当前位置:文档之家› 微波技术第三章TEM波传输波

微波技术第三章TEM波传输波

微波技术第三章TEM波传输波
微波技术第三章TEM波传输波

微波技术第三章T E M波

传输波

The Standardization Office was revised on the afternoon of December 13, 2020

第三章 TEM波传输波

低频传输线由于工作波长很长,一般都属“短线”范围,分布参数效应均被忽略,它们在电路中只起连接线的作用。因此在低频电路中不必要对传输线问题加以专门研究。当频率达到微波波段以上,正象我们在上章所述那样,分布参数效应已不可忽视了,这时的传输线不仅起连接线能量或信息由一处传至另一处的作用,还可以构成微波元器件。同时,随着频率的升高,所用传输线的种类也不同。但不论哪种微波传输线都有一些基本要求,它们是:

(1)损耗要小。这不仅能提高传输效率,还能使系统工作稳定。

(2)结构尺寸要合理,使传输线功率容量尽可能地大。

(3)工作频带宽。即保证信号无畸变地传输的频带尽量宽。

(4)尺寸尽量小且均匀,结构简单易于加工,拆装方便。

假如传输线呼处的横向尺寸、导体材料及介质特性都是相同的,这种传输线就称为均匀传输线,反之则为非均匀传输线。

均匀传输线的种类很多。作为微波传输线有平行双线、同轴线、波导、带状线以及微带等等不同形式。本章将对几种常用的TEM波传输线作系统论述。

§3-1 双线传输线

所谓双线传输线是由两根平行而且相同的导体构成的传输系统。导体横截面是圆形,直径为d,两根导体中心间距为D,如图3-1-1所示。

图3-1-1 平行双线传输线

一、电磁场分布

关于双线上的电压、电流分布规律,已在前章详细讨论过。本章将给出沿线电场和磁场的分布。

电磁波在自由空间是由自由自在地传播着,电、磁场在时间上保持同相位,而在空间上是相互交并垂直于传播方向,如图3-1-2所示。

若电磁波沿传输线传播,就要受到传输线的限制和约束。在双线传输线上流有交变的高频电流,因而导线上积累有瞬变的正负电荷。线上电磁场可用下式表示(向+z方向传播的行波)

(3-1-1)

图3-1-2 自由空间电磁波的传播

(3-1-2) 式中,、分别代表电、磁场的振幅值,它们的相互关系是

(3-1-3) 称为波阻抗。

电场从一根导线的正电荷出发落到另一导线的负电荷上,电场是由线上的正负电荷支持,电力线不是封闭线。磁场则是靠电流来支持,磁力线是围绕着电流的一圈圈的封闭线。电场与磁场在空间处处正交,它们之间不是孤立的,是由麦克斯韦方程组联系起来的。磁场分布并不是到处均匀,而是双导体之间强,两侧弱。双线传输线上的电磁场分布情况示于图3-1-3中。图中电场和磁场皆分布在一个平面(垂直于传输方向的横截面)上,同一平面上的电场和磁场是同一个时刻由信号源发出的,即在时间上是同相位的;在空间上则是彼此正交的。电场和磁场都不存在纵向(轴向)分量。

图3-1-3 双线上的电磁场分布

二、特性阻抗

根据前章讨论可知,利用表2-1-1和式(2-2-25),可求得双线传输线的特性阻抗为

(3-1-4)

若双导线周围介质为空气,则只须将代入上式即可。双线的特性阻抗一

般为250~700Ω,常用的是250、300、400和600Ω几种。

三、传输特性

由式(2-2-26)可知,传输线上波的传播常数,就是说在一般情况下是一个复数。

若线路损耗可忽略不计,即,则,于是

(3-1-5)

若计及线路损耗,则需要分别按式(2-2-28a)、(2-2-28b)求出、。

由电磁理论知,双导线单位长度的表面电阻为

(3-1-6) 将上式代入式(2-2-28a)可求得双线的导体衰减常数

(3-1-7)

式中,、分别为导体的导电率和导磁率。

由表2-1-1查得双线的代入式(2-2-28b)可求得介质衰减常数

(3-1-8)

式中,为导体间填充介质不理想时的漏电电导率,为介质中

波长,为介质极化损耗角正切。

于是双导线总的衰减常数为

(3-1-9)

至于相移常数,当、,即损耗不大时,仍可利用式

(3-1-5)计算,即。

平行双线是最简单的一种传输线,但它裸露在外,当频率升高时,将出现一系列缺点,使之失去实用价值。这些缺点是:

(1)趋肤效应显著由于电流趋肤深度与频率的平方根成正比,因而随频率增高,趋肤深度减小,电流分布愈集中于表面,于是电流流过导体的有效面积减小,使得导线中的热损耗增大。

(2)支撑物损耗增加在结构上为保证双导线的相对位置不变,需用介质或金属绝缘子做支架,这就引起介质损耗或附加的热损耗。由式(3-1-8)可见,与成正比,即随频率的升高,介质损耗将随之增大。

(3)辐射损耗增加双导线裸露在空间,随着频率的升高,电磁波将向四周辐射,形成辐射损耗。这种损耗也随频率的升高而增加。当波长与线的横向尺寸差不多时,双线基本上变成了辐射器,此时双线已不能再传输能量了。

上面提到的金属绝缘子是用来做支架的终端短路线,如图3-1-4所示。此时由主传输线向“支架”看进去的输入阻抗很大(理想情况为无限大),因此,它对于传输线上的电压和电流分布几乎没影响。它相当于一个绝缘子,因它是金属材料做成的,故称其为金属绝缘子。

图3-1-4 短路线支架

既然双线上传输的是TEM波,故又称其为无色散波传输线。其截止频率

(截止波长)。

§3-2 同轴传输线

同轴线也属双导体传输系统。它由一个内导体和与它同心的外导体构成,内、外导体半径分别为a、b,如图3-2-1所示。同轴线又有硬同轴和软同轴之分,后者即所谓的同轴电缆,其内填充低损耗的介质材料。

一、同轴线中的主模式

1.同轴线中的场分布为求解同轴线内的场分布,我们选用圆柱坐标系,如图

3-2-2所示。

图3-2-1 同轴线图3-2-2 同轴线圆柱坐标系

同轴线中传输的主模式是TEM波。在这种情况下,电、磁场只分布在横截面内,无纵向分量。因此得到沿纵向(z向)传播的场量为

(3-2-1)

(3-2-2)

设在内导体上有一恒定电流I流过,则它将在内、外导体之间建立起轴对称的环形静磁场。令距中心为r处的磁场为,则根据安培环路定律有

其矢量式为

(3-2-3a)

因同轴线中传输的是TEM波,横截面中的电场与磁场正交,且其振幅比值为一常数,称为波阻抗,即

(3-2-4) 于是

(3-2-3b)

将式(3-2-3a)、(3-2-3b)代入式(3-2-1)、(3-2-2)中,即得到同轴线中的主模式TEM波的行波解为

(3-2-5)

(3-2-6) 按式绘出同轴线中的主模式TEM波的场分布,如图3-2-3所示。

图3-2-3 同轴线中TEM模式的场分布

由图中可见,对于同轴线中的主式TEM波,电场仅存在于内外导体之间且呈辐射状。磁场则配置在内外导体之间,形成以内导体为中心处处与电场正交的磁力线环(图中虚线所示)。在无反射情况下,沿轴线方向,电场与磁场均以行波方式在传输线上传输。

2.传输功率

和双线传输线一样,它们传输的都是无色散的TEM波,因而通常的电压、

电流仍有意义。按照定义,电压是内外导体间电场的线积分,电流则是导体表

面纵向电流线密度的积分,因此沿轴向(z向)传输的行波电夺和电流分别为

(3-2-7)

(3-2-8) 显然二者之比即为其特性阻抗

(3-2-9) 若同轴线内填充介质,则其特性阻抗应为

(3-2-10)

关于这一点,也可由前章表2-1-1给出同样的结果。由表查得

,,于是

与式(3-2-10)比较结果完全相同,同轴线的特性阻抗一般为40~100Ω,常用

的是50、75Ω两种。

这样,在行波状态下,同轴线上能过的平均传输功率P为

(3-2-11)

设为击穿电压强度。在同轴线中击穿将首先发生在内导体的外表面()上,因为此处电场最强,根据式(3-2-4)可求得该处的最大场强幅值为

或改写成

(3-2-12) 将上式代入式(3-2-11)就得到同轴线在行波状态下的最大传输功率为

(3-2-13) 当同轴线填充介质时,可传输的最大功率用下式表示

(3-2-14)

空气的击穿场强为。以便同轴线为便,设其内外导体半径分别为和,则由式(3-2-13)算得最大可传输功率——即其功率容量

为143kW。若改用内外导体半径分别为和8mm的硬同轴线,则其功率容量为760W。对比可知,后一种同轴线(大尺寸)较前一种功率容量大倍。

二、同轴线中的高次模式

在同轴线中,我们只希望传输主模TEM波,这时截止频率

。但当传播频率增高时,波长随之缩短,同轴线的横截面尺寸

(a和b)与波长可以比拟了。这样,同轴线内的任何微波变化,例如内外

导体的同心度不佳,或圆形尺寸因加工不良出现的椭圆度,抑或内外导体上出现的凹陷或突起物,都将引起反射,并随之出现场强的轴向分量,高次模式的

边界条件建立了起来,就是说,高次模将伴随主模式传播了。换言之,除了主模式TEM波外,在同轴线上还可能存在无穷多个色散的高次模式,包括横电波()和横磁波()。关于这些高次模式的场方程的导出,这里从

略。我们只给出用近似方法计算出来的一些位于最前面的几个高次模式的场结构,如图3-2-4所示。

在这些高次模式中,截止波长是长(截止频率最低)的是波。因此为确保同轴线中主模TEM波的单模传输,只要使波截止,则其余所有的高次模式就全部截止了,就是说在第一高次模式()截止频率以下,仅只传输主模TEM波,但当高过该频率时,第一高次模式将产生并将传送它的能量。第一高次模的截止波长可近似表示成下式

(3-2-15) 若同轴线是由介质材料填充,则该方程必须乘以相对介电常数的平方根,即

(3-2-16)

实际上的截止波长近似等于画在内外导体之间的中间圆周的长度。如图3-2-5所示。令中间圆周的半径为,它与a、b的关系是

图3-2-4 同轴线中的高次模则中间圆周长度为

式(3-2-15)的近似条件是。该公式的精度为8%。因此,为有效地抑制高次模,保证主模TEM波的单模传输,常引入一保险系数,即要求同轴线的工作波长必须满足

(3-2-17)

图3-2-5 同轴线横截面尺寸

由式(3-2-13)知道,使用大尺寸的同轴线,损耗变小,功率容量可大大增加。但是,同轴线尺寸的增大受到第一高次模的截止频率的限制。例如,示于图3-2-6中的7mm空气同轴线的截止波长为

换算出该截止频率为

其特性阻抗为

这就说明了为什么7mm、50Ω的空气同轴线通常规定工作到18GHz的原因。

图3-2-6 7mm空气轴线尺寸

此外,传输线中的不连续性也将产生高次模。通常高次模并不传送能量而是以指数律衰减掉,但它们仍会在不连续处产生干扰,出现某些不希望有的困难。故应尽量不出现突变点或设法抵消因突变而带来的不利影响。

高次模式的衰减因子可用下式计算

(3-2-18) 式中,为工作波长,为某高次模式的截止波长,它们均以厘米为单位。三、同轴线中的障碍物

前文曾指出过,随着频率的升高则介质损耗引起衰减愈来愈严重。为降低损耗,常用精密的空气同轴线。为保持内、外导体的同心度,必须有支撑物。在各种空气同轴线中使用不同的支撑方法。

1.介质支杆

介质支杆多用低介电常数、低损耗的塑料或陶瓷制成。这种支杆将产生反射,所以必须妥善设计,以减小反射。常用的有以下几种支撑方法。

(1)支杆

利用长度的介质垫圈把中心导体支撑在外导体中,如图3-2-7所示。在这种结构中,由长度介质填充的同轴线将有不同于空气同轴线的特性阻抗,垫圈的两端均将产生反射。但由于垫圈两端的不连续性有相同的大小,相距,根据“阻抗变换特性”可知两端不连续性的性质相反,故垫圈两端的反射将彼此抵消。

图3-2-7 支杆(垫圈)

为保持固定的特性阻抗,常用镶嵌的办法,如图3-2-8所示。图中三种结构是把垫圈分别镶嵌在中心导体、外导体或内外导体之中。介质垫圈的长度仍为。空气同轴线之特性阻抗为

含介质一段的同轴线之特性阻抗为

式中,、分别代表三种镶嵌结构中含介质一段同轴线的内、外导体半径。垫圈的选定后,可根据选定的或使,这是完全可以办到的。

这种介质支杆,是窄带或单频类型的结构,当频率改变时垫圈长茺不再等于中心波长的1/4,因而不连续性的抵消将不完全。为此可采用三个支杆组来实现宽带结构。

图3-2-8 三种镶嵌垫圈的方法图3-2-9 三个支杆组频率特性(虚

线)

2.支杆组

这种结构如图3-2-9所示。它是由三段支杆组成的,中间一段是完全填充介质的同轴线,令其特性阻抗为;旁边两段则是部分介质填充的同轴线,令其特性阻抗为。设空气同轴线的特性阻抗为,则它们间的关系应满

(3-2-19)

很明显,在中心频率时(即),由图3-2-9a点向右看的输入阻抗

为(设右端是匹配的)。经过的变换到达b点,其等效阻抗为

,则好同中间一段匹配,因此c点的等效阻抗也为。再

从点c到点d又经过一段的变换,故d点的等效阻抗

恰好跟前段空气同轴线匹配。

不难证明当及时,上述结构也能得到近似匹配,频带较

支杆加宽了,图3-2-10绘出其频率特性。

(3)薄片垫图

薄片垫图的结构示于图3-2-11中。垫圈很薄,为减小反射,一般采用妥善安排垫圈间距的办法,使它们产生的反射相互抵消。如两垫圈相距,则它们所产生的反射相位差而彼此抵消。

图3-2-11 薄支杆组图3-2-12 窄频带金属支杆

实际设计中常采用两种方案。一种是均匀排列,即沿线排列偶数个薄垫圈。垫圈间距均取,如图(b)所示。这种方法只能在某一频率上消除反射波,因而是窄带设备。另一种则如图(c)所示,它是以相距的两个垫圈为一组,每两组间的距离为。这种方案总反射比前一种小,故可在较宽频带内消除反射。

值得注意的是,当用介质垫圈支撑时,由于垫圈很薄,至使这种同轴线既不同于空气线也不同于介质同轴线。在这种传输线中传输波的波长应用下式计算

(3-2-20) 式中,为自由空间波长,称为波长缩短系数,它可用经验公式表示为

(3-2-21)

其中为垫圈的相对介电常数,l是垫圈间的距离,是垫圈的厚度。由式

可知,波长缩短系数。这种“混合”介质同轴线的特性阻抗的计算公式

(3-2-22)

第十三章 电磁感应与电磁波精选试卷试卷(word版含答案)

第十三章 电磁感应与电磁波精选试卷试卷(word 版含答案) 一、第十三章 电磁感应与电磁波初步选择题易错题培优(难) 1.如图为两形状完全相同的金属环A 、B 平行竖直的固定在绝缘水平面上,且两圆环的圆心O l 、O 2的连线为一条水平线,其中M 、N 、P 为该连线上的三点,相邻两点间的距离满足MO l =O 1N=NO 2 =O 2P .当两金属环中通有从左向右看逆时针方向的大小相等的电流时,经测量可得M 点的磁感应强度大小为B 1、N 点的磁感应强度大小为B 2,如果将右侧的金属环B 取走,P 点的磁感应强度大小应为 A .21 B B - B .212B B - C .122B B - D .13 B 【答案】B 【解析】 对于图中单个环形电流,根据安培定则,其在轴线上的磁场方向均是向左,故P 点的磁场方向也是向左的.设1122MO O N NO O P l ====,设单个环形电流在距离中点l 位置的磁感应强度为1l B ,在距离中点3l 位置的磁感应强度为3l B ,故M 点磁感应强度 113l l B B B =+,N 点磁感应强度211l l B B B =+,当拿走金属环B 后,P 点磁感应强度2312 P l B B B B ==-,B 正确;故选B. 【点睛】本题研究矢量的叠加合成(力的合成,加速度,速度,位移,电场强度,磁感应强度等),满足平行四边形定则;掌握特殊的方法(对称法、微元法、补偿法等). 2.取两个完全相同的长导线,用其中一根绕成如图(a )所示的螺线管,当该螺线管中通以电流强度为I 的电流时,测得螺线管内中部的磁感应强度大小为B ,若将另一根长导线对折后绕成如图(b )所示的螺线管,并通以电流强度也为I 的电流时,则在螺线管内中部的磁感应强度大小为( ) A .0 B .0.5B C .B D .2 B 【答案】A 【解析】 试题分析:乙为双绕线圈,两股导线产生的磁场相互抵消,管内磁感应强度为零,故A 正确. 考点:磁场的叠加 名师点睛:本题比较简单,考查了通电螺线管周围的磁场,弄清两图中电流以及导线的绕法的异同即可正确解答本题.

微波技术 第三章 TEM波传输波

第三章 TEM波传输波 低频传输线由于工作波长很长,一般都属“短线”范围,分布参数效应均被忽略,它们在电路中只起连接线的作用。因此在低频电路中不必要对传输线问题加以专门研究。当频率达到微波波段以上,正象我们在上章所述那样,分布参数效应已不可忽视了,这时的传输线不仅起连接线能量或信息由一处传至另一处的作用,还可以构成微波元器件。同时,随着频率的升高,所用传输线的种类也不同。但不论哪种微波传输线都有一些基本要求,它们是: (1)损耗要小。这不仅能提高传输效率,还能使系统工作稳定。 (2)结构尺寸要合理,使传输线功率容量尽可能地大。 (3)工作频带宽。即保证信号无畸变地传输的频带尽量宽。 (4)尺寸尽量小且均匀,结构简单易于加工,拆装方便。 假如传输线呼处的横向尺寸、导体材料及介质特性都是相同的,这种传输线就称为均匀传输线,反之则为非均匀传输线。 均匀传输线的种类很多。作为微波传输线有平行双线、同轴线、波导、带状线以及微带等等不同形式。本章将对几种常用的TEM波传输线作系统论述。 §3-1 双线传输线 所谓双线传输线是由两根平行而且相同的导体构成的传输系统。导体横截面是圆形,直径为d,两根导体中心间距为D,如图3-1-1所示。

图3-1-1 平行双线传输线 一、电磁场分布 关于双线上的电压、电流分布规律,已在前章详细讨论过。本章将给出沿线电场和磁场的分布。 电磁波在自由空间是由自由自在地传播着,电、磁场在时间上保持同相位,而在空间上是相互交并垂直于传播方向,如图3-1-2所示。 若电磁波沿传输线传播,就要受到传输线的限制和约束。在双线传输线上流有交变的高频电流,因而导线上积累有瞬变的正负电荷。线上电磁场可用下式表示(向+z方向传播的行波) (3-1-1)

电磁场与微波技术在日常生活中的应用

电磁场与微波技术在日常生活中的应用 学院:信息科学与工程学院 专业班级:电子0803班 姓名:叶琳琳 学号:20082722

电磁场与微波技术在日常生活中的应用 电磁场与微波技术在日常生活中的应用是非常广泛的,其应用大致体现在电磁起重机,磁悬浮列车小到电动机,指南针,扬声器,变压器,电磁炉,微波炉,以及微波技术在食品中的应用,微波加热,微波杀菌等等。 其中,电磁炉,微波炉,以及微波技术在食品工业中的应用等等。 电磁炉是厨具市场的一种新型灶具,它打破了传统的明火烹调方式采用磁场感应电流的加热原理,电磁炉是通过电子线路板组成部分产生交变磁场,当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流,涡流使锅具铁分子高速无规则运动,分子互相碰撞、摩擦而产生热能,使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。具有升温快、热效率高、无明火、无烟尘、无有害气体、对周围环境不产生热辐射、体积小巧、安全性好和外观美观等优点,能完成家庭的绝大多数烹饪任务。电磁炉的优势首先表现在它的热效率极高。作为倡导"绿色厨房文化"的高科技产品,电磁炉的应用原理是电流通过线圈产生磁场,磁场内的磁力线通过含铁物质的底部时,促使铁分子高速运动,产生无数小涡流,因此热效率高,鉴于电磁炉的种种优点,现在大量使用。 电磁炉的优势首先表现在它的热效率极高。作为倡导"绿色厨房文化"的高科技产品,电磁炉的应用原理是电流通过线圈产生磁场,磁场内的磁力线通过含铁物质(铁锅、不锈钢锅、搪瓷锅等)的底部时,促使铁分子高速运动,产生无数小涡流,因此热效率高。相比之下,传统炉具,如电热炉、石油气炉、煤气炉及电饭锅的加热原理是先烧红器皿底部直接加热锅内食物,另有部分热耗用在燃烧空气,热效率在40%-70%之间,热能耗量大、煮食慢。而电磁炉的热效率普遍高于80%,连盟电磁炉热效率能够达到93%。用传统炉灶明火烧开一壶水需要9分钟,而放到电磁炉上则只需2~3分钟,大大节省了能源。连盟电磁炉不受锅具种类和大小的左右,独有的热能强力制御开发, 2200W的电磁炉产生的极高的热值相当于4800 KCAL/m3的煤气炉发出的高火力。 微波炉是利用了微波是一种电磁波,其能量比通常的无线电波大得多。微波一碰到金属就发生反射,金属根本没有办法吸收或传导它。微波可以穿过玻璃、陶瓷、塑料等绝缘材料,但不会消耗能量;而含有水分的食物,微波不但不能透过,其能量反而会被吸收。微波炉正是利用微波的这些特性制作的。微波炉的外壳用不锈钢等金属材料制成,可以阻挡微波从炉内逃出,以免影响人们的身体健康。装食物的容器则用绝缘材料制成。微波炉的心脏是磁控管。这个叫磁控管的电子管是个微波发生器,它能产生每秒钟振动频率为24.5亿次的微波。这种肉眼看不见的微波,能穿透食物达5cm深,并使食物中的水分子也随之运动,剧烈的运动产生了大量的热能,食物就会被煮熟了,这就是微波炉加热的原理。用普通炉灶煮食物时,热量总是从食物外部逐渐进入食物内部的。而用微波炉烹饪,热量则是直接深入食物内部,所以烹饪速度比其它炉灶快4至10倍,热效率高达80%以上。微波炉由于烹饪的时间很短,进而能很好地保持食物中的维生素和天然风味,满足人们的需求。 微波技术在食品行业中的应用也是相当的广泛。鉴于微波具有加热迅速、均匀、节能高效、防霉保鲜、可连续生产、安全无害、设备占地面积小、改善劳动条件等优点,已被广泛应引用于粉状、颗粒、片状等各种食品、营养品、调味品、

电磁场与微波技术习题集

文档密级:内部公开 电磁场与微波技术习题集 (5~6章) 2012年11月 福建工程学院通信工程

第五章微波传输线 1、问答题: (1)微波波段是多少p154 (2)常用的波导有几种,各有什么特点p154 (3)波导中传输的模式有几种?P157~p158,各有什么特点 (4)什么叫做截止波长,有什么作用?P158 (5)什么叫做相速度、群速度,两者有什么差异?P158 (6)什么叫做波导波长、波阻抗、功率流?P159(7)矩形波导的特点p160 边界几何形状如图2.4所示。边界条件是: 解: 在区域里面满足亥姆赫兹方程 02 222=??+??y x φφ设) 0,0()()(b y a x y g x f <<<<=φ将上式子代入,得到 0) ()()()(''''=+y g y g x f x f 令 0) ()()()(222''2''=+?=?=y x y x k k k y g y g k x f x f 显然(a )对于0 )()(2"=?+y g k y g y 由于条件(3):0 )0(,00)0()(0,0,0==?=?=≤≤=g y g x f a x y φ由于条件(4):0 )(,0)()(0,0,==?=?=≤≤=b g b y b g x f a x b y φ根据课本的p44页2.86、2.88、2.89式子,可以得知

g (y)的的一个特解是: ))( ,........3,2,1sin()(22b m k m B m b y m B y g y m m m ππ===值相关,与其中一个(注意,(b )对于0 )()(2"=?+x f k x f x 由于222222(0b m k k k k k x y x y x π?=??=?=+代入0 )()(2"=?+x f k x f x 得到0)(()(2"=??x f b m x f π根据课本的p44页2.86、2.88、2.89式子,可以得知 这个时候f(x)的通解是:b x m m b x m m m e C e C x f /2,/1,)(ππ?+=为什么用Cm 不用Cn ,或者是另外一个指标呢,因为,系数C 是与b x m /π中的m 直接相关的,就是说,每个不同的m ,对于两个不同C ,所以C 与m 相关 由于条件(1):0|)(,00|)()(0, 0,00'0'==?=?=??<<===x x x f x x f y g x b y x φ将上面条件代入b x m m b x m m m e C e C x f /2,/1,)(ππ?+=可以得到m m m m m C C C C C ===2,1,2,1,可令立刻得到 ,既然两个相等,我们) /cosh()(22 /)()(////b x m C x f C C e e C e C e C x f m m m m b x m b x m m b x m m b x m m m πππππ?=+=+=??,写成上式子已经令(C )由于) 0,0()()(b y a x y g x f <<<<=φ现在将所有的特解叠加。因此,)0,0()()(1b y a x y g x f m m m <<<<= ∑∞=φ因此) /sin()/cosh(1 b y m B b x m C m m m ππφ∑∞=??=可以将Cm ,Bm 两个系数合并成为Cm 因此) /sin()/cosh(1b y m b x m C m m ππφ∑∞ =?=(D)根据条件(2) ) /sin()/cosh(10b y m b a m C U m m ππ∑∞ =?=因此:) /sin()/cosh(10b y m b a m C U m m ππ∑∞=?=所以最后可以将上面式子左右同时乘以)/sin(b y n π,并对0~b 积分

电磁感应 电磁场和电磁波(附答案)

一 填空题 1. 把一个面积为S ,总电阻为R 的圆形金属环平放在水平面上,磁感应强度为B 的匀强磁场竖直向下,当把环翻转?180的过程中,流过环某一横截面的电量为 。 答:R BS 2。 2. 一半径为m 10.0=r 的闭合圆形线圈,其电阻Ω=10R ,均匀磁场B ρ 垂直于线圈平面。欲使线圈中有一稳定的感应电流A 01.0=i ,B 的变化率应为多少 1s T -?。 答:1s T 18.3-?。 3. 如图所示,把一根条形磁铁从同样高度插到线圈中同样的位置处,第一次动作快,线圈中产生的感应电动势为1ε;第二次慢,线圈中产生的感应电动势为2ε,则两电动势的大小关系是1ε 2ε 答:>。(也可填“大于”) 4. 如图所示,有一磁感强度T 1.0=B 的水平匀强磁场,垂直匀强磁场放置一很长的金属框架,框架上有一导体ab 保持与框架边垂直、由静止开始下滑。已知ab 长 m 1.0,质量为kg 001.0,电阻为Ω1.0,框架电阻不计,取2s m 10?=g ,导体ab 下落的最大速度 1s m -?。

答:1s m 10-?。 5. 金属杆ABC 处于磁感强度T 1.0=B 的匀强磁场中,磁场方向垂直纸面向里(如图所示)。已知BC AB =m 2.0=,当金属杆在图中标明的速度方向运动时,测得C A ,两点间的电势差是V 0.3,则可知B A ,两点间的电势差ab V V。 答:V 0.2。 6. 半径为r 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流 t I I ωcos 0=,则围在管外的同轴圆形回路(半径为R )上的感生电动势为 。 答:t nI r ωωμsin π002。 7. 铁路的两条铁轨相距L ,火车以v 的速度前进,火车所在地处地磁场强度在竖直方向上的分量为B 。两条铁轨除与车轮接通外,彼此是绝缘的。两条铁轨的间的电势差U 为 。 答:BLv 。 8. 图中,半圆形线圈感应电动势的方向为 (填:顺时针方向或逆时针方向)。 答:逆时针方向。 9. 在一横截面积为0.2m 2的100匝圆形闭合线圈,电阻为0.2Ω。线圈处在匀强磁场中,磁场方向垂直线圈截面,其磁感应强度B 随时间t 的变化规律如图所示。线圈中感应电流的大小是 A 。

电磁场与微波技术

电磁场与微波技术 080904 (一级学科:电子科学与技术) 本学科是电子科学与技术一级学科下属的二级学科,是1990年由国务院学位办批准的博士学位授予点,同时承担接收博士后研究人员的任务,2003年被批准为国防科工委委级重点学科点。本学科专业内容涉及电磁场理论、微波毫米波技术及其应用,主要领域包括电磁波的产生、传播、辐射、散射的理论和技术,微波和毫米波电路系统的理论、分析、仿真、设计及应用,以及环境电磁学、光电子学、电磁兼容等交叉学科内容。多年来在多种军事和国民经济应用的推动下,本学科在天线理论与技术、电磁散射与逆散射、电磁隐身技术、微波毫米波理论与技术、光电子技术、电磁兼容、计算电磁学与电磁仿真技术、微波毫米波系统工程与集成应用等方面的研究形成了鲜明的特色,取得了显著成果。其主要研究方向有: 1.计算电磁学及其应用:设计、研究、开发高精度、高效率电磁计算算法;研究高效精确电磁计算算法在目标特性、微波成像及遥感、电磁环境预测、天线分析和设计等方面的应用。 2.微波/毫米波电路设计理论与技术:研究有源元器件与电路模型、与微电子、微机械工艺相关的材料器件等模型的建立及参数提取;研究低相噪频率源技术,微波/毫米波单片集成电路设计,基于微机械(MEMS)的微波/毫米波开关、移相器和滤波器设计。 3.电磁波与物质的相互作用:研究电磁散射和逆散射算法,军事装备目标特性测试技术,隐身目标测试技术,目标散射中心三维成像技术;研究轻质、宽频、自适应智能隐身材料。 4.微波/毫米波系统理论与集成应用技术:设计、研究、开发特殊环境下的微波/毫米波系统;研究微波/毫米波测试技术;研究天线设计理论与技术。 一、培养目标 掌握坚实的电磁场与微波技术以及相应学科的基础理论,具有系统的专门知识,熟练应用计算机,掌握相应的实验技术,掌握一门外国语,学风端正,具备独立从事科学研究工作和独立担负专门技术工作的能力,能胜任科研、生产单位和高等院校的研究、开发、教学或管理等工作。 二、课程设置

高中物理第十三章 电磁感应与电磁波精选测试卷综合测试卷(word含答案)

高中物理第十三章电磁感应与电磁波精选测试卷综合测试卷(word含答案) 一、第十三章电磁感应与电磁波初步选择题易错题培优(难) 1.如图甲,一电流强度为I的通电直导线在其中垂线上A点处的磁感应强度B∝,式中r 是A点到直导线的距离.在图乙中是一电流强度为I的通电圆环,O是圆环的圆心,圆环的半径为R,B是圆环轴线上的一点,OB间的距离是r0,请你猜测B点处的磁感应强度是( ) A. 2 2 R I B r ∝ B.()3 222 I B R r ∝ + C.() 2 3 222 R I B R r ∝ + D.() 2 3 222 r I B R r ∝ + 【答案】C 【解析】 因一电流强度为I的通电直导线在其中垂线上A点处的磁感应强度B∝ I r ,设比例系数为k,得:B=K I r ,其中 I r 的单位A/m; 2 2 R I r 的单位为A,当r0为零时,O点的磁场强度变 为无穷大了,不符合实际,选项A错误.()3 222 I R r + 的单位为A/m3,单位不相符,选项B错误,() 2 3 222 R I R r + 的单位为A/m,单位相符;当r0为零时,也符合实际,选项C正 确. () 2 3 222 r I R r + 的单位为A/m,单位相符;但当r0为零时,O点的磁场强度变为零了,不符合实际,选项D错误;故选C. 点睛:本题关键是结合量纲和特殊值进行判断,是解决物理问题的常见方法,同时要注意排除法的应用,有时能事半功倍.

2.如下左图所示,足够长的直线ab靠近通电螺线管,与螺线管平行.用磁传感器测量ab 上各点的磁感应强度B,在计算机屏幕上显示的大致图象是( ) A.B. C.D. 【答案】C 【解析】 试题分析:通电螺线管的磁场分布相当于条形磁铁,根据磁感线的疏密程度来确定磁感应强度的大小. 解:通电螺线管的磁场分布相当于条形磁铁,因此根据磁感线的分布,再由磁感线的疏密程度来确定磁感应强度的大小可知, 因为ab线段的长度大于通电螺线管的长度,由条形磁铁磁感线的分布,可知应该选C,如果ab线段的长度小于通电螺线管的长度,则应该选B. 由于足够长的直线ab,故C选项正确,ABD错误; 故选C 点评:考查通电螺线管周围磁场的分布,及磁感线的疏密程度来确定磁感应强度的大小,本题较简单但会出错. 3.降噪耳机越来越受到年轻人的喜爱.某型号降噪耳机工作原理如图所示,降噪过程包括如下几个环节:首先,由安置于耳机内的微型麦克风采集耳朵能听到的环境中的中、低频噪声(比如 100Hz~1000Hz);接下来,将噪声信号传至降噪电路,降噪电路对环境噪声进行实时分析、运算等处理工作;在降噪电路处理完成后,通过扬声器向外发出与噪声相位相反、振幅相同的声波来抵消噪声;最后,我们的耳朵就会感觉到噪声减弱甚至消失

电磁场与微波技术

论文题目:无形科学-电磁场与微波 技术 姓名:陈超 专业:电子科学与技术 指导教师:葛幸 申报日期:2012.10.23

摘要 电子和信息领域内所有重大技术进展几乎都离不开电磁场与微波技术的突破。在通信、雷达、激光和光纤、遥感、卫星、微电子、高能技术、生物和医疗等高新技术领域中,电磁场与微波技术都起着关键的作用,它的应用领域蕴含在国民经济、国防建设和人民生活的各个方面。同时,电磁场和微波技术也随着当代物理、数学、技术学科的不断进步而得到日新月异的发展。 关键字:电磁场,微波技术,应用

无形的科学—— 电磁场与微波技术 目录 1.前言 (2) 2.研究方向 (2) 3.基本理论与分析方法 (3) 3.1 电磁场理论 (3) 3.1.1矢量分析 (3) 3.1.2静电场 (3) 3.1.3恒定电场 (4) 3.1.4静磁场 (4) 3.1.5时变电磁场 (5) 3.2 微波技术理论 (7) 3.2.1传输线理论 (7) 3.2.2集成传输系统 (9) 3.2.3微波谐凯腔 (9) 3.2.4微波网络基础 (9) 3.2.5微波无源元件 (11) 4.发展前景 (12)

1. 前言 电子和信息领域内所有重大技术进展几乎都离不开电磁场与微波技术的突破。在通信、雷达、激光和光纤、遥感、卫星、微电子、高能技术、生物和医疗等高新技术领域中,电磁场与微波技术都起着关键的作用,它的应用领域蕴含在国民经济、国防建设和人民生活的各个方面。同时,电磁场和微波技术也随着当代物理、数学、技术学科的不断进步而得到日新月异的发展。 2. 研究方向 1.计算电磁学及其应用:设计、研究、开发高精度、高效率电磁计算算法;研究高效精确电磁计算算法在目标特性、微波成像及遥感、电磁环境预测、天线分析和设计等方面的应用。 2.微波/毫米波电路设计理论与技术:研究有源元器件与电路模型、与微电子、微机械工艺相关的材料器件等模型的建立及参数提取;研究低相噪频率源技术,微波/毫米波单片集成电路设计,基于微机械(MEMS)的微波/毫米波开关、移相器和滤波器设计。 3.电磁波与物质的相互作用:研究电磁散射和逆散射算法,军事装备目标特性测试技术,隐身目标测试技术,目标散射中心三维成像技术;研究轻质、宽频、自适应智能隐身材料。 4.微波/毫米波系统理论与集成应用技术:设计、研究、开发特殊环境下的微波/毫米波系统;研究微波/毫米波测试技术;研究天线设计理论与技术。

第十三章电磁感应与电磁波初步

第十三章电磁感应与电磁波初步 1.磁场磁感线 练习与应用 1. 音箱中的扬声器、电话、磁盘、磁卡等生活中的许多器具都利用了磁体的磁性。请选择一个你最熟悉的器具,简述它是怎样利用磁体的磁性来工作的。 2. 日常生活中,磁的应用给我们带来方便。例如:在柜门上安装“门吸”能方便地把柜门关紧;把螺丝刀做成磁性刀头,可以像手一样抓住需要安装的铁螺钉,还能把掉在狭缝中的铁螺钉取出来。请你关注自己的生活,看看还有哪些地方如果应用磁性可以带来方便。写出你的创意,并画出你设计的示意图。 3. 磁的应用非常广泛,不同的人对磁应用的分类也许有不同的方法。请你对磁的应用分类,并每类举一个例子。 4. 通电直导线附近的小磁针如图13.1-13所示,标出导线中的电流方向。 5. 如图13.1-14,当导线环中沿逆时针方向通过电流时,说出小磁针最后静止时N 极的指向。 6. 通电螺线管内部与管口外相比,哪里的磁场比较强?你是根据什么判断的? 7. 为解释地球的磁性,19 世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的。在图13.1-15 中,正确表示安培假设中环形电流方向的是哪一个?请简述理由。

2.磁感应强度磁通量 练习与应用 1. 有人根据B =IlF 提出:磁场中某点的磁感应强度B 与通电导线在磁场中所受的磁场力F 成正比,与电流I 和导线长度l 的乘积成反比。这种说法有什么问题? 2. 在匀强磁场中,一根长0.4 m 的通电导线中的电流为20 A,这条导线与磁场方向垂直时,所受的磁场力为0.015 N,求磁感应强度的大小。 3. 如图13.2-8,匀强磁场的磁感应强度B为0.2 T,方向沿x轴的正方向,且线段MN、DC相等,长度为0.4 m,线段NC、EF、MD、NE、CF相等,长度为0.3 m,通过面积SMNCD、SNEFC、SMEFD的磁通量Φ1、Φ2、Φ3 各是多少? 4. 在磁场中放置一条直导线,导线的方向与磁场方向垂直。先后在导线中通入不同的电流,导线所受的力也不一样。图13.2-9中的图像表现的是导线受力的大小F与通过导线的电流I 的关系。A、B各代表一组F、I 的数据。在甲、乙、丙、丁四幅图中,正确的是哪一幅或哪几幅?说明道理 3.电磁感应现象及应用 练习与应用 1. 图13.3-7 所示的匀强磁场中有一个矩形闭合导线框。在下列几种情况下,线框中是否产生感应电流?(1)保持线框平面始终与磁感线垂直,线框在磁场中上下运动(图13.3-7 甲)。 (2)保持线框平面始终与磁感线垂直,线框在磁场中左右运动(图13.3-7 乙)。 (3)线框绕轴线转动(图13.3-7 丙)。

电磁场和微波技术znjn

——电磁场与微波技术实验报告 班级:06 姓名:张妮竞男 学号:84 序号:31# 日期:2014年5月31日 邮箱: 实验二:分支线匹配器 一、实验目的 1、掌握支节匹配器的工作原理 2、掌握微带线的基本概念和元件模型 3、掌握微带分支线匹配器的设计与仿真 二、实验原理 1、支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 2、微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。

W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H为介质层厚度,通常H远大于T。L为微带线的长度。微带线的严格场解是由混合TM-TE波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。 微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。 微带线元件模型 3、元器件库里包括有: MLIN:标准微带线 MLEF:终端开路微带线 MLSC:终端短路微带线 MSUB:微带线衬底材料 MSTEP:宽度阶梯变换 MTEE:T型接头 MBENDA:折弯 微带线的不均匀性 上述模型中,终端开路微带线MLEF、宽度阶梯变换MSTEP、T型接头MTEE 和折弯MBENDA,是针对微带线的不军训性而专门引入的。一般的微带电路元件都包含着一些不均匀性,例如微带滤波器中的终端开路线;微带变阻器的不同特性阻抗微带段的连接处,即微带线宽度的尺寸跳变;微带分支线电桥、功分器等则包含一些分支T型接头;在一块微带电路板上,为使结构紧凑及适应走线方向的要求,时常必须使微带弯折。由此可见,不均匀性在微带电路中是必不可少的。由于微带电路是分布参数电路,其尺寸已可与工作波长相比拟,因此其不均匀性必然对电路产生影响。从等效电路来看,它相当于并联或串联一些电抗元件,或是使参考面发生一些变化。在设计微带电路时,必须考虑到不均匀性所引起的影响,将其等效参量计入电路参量,否则将引起大的误差。 三、实验内容 已知:输入阻抗Zin=75欧 负载阻抗Zl=(64+j35)欧 特性阻抗Z0=75欧 介质基片εr=2.55,H=1mm 假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化

电磁场理论与微波技术复习提纲

电磁场理论与微波技术复习提纲 一、总体要求 通过本课程的学习,建立起电磁场与电磁波的基本思想,掌握电磁场与微波技术的基本概念、基本原理、基本分析方法,对波导理论有比较完整的理解,了解电磁场与微波技术的最新发展和应用。 “电磁场理论与微波技术”由“电磁场与电磁波基本理论”和“微波技术基础”两部分构成。第一部分“电磁场理论”所占比例约为:55% 第二部分“微波技术基础”所占比例约为:45% “电磁场与电磁波基本理论”部分重点考查内容为: 基本概念和理论 静电场 恒定电场 麦克斯韦方程组 平面电磁波 “微波技术基础”部分考查内容为: 基本概念和理论 传输线理论 波导理论 微波网络基础 二、考试形式与试卷结构 1、试题分为选择题(20%)、填空题(20%)、名词解释题(8%)、简答题(10%)、计算题(42%)。试卷总分100分。 2、考试形式为闭卷考试 3、考试时间:120分钟 名词解释: 1、坡印廷矢量和平均坡印廷矢量 2、电位移矢量 3、主模 4、色散

5、体电荷分布、面电荷分布、线电荷分布、体电流分布、面电流分布、线电流分布 6、电偶极子 7、直线极化、左右旋圆极化、椭圆极化 8、趋肤效应 9、均匀平面波、TEM模、TE模、TM模 10、全反射和全透射 11、波导 12、基本振子和对称振子 13、简并现象 14、微波 简答题: 1、如何判断长线和短线? 2、何谓分布参数电路?何谓集总参数电路? 3、何谓色散传输线?对色散传输线和非色散传输线各举一个例子。 4、均匀无耗长线有几种工作状态?特点?条件是什么? 5、说明二端口网络几种参量的物理意义? 6、发生全反射和全透射的条件 7、分析微波网络的方法 8、写出常见的微波元件9、分析天线的方法10、写出常见的天线 11、用哪些参数可以描述天线的性能指标,并解释其中的一到两个参数。 12、通量和散度的区别 13、旋度和环流的区别14、负载匹配和电源匹配 计算题: 1、矢量分析 1.1、1. 2、1.4、1.15、1.20 2、无界空间均匀平面波2.45、2.46、3.2、3.14 3、理想介质和良导体为边界的均匀平面波垂直入射3.17、3.22 4、分离变量法2.23,平行导体板(ppt例题) 5、阻抗圆图 6、波导模式和波长等计算5.11、5.12 7、高斯定理和安培环路定理(ppt例题)

最新电磁场与微波技术(第2版)黄玉兰-习题答案资料

第一章 1.3 证: 941(6)(6)50=0 A B A B A B A B =?+?-+-?=∴?∴和相互垂直和相互平行 1.11 (1) 2 222 0.5 0.50.5 2222 0.5 0.5 0.5 2272(2)(2272)1 24 s Ax Ay Az A divA x y z x x y x y z Ad s Ad dz dy x x y x y z dz ττ---????==++ ???=++=?=++=??? ??由高斯散度定理有

1.18 (1) 因为闭合路径在xoy 平面内, 故有: 222()()8(2) (22)()2()8 x y z x y x z x s A dl e x e x e y z e dx e dy xdx x dy A dl S XOY A ds e yz e x e dxdy xdxdy A ds → →→ → ?=+++=+∴?=??=+=??=∴??因为在面内, 所以,定理成立。 1.21 (1) 由梯度公式

(2,1,3) |410410x y z x y z x y z u u u u e e e x y z e e e e e e ????=++???=++=++1 方向:() (2) 最小值为0, 与梯度垂直 1.26 证明 00u A ???=??= 书上p10 1.25 第二章 2.1

3343 sin 3sin 4q a V e wr qwr J V e a ρρ ρπθ θ ρπ= ==?= 2.3

'' 2 2' 3 222 , 40 = l l l dl d R Er R ez z ea a ez z ea a Er r z P ez z ea a E d z a ea π ρρα? ρα? πε = ==- - == - = + ? 用圆柱坐标系进行求解 场点坐标为P(0,0,z).线电荷元 可以视为点电荷,其到场点的距离矢量 得 所以点的电场强度为 () 2 ''' 3 222 cos sin0 20 l z ex ey ea d z E e z a π ??? ρα ε +∴= ∴= + ? () 2.8

第十三章 电磁感应与电磁波精选试卷复习练习(Word版 含答案)

第十三章 电磁感应与电磁波精选试卷复习练习(Word 版 含答案) 一、第十三章 电磁感应与电磁波初步选择题易错题培优(难) 1.已知无限长通电直导线周围某一点的磁感应强度B 的表达式:00 2I B r μπ=,其中r 0是该点到通电直导线的距离,I 为电流强度,μ0为比例系数(单位为N/A 2).试推断,一个半径为R 的圆环,当通过的电流为I 时,其轴线上距圆心O 点为r 0处的磁感应强度应为( ) A .() 20322 202r I R r + B .()0322202IR R r μ+ C .()2 0322 202IR R r μ+ D .()200322 202r I R r μ+ 【答案】C 【解析】 根据,00 2I B r μπ=,μ0单位为:T?m/A ; A 、等式右边单位:23m A =A/m m ,左边单位为T ,不同,故A 错误;B 、等式右边单位:3(T m/A)m A =T/m m ??,左边单位为T ,不同,故B 错误;C 、等式右边单位:23(T m/A)m A =T m ??,左边单位为T ,相同,故C 正确;D 、等式右边单位23(T m/A)m A =T m ??,左边单位为T ,相同,但当r 0=0时B =0,显然不合实际,故D 错误;故选C. 【点睛】本题要采用量纲和特殊值的方法进行判断,即先根据单位判断,再结合r 0取最小值进行分析.结合量纲和特殊值进行判断是解决物理问题的常见方法. 2.如下左图所示,足够长的直线ab 靠近通电螺线管,与螺线管平行.用磁传感器测量ab 上各点的磁感应强度B ,在计算机屏幕上显示的大致图象是( )

微波技术与天线考试重点复习归纳

第一章 1.均匀传输线(规则导波系统):截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统。 2.均匀传输线方程, 也称电报方程。 3.无色散波:对均匀无耗传输线, 由于β与ω成线性关系, 所以导行波的相速v p 与频率无关, 称为无色散波。色散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为色散特性。 1101 0010110 cos()sin()tan() ()tan()cos()sin() in U z jI Z z Z jZ z Z z Z U Z jZ z I z j z Z ββββββ++==++ 2p v f πλβ===任意相距λ/2处的阻抗相同, 称为λ/2重复性z1 终端负载 221021101()j z j z j z j z Z Z A e z e e Z Z A e ββββ----Γ===Γ+ 1 10 1110 j Z Z e Z Z φ-Γ= =Γ+ 终端反射系数 均匀无耗传输 线上, 任意点反射系数Γ(z)大小均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性 4. 00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ 111ρρ-Γ= + 1 111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波比 其倒数称为行波系数, 用K 表示 5.行波状态就是无反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。综上所述, 对无耗传输线的行波状态有以下结论: ① 沿线电压和电流振幅不变, 驻波比ρ=1; ② 电压和电流在任意点上都同相; ③ 传输线上各点阻抗均等于传输线特性阻抗 6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e -j2β z 此时传输线上任意一点z 处的输入阻抗为 0()tan in Z Z jZ z β= ① 沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为无功功率, 即无能量传输; ② 在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最大且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最大且等于2|A 1|, 而电流为零, 称这些位置为电压波腹点。 ③ 传输线上各点阻抗为纯电抗, 在电压波节点处Z in =0, 相当于串联谐振, 在电压波腹点处|Z in |→∞, 相当于并联谐振, 在0<z <λ/4内, Z in =jX 相当于一个纯电感, 在λ/4<z <λ/2内, Z in =-jX 相当于一个纯电容,从终端起每隔λ/4阻抗性质就变换一次, 这种特性称为λ/4阻抗变换性。 短路线ls l 110arctan()2s X l Z λπ= 开路线loc 0cot() 2c oc X l arc Z λ π= 9.无耗传输线上距离为λ/4的任意两点处阻抗的乘积均等于传输线特性阻抗的平方, 这种特 性称之为λ/4阻抗变换性。 10.负载阻抗匹配的方法 基本方法:在负载与传输线之间接入一个匹配装置(或称匹配网络),使其输入阻抗等于传输线的特性阻抗Z 0. 对匹配网络的基本要求:简单易行、附加损耗小、频带宽、可调节以匹配可变的负载阻抗。 实现手段分类:串联λ/4阻抗变换器法、支节调配器法 (1)因此当传输线的特性阻抗 01 Z = 时, 输入端的输入阻抗Z in =Z 0, 从而实现了负载和传输 线间的阻抗匹配(2)串联

第十三章 电磁感应与电磁波精选试卷测试卷(解析版)

第十三章 电磁感应与电磁波精选试卷测试卷(解析版) 一、第十三章 电磁感应与电磁波初步选择题易错题培优(难) 1.如图所示,匀强磁场中有一圆形闭合线圈,线圈平面与磁感线平行,能使线圈中产生感应电流的应是下述运动中的哪一种( ) A .线圈平面沿着与磁感线垂直的方向运动 B .线圈平面沿着与磁感线平行的方向运动 C .线圈绕着与磁场平行的直径ab 旋转 D .线圈绕着与磁场垂直的直径cd 旋转 【答案】D 【解析】 【分析】 【详解】 A .线圈平面沿着与磁感线垂直的方向运动时,磁通量始终为零,保持不变,线圈中没有感应电流产生;故A 错误. B .线圈平面沿着与磁感线平行的方向运动时,磁通量始终为零,保持不变,线圈中没有感应电流产生;故B 错误. C .线圈绕着与磁场平行的直径ab 旋转时,磁通量始终为零,保持不变,线圈中没有感应电流产生;故C 错误. D .线圈绕着与磁场垂直的直径cd 旋转时,磁通量从无到有发生变化,线圈中有感应电流产生;故D 正确. 故选D . 【点睛】 感应电流产生的条件有两个:一是线圈要闭合;二是磁通量发生变化. 2.三根通电长直导线垂直纸面平行固定,其截面构成一正三角形,O 为三角形的重心,通过三根直导线的电流分别用I 1、I 2、I 3表示,方向如图。现在O 点垂直纸面固定一根通有电流为I 0的直导线,当1230I I I I ===时,O 点处导线受到的安培力大小为F 。已知通电长直导线在某点产生的磁感应强度大小和电流成正比,则( )

A .当102303I I I I I ===、时,O 点处导线受到的安培力大小为4F B .当102303I I I I I ===、时,O 点处导线受到的安培力大小为3F C .当201303I I I I I ===、时,O 点处导线受到的安培力大小为3F D .当301203I I I I I ===、时,O 点处导线受到的安培力大小为2F 【答案】C 【解析】 【分析】 【详解】 根据安培定则画出123I I I 、、在O 点的磁感应强度123B B B 、、的示意图如图所示 当1230I I I I ===时,三根导线在O 点产生的磁感应强度大小相等,设为0B ,根据磁场叠加原理可知,此时O 点的磁感应强度为 02B B = 此时O 点处对应的导线的安培力 002F B I L = AB .由于通电长直导线在某点产生的磁感应强度大小和电流成正比,当 102303I I I I I ===、时,则有 103B B =,230B B B == 根据磁场叠加原理可知,此时O 点的磁感应强度为 04B B = 此时O 点处对应的导线的安培力 0042F B I L F '== 故AB 错误; C .当201303I I I I I ===、时,有 203B B =,130B B B ==

微波技术与天线复习知识要点资料讲解

《微波技术与天线》复习知识要点 绪论 ●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长 最短的波段。 ●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm ●微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量 子特性(微波波谱的分析) 第一章均匀传输线理论 ●均匀无耗传输线的输入阻抗(2个特性) 定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗 注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。 两个特性: 1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2) 2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02 证明题:(作业题)

●均匀无耗传输线的三种传输状态(要会判断) 1.行波状态:无反射的传输状态 ?匹配负载:负载阻抗等于传输线的特性阻抗 ?沿线电压和电流振幅不变 ?电压和电流在任意点上同相 2.纯驻波状态:全反射状态 ?负载阻抗分为短路、开路、纯电抗状态 3.行驻波状态:传输线上任意点输入阻抗为复数 ●传输线的三类匹配状态(知道概念) ?负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。

?源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。此时,信号源端无反射。 ?共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。 共轭匹配的目的就是使负载得到最大功率。 ●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17) ●阻抗圆图的应用(*与实验结合) 史密斯圆图是用来分析传输线匹配问题的有效方法。 1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1-2βz)= |Γ1|e jΦ Φ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角。反射系数圆图中任一点与圆心的连线的长度就是与该点相应的传输线上某点处的反射系数的大小。 2.阻抗原图(点、线、面、旋转方向): ?在阻抗圆图的上半圆内的电抗x>0呈感性,下半圆内的电抗x<0呈容性。 ?实轴上的点代表纯电阻点,左半轴上的点为电压波节点,其上的刻度既代表r min又代表行波系数K,右半轴上的点为电压波腹点,其上的刻度既代表r max又代表驻波比ρ。 ?|Γ|=1的圆图上的点代表纯电抗点。 ?实轴左端点为短路点,右端点为开路点,中心点处是匹配点。 ?在传输线上由负载向电源方向移动时,在圆图上应顺时针旋转,;反之,由电源向负载方向移动时,应逆时针旋转。

相关主题
文本预览
相关文档 最新文档