时代。然而,大数据用现有的一般技术又难以处理,并且海量的非结构化数据带来的并 不仅仅是存储、传输的问题,做好海量非结构化数据分析以及快速处理以更好的服务客户、 提高业务效率已经成为紧迫的问题。 伴随着数据规模的爆炸式增长,数据并行分析处理技术也在不断进行着改进,以满足大 数据处理对实时性的需求。数据并行处理(Data Parallel Processing)是指计算机系统能够同 时执行两个或更多个处理机的一种计算方法。并行处理的主要目的是节省大型和复杂问题的 解决时间。为使用并行处理,首先需要对程序进行并行化处理,也就是说将工作各部分分配 到不同处理机中。当下比较流行的大数据分布式计算应用最具有代表性的有:MapReduce、Spark和GraphX。下面详细介绍这三种应用的基本原理及应用例子。 1.2 MapReduce 2006年由Apache基金会开发的Hadoop项目,由分布式文件系统HDFS和MapReduce 工作引擎所组成。其中MapReduce采用“分而治之”的思想,把对大规模数据集的操作,分发给一个主节点管理下的各个分节点共同完成,然后通过整合各个节点的中间结果,得到最终结果。简单地说,MapReduce就是“任务的分解与结果的汇总”。在Hadoop中,用于执行MapReduce任务的机器角色有两个:一个是JobTracker;另一个是TaskTracker,JobTracker是用于调度工作的,TaskTracker是用于执行工作的。一个Hadoop集群中只有一台JobTracker。在分布式计算中,MapReduce框架负责处理了并行编程中分布式存储、工作调度、负载均衡、容错均衡、容错处理以及网络通信等复杂问题,把处理过程高度抽象为两个函数:map和reduce,map负责把任务分解成多个任务,reduce负责把分解后多任务处理的结果汇总起来。MapReduce极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 MapReduce在企业中被非常广泛地利用,包括分布grep、分布排序、web连接图反转、

异常值处理

data下拉菜单里有define variable properties,把变量选到右边的框里,点continue,在新窗口中有变量在样本中的所有取值,要定义某个值是异常值,就把相应的missing框勾上就ok 啦~~~然后再处理数据时这些值就已经被剔除,不参与分析了~~~ 使用箱型图Boxplot...发现异常值,然后把大于等于最小异常值或小于等于最大异常值的值 用Data主菜单里的Cases Select子菜单里的条件设置按钮,就可以自动剔除异常值。 spss里有个功能,好像是绘图吧。绘制Box plot图的。Box plot,可译成箱线图,由一个矩形箱和几条线段组合而成。针对一个数据批,其箱线图的绘制一般由以下几个步骤:第一、画数轴,度量单位大小和数据批的单位一致,起点比最小值稍小,长度比该数据批的全距稍长。 第二、画一个矩形盒,两端边的位置分别对应数据批的上下四分位数(Q1 和Q3)。在矩形盒内部中位数(X m)位置画一条线段为中位线。 第三、在Q3+1.5IQR(四分位距)和Q1-1.5IQR处画两条与中位线一样的线段,这两条线段为异常值截断点,称其为内限;在F+3IQR和F-3IQR处画两条线段,称其为外限。处于内限以外位置的点表示的数据都是异常值,其中在内限与外限之间的异常值为温和的异常值(mild outliers),在外限以外的为极端的异常值(extreme outliers)。 第四、从矩形盒两端边向外各画一条线段直到不是异常值的最远点,表示该批数据正常值的分布区间。 第五、用“〇”标出温和的异常值,用“*”标出极端的异常值。相同值的数据点并列标出在同一数据线位置上,不同值的数据点标在不同数据线位置上。至此一批数据的箱线图便绘出了。统计软件绘制的箱线图一般没有标出内限和外限。箱线图示例可见下图。 我常用一下方法: 1、可以通过“分析”下“描述统计“下“频率”的”绘制“直方图”,看图发现频数出现最少的值,就可能是异常值,但还要看距离其它情况的程度。 2、可通过“分析”下的“描述统计”下的“探索”下的“绘制”选项的“叶茎图”,看个案偏离箱体边缘(上端、下端)的距离是箱体的几倍,“○”代表在1.5-3倍之间(离群点),“*”代表超过3倍(极端离群点)。 3、可以通过“分析”下“描述统计“下“描述”下的选项“将标准化存为变量Z”,选择相应的变量,“确定”。将生成新变量,如果值超过2,肯定是异常值。

误差分析与数据处理

桥梁模型试验与量测技术 1钢筋混凝土桥梁剩余寿命评估方法研究2006ZB01 2自预应力钢管混凝土开发应用试验研究2006ZB02 3 GPS长距离高精度高程传递关键技术研究2006ZB03 4公路隧道松弛荷载预测理论与预警系统及设计方法研究 2006ZB04 5大跨径预应力混凝土桥梁主梁下挠原因分析及对策研究 2006ZB05 6 FRP在混凝土桥梁预应力体系和构件中的应用技术研究 2006ZB06 7钢筋砼肋拱桥现状评价与加固技术研究2006ZB07 8斜拉—悬索协作体系桥梁的研究 2006ZB08 9公路隧道建设中数字化技术应用研究2006ZB09 10混凝土桥梁耐久性设计方法和设计参数研究2006ZB10 11桥梁结构表面防护耐久性材料的研究2006ZB11 12跨江海大型桥梁结构混凝土裂化性能与耐久性对策措施的研究 2006ZB12 13高性能预拌式冷铺沥青混合料的研制和应用技术研究 2006ZB13 14沥青路面热反射与热阻技术应用研究2006ZB14 15基于弹粘性的沥青混合料设计分析体系研究2006ZB15 16 沿海港口深水航道选线及设计主要参数研究2006ZB16 课程内容: 《桥梁模型试验与量测技术》课教学实施计划表

课程特点:内容多、涉及面宽、比较难学。 学习方法:认真笔记、完成思考题 第一章误差分析与实验数据处理 研究误差的意义 人类为了认识自然与改造自然,需要不断地对自然界的各种现象进行测量和研究,由于实验方法和实验设备的不完善,周围环境的影响,以及受人们认识能力所限等,测量和实验所得数据和被测量的真值之间,不可避免地存在着差异,这在数值上即表现为误差。随着科学技术的日益发展和人们认识水平的不断提高,虽可将误差控制得愈来愈小,但终究不能完全消除它。误差存在的必然性和普遍性,已为大量实践所证明,为了充分认识并进而减小或消除误差,必须对测量过程和科学实验中始终存在着的误差进行研究。研究误差的意义为: ①正确认识误差的性质,分析误差产生的原因,以消除或减小误差。 ②正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的效据。 ③正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。 第一节误差的基本概念 一、真值、实验值、平均值、理论值、误差 真值:是指在观测一个量时,该量本身所具有的真实大小。量的真值是一个理想的概念,一般是不知道的。但在某些特定情况下,真值又是可知的。 理论真值:例如:三角形三个内角之和为180o;一个整圆周角为360o。 规定真值:例如:1982年,国际计量局召开会议提出“米”的新定义为:1等于光在真空中1/299792458秒时间间隔内所经过的路径长度。 相对真值:为了使用上的需要,在实际测量中,常用被测的量的实际值来代替真值,而实际值的定义是满足规定精确度的用来代替真值使用的量值。例如在检定工作中,把高一等级精度的标准所测得的量值称为真值。 实验值:通过实验方法得到某个物理量的数值。 算术平均值:有限次观测值的平均值。 n x x n i ∑=1 理论值:通过理论公式计算得到某个物理量的数值。

大数据分析和处理的方法步骤

大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。具体的大数据处理方法其实有很多,但是根据长时间的实践,天互数据总结了一个基本的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,以及挖掘。 采集 大数据的采集是指利用多个数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB 这样的NoSQL数据库也常用于数据的采集。 在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。 统计/分析 统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL 的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。 导入/预处理 虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足

实验数据误差分析与数据处理

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1.实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量误差。它来源于: (1)标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。又如,标称值为1kg的砝码的实际质量(真值)并不等于1kg等等。 (2)仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。 (3)附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等。这些误差大部分是由于制造工艺不完善和长期使用磨损引起的。调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等。这些误差是由于仪器仪表在使用时,未调整到理想状态引起的。变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等。这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的。 2.环境误差 环境误差系指测量中由于各种环境因素造成的测量误差。 被测量在不同的环境中测量,其结果是不同的。这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一。环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着。 测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差。 3.方法误差

异常数据的处理(标准格式处理)

异常数据的处理 在使用“税务稽查查账软件”的过程中,其前提工作就是“企业数据采集”。通常可以使用奇星查账软件的“数据采集软件”完成企业电子账务数据的采集工作。但实际工作中,由于企业相关人员对“采集行为”的不理解、目前相关政策法规的不明确、企业服务器放在异地等情况,会造成无法通过“数据采集软件”完成正常的数据采集。这就需要通过一些技术手段,人工处理了。 通常对于无法正常采集的企业数据,我们采用下述三个环节进行处理: 一、要求企业从财务软件中,导出“余额表”及“序时账簿” 二、对企业提供的两个电子表进行格式化处理 三、将格式化处理的电子表利用查账软件中的“万能数据导入”还原到查账软件中,生 成电子账簿

出的格式会存在差异,我们对企业给出了规范性要求: 其一:余额表必须是对应数据年度的“一月份期初余额表”,表中所涉的会计科目应该“包含所有科目”,且所涉的会计科目级次应该是从“一级”到“最深科目级次”。并以Excel格式保存。 其二:序时账簿要求企业查询全年凭证,并根据数据量不同,按年、按季或分月导出为Excel。

需要进行处理后,才可使用 (一)处理“余额表” 企业提供的“余额表”中,应该含有科目代码、科目名称、借方余额、贷方余 额,如下图所示: 1、根据“查账软件”万能数据导入功能的要求,“科目名称”中不能含有科目代码信息,可通过Excel的替换功能,进行如下图所示操作,将类似“1002.01/”的信息清除掉

结果如下图所示 2、根据“查账软件”万能数据导入功能的要求,需要手工定义“科目性质”,即“资产”、“负债”、“所有者权益”等,在会计制度科目体系下,分别用“1——5”表示,在新准则下,分别用“1——6”表示 处理方法,通过Excel 的LEFT函数,取科目代码的“第一位”作为科目性质代码,如下图所示

相关主题
文本预览
相关文档 最新文档