当前位置:文档之家› 八下数学专题突破:勾股定理(手拉手模型)(人教版)

八下数学专题突破:勾股定理(手拉手模型)(人教版)

八下数学专题突破:勾股定理(手拉手模型)(人教版)
八下数学专题突破:勾股定理(手拉手模型)(人教版)

勾股定理(手拉手模型)专题

知识点睛

旋转结构(手拉手模型):等线段共端点,考虑旋转,借助全等整合条件.常见手拉手模型举例

如图,△ABC,△ADE均为等边三角形,则出现了AB=AC,AD=AE等线段共端点的结构,所以连接BD,CE,可以证明△ABD≌△ACE,即把

△ABD绕点A逆时针旋转60°得到△ACE.

精讲精练

1.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,△ACB

的顶点A在△ECD的斜边DE上.若AE=8,AD=15,则AB=_________,AC=_________.

2.如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC边上,连接AD,过

点A作AE⊥AD,并且始终保持AE=AD,AF平分∠DAE交BC于F,连接BE.若DF=10,BE=6,则AB的长为_________.

3.如图,已知CA=CB,CF=CE,∠ACB=∠FCE=90°,且A,F,E三点共线,

AE与CB交于点D.

(1)求证:AF2+AE2=AB2;

(2)若AC=17,BE=3,则CE=_________.

4.如图,E是正方形ABCD对角线CA的延长线上任意一点,以线段AE为边

作一个正方形AEFG,线段GB与线段ED,AD分别交于点H,M.

(1)求证:ED=GB;

(2)判断ED与GB的位置关系,并说明理由;

(3)若AB=2,AE=2,则GB=___________.

5.(1)如图1,O是等边△ABC内一点,连接OA,OB,OC,且OA=3,OB=4,

OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.

①旋转角是__________度;

②线段OD的长为__________;

③求∠BDC的度数.

(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA,OB,OC,∠AOB=135°,OA=1,OB=2,求OC的长.

小明同学借用了图1的方法,将△BAO绕点B顺时针旋转后得到△BCD,请你继续用小明的思路解答,或是选择自己的方法求解.

6.如图,△ABC是等腰直角三角形,∠BAC=90°,点D为直线BC上的动点(不

与点B,C重合),连接AD,将线段AD绕点A逆时针旋转90°,得到线段AE,连接DE.

(1)如图1,当点D在线段BC上时,请直接写出线段DB,DC,DE之间的数量关系:________________.

(2)如图2,当点D在BC延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.

(3)如图3,当点D在CB延长线上时,若∠DAB=30°,BD=2,请直接写出AB的长.

7.如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,点E是直线

AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.

(1)如图1,当点E在线段AC上时,

①求证:△CDE≌△BDF;

②直接写出BF2,CF2,DF2之间的数量关系:___________.

(2)如图2,当点E在线段AC的延长线上时,判断(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)若动点E满足

1

2

EA

AC ,直接写出

DF

DC的值:___________.

8.某数学兴趣小组开展了一次课外活动,过程如下:如图1,正方形ABCD中,

AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合,三角板的一边交AB于点P,另一边交BC的延长线于点Q.

(1)求证:DP=DQ;

(2)如图2,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明.(3)如图3,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积(直接写出答案即可).

中考数学几何专题之手拉手模型(初三数学)

手拉手模型 【课堂导入】 什么是手拉手相似基本图形?与手拉手全等的基本图形类似,手拉手相似要比手拉手全等更具有一般性。 在上面右侧的四个图形中,每一个图形中都存在两对相似三角形,△ADE∽△ABC, △ADB∽△AEC,这两对相似三角形是可以彼此转化的。

【例1】已知:△ABC,△DEF 都是等边三角形,M 是 BC 与 EF 的中点,连接 AD,BE. (1)如图1,当EF 与BC 在同一条直线上时,直接写出 AD 与BE 的数量关系和位置关系; (2)△ABC 固定不动,将图1 中的△DEF 绕点M 顺时针旋转(0o≤≤90o)角,如图2 所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由; 【例2】以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD,其中∠ABO=∠DCO=30°.点E、F、M 分别是AC、CD、DB 的中点,连接FM、EM. ①如图 1,当点D、C 分别在 AO、BO 的延长线上时 F M E M ②如图2,将图1 中的△AOB 绕点O 沿顺时针方向旋转60度角,其 他条件不变,判断 F M的值是否发生变化,并对你的结论进行证明; E M

【例3】如图 1,在△ABC 中,∠ACB=90°,BC=2,∠A=30°,点 E,F 分别是线段 BC, AF=_______. AC 的中点,连结 EF.(1)线段B E 与A F 的位置关系是_______, BE (1)中的结论是(2)如图2,当△CEF 绕点C顺时针旋转α时(0°<α<180°) ,连结A F,BE, 否仍然成立.如果成立,请证明;如果不成立,请说明理由. 【例4】如图 1,在四边形 ABCD 中,点E、F 分别是AB、CD 的中点,过点E 作AB 的垂 线,过点F 作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC. (1)求证:AD=BC. (2)求证:△AGD∽△EGF. (3)如图2,若AD、BC 所在直线互相垂直,求E F A D的值.

手拉手模型专题练习(全等或相似)

全等三角形是初中知识一个重点,考试时经常会以填空、选择、解答题的形式出现,所占分值比例较大,所以学习全等三角形尤为重要。全等三角形共有5种判定方式:SSSSASASA AAS HL。特殊情况下平移、旋转、对称也会构成全等三角形。 方法: 全等三角形判定方法一:SSS(边边边),即三边对应相等的两个三角形全等? 全等三角形判定方法二:SAS(边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等? 全等三角形判定方法三:ASA(角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等. 全等三角形判定方法四:AAS (角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等. 全等三角形判定方法五:HL (斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等? 附加:平移、旋转或对称的两个三角形全等? 注意事项: SSS SAS ASA AAS可用于任意三角形;HL只限于直角三角形. 注意SSA AAA不能判定全等三角形. 在证明时注意利用定理,如:等式性质、等量代换、等角重合有等角、公共边、公共角、对顶角相等、等角或同角的余角或补角相等、角平分线定义、线段中点定义等 证明全等写条件时注意书写顺序. 写全等结论时注意对应顶点的位置. 有时全等三角形会结合等腰三角形出现命题。

娱型一:手拉手模型一全等 等追三術形 届伴:46LB. 旳为等边三角刖坯论:①①6dAC/SZ> :② AFB = 60: ③OE平分_4ED (易忘) 务件:AOA目…\OCD沟为等谨总角三鬲形 站抡:①AOAC^AOSD :②亠AE£=9(F ③OE平分_AED(务忘) 导角核心图形 弄憔RT\

【人教版】八年级下数学《勾股定理》单元训练(含答案)

勾股定理专项训练 专训1.巧用勾股定理求最短路径的长 名师点金: 求最短距离的问题,第一种是通过计算比较解最短问题;第二种是平面图形,将分散的条件通过几何变换(平移或轴对称)进行集中,然后借助勾股定理解决;第三种是立体图形,将立体图形展开为平面图形,在平面图形中将路程转化为两点间的距离,然后借助直角三角形利用勾股定理求出最短路程(距离).用计算法求平面中最短问题 1.如图,学校有一块长方形花圃,有极少数人从A走到B,为了避免拐角C走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草. (第1题) 2.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在黄石A坐“武黄城际列车”到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80 km,BC=20 km,∠ABC=120°.请你帮助小明解决以下问题: (1)求A,C之间的距离.(参考数据21≈4.6) (2)若客车的平均速度是60 km/h,市内的公共汽车的平均速度为40km/h,“武黄城际列车”的平均速度为180 km/h,为了在最短时间内到达武昌客运站,小明应选择哪种乘车方案?请说明理由.(不计候车时间) (第2题) 用平移法求平面中最短问题 3.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30c m,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬( ) A.13 cm B.40 cmC.130 cm D.169 cm

初中几何经典模型总结(手拉手模型)

初中几何经典模型总结(手拉手模型) 模型可以让同学更快的进入到几何之中,产生兴趣。也是近来学习初中几何不可或缺的一种重要方法。下面给大家介绍一种经典几何模型---手拉手模型,这也是历年数学中考常考的几何压轴题型之一。手拉手模型的概念:1、手的判别:判断左右:将等腰三角形顶角顶点朝上,正对读者,读者左边为左手顶点,右边为右手顶点。2、手拉手模型的定义:定义: 两个顶角相等且有共顶点的等腰三角形形成的图形。(左手拉左手,右手拉右手)例如:3、手拉手模型的重要结论三个固定结论:结论1:△ABC≌△AB'C'(SAS)BC=B'C'(左手拉左手等于右手拉右手)结论2:∠BOB'=∠BAB'(用四点共圆证明)结论3: AO平分∠BOC'(用四点共圆证明)例题解析:类型一共顶点的等腰直角三角形中的手拉手例1:已知:如图△ABC和△ADE都是等腰直角三角形, ∠BAC=∠DAE=90°.求证:BD=CE.分析: 要证BD=CE可转化为证明△BAE≌△CAD,由已知可证 AB=AC,AE=AD,∠BAC=∠EAD=90°,因为∠BAC ∠CAE=∠EAD ∠CAE,即可证∠BAE=∠CAD,符合SAS,即得证.解答:证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC ∠CAE=∠EAD ∠CAE,即∠BAE=∠CAD,在△BAE与△CAD中,

AB=AC,∠BAE=∠CAD,AE=AD∴△BAE≌△CAD(SAS), ∴BD=CE.类型二共顶点的等边三角形中的手拉手例2:图1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形。(1)如图1,求证:AD=CE;(2)如图2,设CE与AD交于点F,连接BF.①求证:∠CFA=60°;②求证:CF BF=AF.分析:(1)如图1,利用等边三角形性质得:BD=BE,AB=BC,∠ABC=∠DBE=60°,再证∠ABD=∠CBE,根据SAS 证明△ABD≌△CBE得出结论;(2)①如图2,利用(1)中的全等得:∠BCE=∠DAB,根据两次运用外角定理可得结论; ②如图3,作辅助线,截取FG=CF,连接CG,证明△CFG 是等边三角形,并证明△ACG≌△BCF,由线段的和得出结论.解答:证明:(1)如图1,∵△ABC与△BED都是等边三角形,∴BD=BE,AB=BC,∠ABC=∠DBE=60°,∴∠ABC ∠CBD=∠DBE ∠CBD,即∠ABD=∠CBE,在△ABD和△CBE 中,AB=AC∠ABD=∠CBEBD=BE,∴△ABD≌△CBE(SAS),∴AD=CE,(2)①如图2,由(1)得:△ABD≌△CBE, ∴∠BCE=∠DAB,∵∠ABC=∠BCE ∠CEB=60°,∴∠ABC=∠DAB ∠CEB=60°,∵∠CFA=∠DAB ∠CEB,∴∠CFA=60°,②如图3,在AF上取一点G,使FG=CF,连接CG,∵∠AFC=60°, ∴△CGF是等边三角形,∴∠GCF=60°,CG=CF,∴∠GCB ∠BCE=60°,∵∠ACB=60°,∴∠ACG ∠GCB=60°, ∴∠ACG=∠BCE,∵AC=BC,∴△ACG≌△BCF,∴AG=BF,

手拉手模型专题训练

1、在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明: △ABE≌△DBC,AE=DC,AE与DC的夹角为60?,△AGB≌△DFB,△EGB≌△CFB, BH平分∠AHC,GF∥AC 2、如果两个等边三角形△ABD和△BCE,连接AE与CD,直线AE与CD相交于点H,求证:(1)AE=DC;(2)AE与DC的夹角为60?;(3)BH平分∠AHC. 3、如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H,求证: (1)AG=CE;(2)AG与CE之间的夹角为90度;(3)HD平分∠AHE.

4.将等腰Rt△ABC和等腰Rt△ADE按图①方式放置,∠A=90°,AD边与AB边重合,AB=2AD=4。 将△ADE绕点A逆时针方向旋转一个角度α(0°<α>180°),BD的延长线交CE于P。(1)如图②,证明:BD=CE,BD⊥CE; (2)如图③,在旋转的过程中,当AD⊥BD时,求出CP的长。 ,PB=4,以AB为直角边作等腰直角三角形ABD,且P、D两点在直线AB 5、已知:PA (1)如图,当∠APB=45°时,求AB及PD的长; (2)当∠APB变化,且其它条件不变时,求PD的最大值及相应∠APB的大小.

1、如图,已知△ABC的面积是3的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC 与DE相交于点F,则△AEF的面积等于__________(结果保留根号). 2、在△ABC中,AB=AC,∠BAC=2∠DAE=2α. (1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC; (2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2; (3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.

手拉手模型-含答案

手拉手模型 一.填空题(共18小题) 1.已知△ABC中,∠ABC=45°,AB=7,BC=17,以AC为斜边在△ABC外作等腰Rt△ACD,连接BD,则BD的长为. 2.如图,在△ABC中,∠ABC=60°,AB=3,BC=5,以AC为边在△ABC外作正△ACD,则BD的长为. 3.四边形ABCD中,AC=BC,∠ACB=90°,∠ADB=30°,AD=,CD=14,则BD=. 4.已知在四边形ABCD中,AB=AC,∠ABC=∠ADC=60°,连接BD,若CD=2,AB =2,则BD的长度为. 5.如图,在四边形ABCD中,∠ADC=∠ABC=45°,CD=,BC=,连接AC、BD,若AC⊥AB,则BD的长度为.

6.如图,四边形ABCD中,∠ABC=∠ACD=∠ADC=45°,△DBC的面积为8,则BC 长为. 7.如图,D为△ABC内一点,且AD=BD,若∠ACD=∠DAB=45°,AC=5,则S△ABC =. 8.如图,线段AB绕着点A逆时针方向旋转120°得到线段AC,点B对应点C,在∠BAC 的内部有一点P,P A=8,PB=4,PC=4,则线段AB的长为. 9.如图,在△ABC中,∠ABC=60°,=,D为△ABC外一点,连接AD、CD.若∠ADC=30°,AC=AD,则的值为.

10.如图,△ABC、△CDE是两个直角三角板,其中∠ECD=∠ACB=90°,∠CED=45°,∠CAB=30°,若AB=DE=2,将直角三角板CDE绕点C旋转一周,则|AD﹣BE|的最大值为. 11.如图,点D为等边△ABC外一点,∠ADC=60°,连接BD,若AD=8,△BCD的面积为,则BD的长为. 12.如图,△ABC中,∠ABC=45°,AB=2,BC=6,AD⊥AC,AD=AC,连接BD,则BD的长为. 13.如图,在△ABC中,∠ABC=60°,AB=3,BC=12,以AC为腰,点A为顶点作等腰△ACD,且∠DAC=120°,则BD的长为.

新人教版八年级下册数学勾股定理教案

第十七章 勾股定理 勾股定理(一) 教学内容: 新课标对本节课的要求: 教学目标 知识与技能:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 过程与方法:培养在实际生活中发现问题总结规律的意识和能力。 情感态度价值观:介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 教学重点、难点 重点:勾股定理的内容及证明。 难点:勾股定理的证明。 教学过程 1.引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。 对于任意的直角三角形也有这个性质吗? 命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c , 那么 。 2、合作探究: 方法1:已知:在△ABC 中,∠C=90°,∠A 、∠B 、 ∠C 的对边为a 、b 、c 。 A B

三角形手拉手模型-专题讲义(无答案)

手拉手模型 1、等边三角形 条件:△OAB,△OCD均为等边三角形 结论:;;导角核心:八字导角 2、等腰直角三角形 条件:△OAB,△OCD均为等腰直角三角形结论:;;导角核心:

3、任意等腰三角形 条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD 结论:;; 核心图形: 核心条件:;; 例题讲解: A类 1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD, 等边三角形要得到哪些结论? 要联想到什么模型?

证明:(1)△ABE≌△DBC; (2)AE=DC; (3)AE与DC的夹角为60°; (4)△AGB≌△DFB; (5)△EGB≌△CFB; (6)BH平分∠AHC; 解题思路: 1:出现共顶点的等边三角形,联想手拉手模型 2:利用边角边证明全等; 3:八字导角得角相等; 2:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H. 等腰直角三角形要得到哪些结论? 要联想到什么模型? 问 (1)△ADG≌△CDE是否成立? (2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度? (4)HD是否平分∠AHE?

解题思路: 1:出现共顶点的等腰直角三角形,联想手拉手模型 2:利用边角边证明全等; 3:八字导角得角相等; 3:如图,分别以△ABC 的边AB、AC同时向外作等腰直角三角形,其中AB =AE,AC =AD, 等腰直角三角形要得到哪些结论? 要联想到什么模型? ∠BAE=∠CAD=90°,点G为BC中点,点F为BE 中点,点H 为CD中点。探索GF与 多个中点,一般考虑什么? GH 的位置及数量关系并说明理由。

中考数学专题训练-旋转模型几何变换三种模型手拉手-半角-对角互补

几何变换的三种模型手拉手、半角、对角互补 ?? ? ? ? ? ? ? ? ? ?? ? ?? ? ? ? ? ?? ?? ? ?? 等腰三角形 手拉手模型等腰直角三角形(包含正方形) 等边三角形(包含费马点) 特殊角 旋转变换对角互补模型 一般角 特殊角 角含半角模型 一般角 等线段变换(与圆相关) 【练1】(2013北京中考)在ABC △中,AB AC =,BACα ∠=(060 α ?<

【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=, ,M 是AC 的中点,P 是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60?且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数; (2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜 想CDB ∠的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.

考点1:手拉手模型:全等和相似 包含: 等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种 位置的旋转模型,及残缺的旋转模型都要能很快看出来 (1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等) (2)等边三角形旋转模型图(共顶点旋转等边出伴随全等) (3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等) (4)不等边旋转模型图(共顶点旋转不等腰出伴随相似) 例题精讲

新人教版八年级下册数学--勾股定理教案

第十七章勾股定理 勾股定理(一) 教学容: 新课标对本节课的要求: 教学目标 知识与技能:了解勾股定理的发现过程,掌握勾股定理的容,会用面积法证明勾股定理。 过程与方法:培养在实际生活中发现问题总结规律的意识和能力。 情感态度价值观:介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 教学重点、难点 重点:勾股定理的容及证明。 难点:勾股定理的证明。 教学过程 1.引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。 对于任意的直角三角形也有这个性质吗? 完成23页的探究,补充下表,你能发现正方形A 、B 、C 的关系吗? 由此我们可以得出什么结论?可猜想: 命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c , 那么 。 2、合作探究: 方法1:已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。

初中几何专项——手拉手模型

E A D B C E A D B C E D C B A 图3图21图 O H G A B C D M P D E C B A 手拉手模型 模型 手拉手 如图,△ABC 是等腰三角形、△ADE 是等腰三角形,AB=AC ,AD=AE ,∠BAC=∠DAE= 。 结论:△BAD ≌△CAE 。 模型分析 手拉手模型常和旋转结合,在考试中作为几何综合题目出现。 模型实例 例1.如图,△ADC 与△GDB 都为等腰直角三角形,连接AG 、CB ,相交于点H ,问:(1)AG 与CB 是否相等? (2)AG 与CB 之间的夹角为多少度? 3.在线段AE 同侧作等边△CDE (∠ACE<120°),点P 与点M 分别是线段BE 和AD 的中点。 求证:△CPM 是等边三角形。

F E C B A H D E C B A 1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在 BC上,且AE=CF。 (1)求证:BE=BF; (2)若∠CAE=30°,求∠ACF度数。 2.如图,△ABD与△BCE都为等边三角形,连接AE与CD,延长AE交CD于点 H.证明: (1)AE=DC; (2)∠AHD=60°; (3)连接HB,HB平分∠AHC。

B A D C P E 3图B D A E C 图21 图P D E C B A 3.将等腰Rt △ABC 和等腰Rt △ADE 按图①方式放置,∠A=90°,AD 边与AB 边重合,AB=2AD=4。将△ADE 绕点A 逆时针方向旋转一个角度α(0°<α>180°),BD 的延长线交CE 于P 。 (1)如图②,证明:BD=CE ,BD ⊥CE ; (2)如图③,在旋转的过程中,当AD ⊥BD 时,求出CP 的长。

手拉手模型

手拉手模型 手拉手模型 特点:由两个顶角相等的等腰三角形所组成,并且顶角的顶点为公共顶点 结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180° (3)OA 平分∠BOC 变形: 例1.如图,B 是线段AC 上一点,分别以AB 和BC 为边长,在直线AC 的同一侧作两个等边三角形,△ABD 和△ECB ,连接AE 和CD ,AE 与DC 交于点H ,与BD 与BE 交于点G ,F . (1)求证:△B CD ≌△BEA ; (2)探究△BFG 的形状,并证明你的结论.

思考:的数量关系。与DC AE (2)AE 与DC 之间的夹角为? 60 (3)DFB AGB ??? (4)CFB EGB ??? (5)BH 平分AHC ∠ (6)AC GF // 变式精练1:如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)AE 与DC 的夹角为60°; (2)AE 与DC 的交点设为H ,BH 平分∠AHC . 思考:DC AE =;AE 与DC 之间的夹角为?60 试一试继续旋转结论是否成立。

变式精练2.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE. (1)试判断BD、CE的数量关系,并说明理由; (2)延长BD交CE于点F,试求∠BFC的度数; (3)把两个等腰直角三角形按如图2放置,(1)中的结论是否仍成立?请说明理由. 练习:已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50° (1)求证:①AC=BD;②∠APB=50°; (2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为

八年级数学下册知识点总结-勾股定理

第十八章勾股定理 知识点一:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 知识点二:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 用勾股定理的逆定理判定一个三角形是否是直角三角形应注意: (1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

初二数学手拉手模型

初二数学中的“手拉手”模型 如图1:两个公共顶点并且顶角相等的等腰三角形所组成的图 形具有很特别的性质,我们形象地称其为“手拉手”模型;在这个 图形种蕴含这两个全等三角形,而且这两个全等三角形可以看成其 中一个绕着顶点旋转顶角地度数后变成另外一个。 在图1中,只需要连结BD,CE则容易证明△ABD≌△ACE;同 时△ACE可以看成△ABD绕着点A顺时针旋转∠BAC的度数得到。 熟悉手拉手模型对于解题是十分有帮助的。下面以一些初二阶段 的考题为例子一起来巩固强化一下这个模型。 例1(15石狮八年级期末26题)△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE. (1)如图1,连结BE、CD,求证:CD=BE; (2)如图2,连结BD、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长; (3)如图3,若∠BAC=∠DAE=90°,以点A为旋转中心旋转△ABC,使得点C恰好落在斜边DE上,试探究、、之间的数量关系,并加以证明. 本分析:本题就是一道典型的手拉手模型问题,这边的两个等顶角共定点的等腰三角形是△ABC和△AED,因此图形中一定存在着两个全等的可以看成旋转得到的三角形。有了这个理念就不难想到第二题连结BE;第三题连结BE,得到全等三角形,第二题中两个全等三角形 是△ABE与△ACD;第三问全等的三角形是△ABE与△ACD。发现全等在本题中是关键;例 如第二题、三题就是通过全等把已知条件集中到同一个直角三角形中;利用勾股定理求解。

例2:如图3,在三角形ABC中AB=AC,∠BAC=90°,P是BC上的一点,证明: BP2+CP2=2AP2 分析:这个题目中并没有直接的“手拉手”模型;但是 题目中有一个已知的等腰直角三角形ABC,要证明的式 子中有一个线段AP是以A为端点的,因此我们可以考 虑以AP为直角边,构造以点A为顶点的另一个等腰直 角三角形APD,这样就出现“手拉手”模型了,而模型 中存在的两个旋转三角形也随之显现,能把相关线 段集中到同一个直角三角形中。如图4 (注:本题也可以直接考虑△ABP旋转) 例3:(17秋永春期末检测) 如图5,已知∠ACB=∠ACD=∠ABD=∠ADB=60°, ①三角形ABC是__________三角形 ②求证AC=BC+CD (2)如图6,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改写成“∠ACB=∠ACD=∠ABD=∠ADB=45°”,求线段AC,BC,CD的关系,并给出证明。 分析:②中要证明AC=BC+CD可以用“截长补短”的思维去考虑, 截长:在AC上截取CE等于BC,连结BE证明AE=CD, 补短:延长CD至点F使得DF=BC,接着证明三角形ACF是等边。

(完整版)初二(八年级)下册数学勾股定理典型习题

初二(八年级)下册数学勾股定理典型习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面 积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为 222()2S a b a ab b =+=++ 所以222a b c +=方法三:1 ()()2 S a b a b =+?+梯形, 211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠= ?,则c = ,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些 实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

ni三角形手拉手模型-专题讲义

手拉手模型 1.等边三角形 导角核心:八字导角 条件:△OAB ,△OCD 均为等边三角形 结论:①△OAC ≌△OBD ;②∠AEB = 60°;③OE 平分∠AED 2.等腰直角三角形 导角核心: 条件:△OAB ,△OCD 均为等腰直角三角形 结论:①△OAC ≌△OBD ;②∠AEB = 90°;③OE 平分∠AED 3.任意等腰三角形 核心图形:核心条件:OA=OB ;OC=OD ;∠AOB=∠COD 条件:△OAB ,△OCD 均为等腰三角形,且∠AOB = ∠COD 结论:①△OAC ≌△OBD ;②∠AEB=∠AOB ;③OE 平分∠AED 例题讲解: A 类 1.在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD , 等边三角形要得到哪些结论? 要联想到什么模型?

证明:(1)△ABE ≌△DBC ; (2)AE=DC ; (3)AE 与DC 的夹角为60°; (4)△AGB ≌△DFB ; (5)△EGB ≌△CFB ; (6)BH 平分∠AHC ; 解题思路: 1.出现共顶点的等边三角形,联想手拉手模型 2.利用边角边证明全等; 3.八字导角得角相等; 2.如图两个等腰直角三角形ADC 与EDG ,连接AG 、CE ,二者相交于H. 问 (1)△ADG ≌△CDE 是否成立? (2)AG 是否与CE 相等? (3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分∠AHE ? 解题思路: 1.出现共顶点的等腰直角三角形,联想手拉手模型 2.利用边角边证明全等; 3.八字导角得角相等; 3.如图,分别以△ABC 的边AB 、AC 同时向外作等腰直角三角形,其中 AB =AE ,AC =AD ,∠BAE =∠CAD=90°, 点G 为BC 中点,点F 为BE 中点,点H 为CD 中点。探索GF 与GH 的位置及数量关系并说明理由。 多个中点,一般考虑什么? 等腰直角三角形要得到哪些结论? 要联想到什么模型? 等腰直角三角形要得到哪些结论? 要联想到什么模型?

人教版数学八年级下册:勾股定理提高测试题

八年级数学勾股定理单元提高题 一、选择题( 1. 如图:a ,b ,c A. a 2 + b 2=c 2 B. ab=c C. a+b=c D. a+ b=c 2 2. 下列各组数中以a ,b ,c 为边的三角形不是Rt △的是 ( ) A 、a=2,b=3,c=4 B 、a=7,b=24,c=25 C 、a=6,b=8,c=10 D 、3.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32 4. 如右图,小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) A. 25 B. 12.5 C. 9 D. 8.5 5.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A 、450a 元 B 、225a 元 C 、150a 元 D 、300a 元 6.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A 、25海里 B 、30海里 C 、35海里 D 、40海里 7.一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( ) A .60 B .30 C .24 D .12 8.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121 B 、120 C 、132 D 、不能确定 9.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向 岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( ) A. 2m; B. 2.5m; C. 2.25m; D. 3m. 10.直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( ) \ A. ab=h 2 B. a 2 +b 2 =2h 2 C. a 1+b 1=h 1 D. 2 1a +21b = 21h 二、填空题(8小题,每小题3分,共24分) 北 南 A 东 第6题图 150° 20m 30m 第5题图 A D B C 第7题

八下数学专题突破:勾股定理(手拉手模型)(人教版)

勾股定理(手拉手模型)专题 知识点睛 旋转结构(手拉手模型):等线段共端点,考虑旋转,借助全等整合条件.常见手拉手模型举例 如图,△ABC,△ADE均为等边三角形,则出现了AB=AC,AD=AE等线段共端点的结构,所以连接BD,CE,可以证明△ABD≌△ACE,即把 △ABD绕点A逆时针旋转60°得到△ACE. 精讲精练 1.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,△ACB 的顶点A在△ECD的斜边DE上.若AE=8,AD=15,则AB=_________,AC=_________. 2.如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC边上,连接AD,过 点A作AE⊥AD,并且始终保持AE=AD,AF平分∠DAE交BC于F,连接BE.若DF=10,BE=6,则AB的长为_________.

3.如图,已知CA=CB,CF=CE,∠ACB=∠FCE=90°,且A,F,E三点共线, AE与CB交于点D. (1)求证:AF2+AE2=AB2; (2)若AC=17,BE=3,则CE=_________. 4.如图,E是正方形ABCD对角线CA的延长线上任意一点,以线段AE为边 作一个正方形AEFG,线段GB与线段ED,AD分别交于点H,M. (1)求证:ED=GB; (2)判断ED与GB的位置关系,并说明理由; (3)若AB=2,AE=2,则GB=___________.

5.(1)如图1,O是等边△ABC内一点,连接OA,OB,OC,且OA=3,OB=4, OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD. ①旋转角是__________度; ②线段OD的长为__________; ③求∠BDC的度数. (2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA,OB,OC,∠AOB=135°,OA=1,OB=2,求OC的长. 小明同学借用了图1的方法,将△BAO绕点B顺时针旋转后得到△BCD,请你继续用小明的思路解答,或是选择自己的方法求解.

最新部编人教版初中八年级下册数学勾股定理知识点

勾股定理知识点 一、勾股定理: 1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方 A B C a b c 弦 股 勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。 2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是 勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角 形:勾三、股四、弦五) 其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c); (2)若c2=a2+b2,则△ABC是以∠C为直角的三角形; 若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边); 若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边) 4.注意:(1)直角三角形斜边上的中线等于斜边的一半 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。 5. 勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。 (3)用于证明线段平方关系的问题。

中考专题复习几何题用旋转构造手拉手模型

中考专题复习——几何题用旋转构造“手拉手”模型 一、教学目标: 1.了解并熟悉“手拉手模型”,归纳掌握其基本特征. 2.借助“手拉手模型”,利用旋转构造全等解决相关问题. 3.举一反三,解决求定值,定角,最值等一类问题. 二、教学重难点: 1.挖掘和构造“手拉手模型”,学会用旋转构造全等. 2.用旋转构造全等的解题方法最优化选择. 三、教学过程: 1.复习旧知 师:如图,△ABD,△BCE为等边三角形,从中你能得出哪些结论 生:(1)△ABE≌△DBC(2)△ABG≌△DBF (3)△CFB≌△EGB(4)△BFG为等边三角形 (5)△AGB∽△DGH(6)∠DHA=60°(7)H,G,F,B四点共圆(8)BH平分∠AHC……师:我们再来重点研究△ABE与△DBC,这两个全等的三角形除了对应边相等,对应角相等外,还有什么共同特征呢 生:它们有同一个字母B,即同一个顶点B. 师:我们也可以把△DBC看作由△ABE经过怎样的图形运动得到 生:绕点B顺时针旋转60°得到. 2.引入新课 师:其实我们可以给这两个全等的三角形赋予一个模型,叫“手拉手模型”,谁可以将这个模型的特征再做进一步的简化归纳呢 生:对应边相等. 师:我们可以称之为“等线段”. 生:有同一个顶点. 师:我们可以称之为“共顶点”. 师:等线段,共顶点的两个全等三角形,我们一般可以考虑哪一种图形运动 生:旋转. 师:“手拉手模型”可以归纳为:等线段,共顶点,一般用旋转. 3.小题热身

图12图3 1.如图1,△BAD中,∠BAD=45°,AB=AD,AE⊥BD于E,BC⊥AD于C,则AF=____BE. 2.如图2,△ABC和△BED均为等边三角形,ADE三点共线,若BE=2,CE=4,则AE=______. 3.如图3,正方形ABCD中,∠EAF=45°,BE=3,DF=5,则EF=_______. 师:我们来看第1,第2题,这里面有“手拉手模型”吗请你找出其中的“等线段,共顶点”. 生:题1中,等线段是AC,BC,共顶点是C,△ACF绕点C逆时针旋转90°得△BCD. 题2中,等线段是AB,BC,共顶点是B,△ABD绕点D顺时针旋转60°得△CBE.师:我们再来看第3题,这里有“手拉手模型”吗 生:没有. 师:那其中有没有“等线段,共顶点”呢 生:等线段是AD,AB,共顶点是A. 师:我们可否利用旋转来构造“手拉手模型”呢 生:将AE旋转,绕点A逆时针旋转90°. 师:为什么是逆时针旋转90°,你是如何思考的 生:我准备构造一个和△ABE全等的三角形,AB绕点A逆时针旋转90°即为AD,那么将AE逆时 针旋转90°可得AG,连接GD,证明全等. 师:说的不错,谁能再来归纳一下,借助“手拉手模型”,用旋转构造全等的方法吗 生:先找有没有“等线段,共顶点”,再找其中一条“共顶点”的线段,将其旋转. 师:旋转角度如何确定,方向怎么选择 生:选择其中一个三角形,将“共顶点”的线段旋转.旋转角为两条“等线段”间的夹角.方向 应与所选择的起始“等线段”旋转到另一条“等线段”时的方向一致. 师:非常棒,可以说,你已经掌握了这节课的精髓.但是,很多题目中只是隐含了“手拉手模型” 的一些条件,剩余的需要我们自己去构造,可以如何构造呢 步骤1:先找有没有“等线段,共顶点”. 步骤2:选择其中一个三角形,将其中经过“共顶点”的线段旋转. 步骤3:旋转方向与这个三角形的“等线段”旋转到另一条“等线段”的方向一致,旋转角为“等

相关主题
文本预览
相关文档 最新文档